Skip to main content

Temporal Validated Meta-Learning for Long-Term Forecasting of Chaotic Time Series Using Monte Carlo Cross-Validation

  • Chapter
  • First Online:
Recent Advances on Hybrid Approaches for Designing Intelligent Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 547))

Abstract

Forecasting long-term values of chaotic time series is a difficult task, but it is required in several domains such as economy, medicine and astronomy. State-of-the-art works agree that the best accuracy can be obtained combining forecasting models. However, selecting the appropriate models and the best way to combine them is an open problem. Some researchers have been focusing on using prior knowledge of the performance of the models for combining them. A way to do so is by meta-learning, which is the process of automatically learning from tasks and models showing the best performances. Nevertheless, meta-learning in time series impose no trivial challenges; some requirements are to search the best model, to validate estimations, and even to develop new meta-learning methods. The new methods would consider performance variances of the models over time. This research addresses the meta-learning problem of how to select and combine models using different parts of the prediction horizon. Our strategy, called “Temporal Validated Combination” (TVC), consists of splitting the prediction horizon into three parts: short, medium and long-term windows. Next, for each window, we extract knowledge about what model has the best performance. This knowledge extraction uses a Monte Carlo cross-validation process. Using this, we are able to improve the long-term prediction using different models for each prediction window. The results reported in this chapter show that TVC obtained an average improvement of 1 % in the prediction of 56 points of the NN5 time series, when compared to a combination of best models based on a simple average. NARX neural networks and ARIMA models were used for building the predictors and the SMAPE metric was used for measuring performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abarbanel, H.D.I., Gollub, J.P.: Analysis of observed chaotic data. Phys. Today 49, 86 (1996)

    Article  Google Scholar 

  2. Armstrong, J.S.: Long-Range Forecasting from Crystal Ball to Computer, 2nd edn. Wiley, New York (1985)

    Google Scholar 

  3. Beale, M.H., Hagan, M.T., Demuth, H.B.: Neural Network Toolbox User’s Guide R2012b: MathWorks (2012)

    Google Scholar 

  4. Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis Forecasting and Control, 3rd edn. In: Jerome Grant, (ed.) Prentice-Hall International, Upper Saddle River (1994)

    Google Scholar 

  5. Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods, 2nd edn. Springer, New York (2006)

    Google Scholar 

  6. Cao, L.: Practical method for determining the minimum embedding dimension of a scalar time series. Phys. D: Nonlinear Phenom. 110(1–2), 43–50 (1997)

    Article  MATH  Google Scholar 

  7. Crone, S.F.: Competition instructions (Online). http://www.neural-forecasting-competition.com/instructions.htm (2008, Feb)

  8. Crone, S.F., Hibon, M., Nikolopoulos, K.: Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction. Int. J. Forecast. 27(3), 635–660 (2011)

    Article  Google Scholar 

  9. De Gooijer, J.G., Hyndman, R.J.: 25 years of time series forecasting. Int. J. Forecast. 22(3), 443–473 (2006). Twenty five years of forecasting

    Article  Google Scholar 

  10. Dhanya, C.T., Nagesh Kumar, D.: Nonlinear ensemble prediction of chaotic daily rainfall. Adv. Water Res. 33(3), 327–347 (2010)

    Article  Google Scholar 

  11. Diaconescu, E.: The use of NARX neural networks to predict chaotic time series. WSEAS Trans. Comp. Res. 3(3), 182–191 (2008)

    Google Scholar 

  12. Dzeroski, S., Zenko, B.: Is combining classifiers with stacking better than selecting the best one? Mach. Learn. 54, 255–273 (2004)

    Article  MATH  Google Scholar 

  13. Fonseca-Delgado, F., Gómez-Gil, P.: An assessment of ten-fold and Monte Carlo cross validations for time series forecasting. In: 10th International Conference on Electrical Engineering, Computing Science and Automatic Control. Mexico (2013)

    Google Scholar 

  14. Fonseca-Delgado, R., Gómez-Gil, P.: Temporal self-organized meta-learning for predicting chaotic time series. In: 5th Mexican Conference on Pattern Recognition. Queretaro (2013)

    Google Scholar 

  15. Haykin, S.: Neural Networks A Comprehensive Foundation, 2nd edn. Pearson Prentice Hall, New York (1999)

    MATH  Google Scholar 

  16. Hegger, R., Kantz, H., Schreiber, T.: Practical implementation of nonlinear time series methods: The TISEAN package. Chaos: Interdiscip. J. Nonlinear Sci. 9(2), 413–435 (1999)

    Article  MATH  Google Scholar 

  17. Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  18. Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45, 3403–3411 (1992)

    Article  Google Scholar 

  19. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1–2), 273–324 (1997). Relevance

    Article  MATH  Google Scholar 

  20. Lemke, C., Gabrys, B.: Meta-learning for time series forecasting and forecast combination. Neurocomputing 73(10–12), 2006–2016 (2010)

    Article  Google Scholar 

  21. Leontaritis, I.J., Billings, S.A.: Input-output parametric models for non-linear systems Part II: Stochastic non-linear systems. Int. J. Control 41(2), 329–344 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  22. Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control systems. Science 197(4300), 287–289 (1977)

    Article  Google Scholar 

  23. Makridakis, S., Hibon, M.: The M3-competition: Results, conclusions and implications. Int. J. Forecast. 16(4), 451–476 (2000). The M3-Competition

    Article  Google Scholar 

  24. Matijas, M., Suykens, J.A.K., Krajcar, S.: Load forecasting using a multivariate meta-learning system. Expert Syst. Appl. 40(11), 4427–4437 (2013)

    Article  Google Scholar 

  25. Picard, R.R., Cook, R.D.: Cross-validation of regression models. J. Am. Stat. Assoc. 79(387), 575–583 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  26. Poincare, H.: Memoire sur les courbes definies par une equation differentielle. Resal J. 3, VII. 375–422 (1881)

    Google Scholar 

  27. Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Phys. D 65(1–2), 117–134 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  28. Sandri, M.: Numerical calculation of Lyapunov exponents. Math. J. 6(3), 78–84 (1996)

    Google Scholar 

  29. Shao, J.: Linear model selection by cross-validation. J. Am. Stat. Assoc. 88(422), 486–494 (1993)

    Article  MATH  Google Scholar 

  30. Siegelmann, H.T., Horne, B.G., Giles, C.L.: Computational capabilities of recurrent NARX neural networks. Syst. Man Cybern. B Cybern. IEEE Trans. 27(2), 208–215 (1997)

    Article  Google Scholar 

  31. Taieb, S.B., Bontempi, G., Atiya, A.F., Sorjamaa, A.: A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition. Expert Syst. Appl. 39(8), 7067–7083 (2012)

    Google Scholar 

  32. Wang, X., Smith-Miles, K., Hyndman, R.: Rule induction for forecasting method selection: Meta-learning the characteristics of univariate time series. Neurocomputing 72(10–12), 2581–2594 (2009)

    Article  Google Scholar 

  33. Wolpert, D.H.: Stacked generalization. Neural Netw. 5(2), 241–259 (1992)

    Article  MathSciNet  Google Scholar 

  34. Xu, Q.S., Liang, Y.Z., Du, Y.P.: Monte Carlo cross-validation for selecting a model and estimating the prediction error in multivariate calibration. J. Chemom. 18(2), 112–120 (2004)

    Article  Google Scholar 

  35. Yang, Z.R., Lu, W., Harrison, R.G.: Evolving stacked time series predictors with multiple window scales and sampling gaps. Neural Process. Lett. 13(3), 203–211 (2001)

    Google Scholar 

Download references

Acknowledgments

R. Fonseca thanks the National Council of Science and Technology (CONACYT), México, for a scholarship granted to him, No. 234540. This research has been partially supported by CONACYT, project grant No. CB-2010-155250.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilar Gómez-Gil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fonseca, R., Gómez-Gil, P. (2014). Temporal Validated Meta-Learning for Long-Term Forecasting of Chaotic Time Series Using Monte Carlo Cross-Validation. In: Castillo, O., Melin, P., Pedrycz, W., Kacprzyk, J. (eds) Recent Advances on Hybrid Approaches for Designing Intelligent Systems. Studies in Computational Intelligence, vol 547. Springer, Cham. https://doi.org/10.1007/978-3-319-05170-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05170-3_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05169-7

  • Online ISBN: 978-3-319-05170-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics