Skip to main content

Step Length Estimation and Activity Detection in a PDR System Based on a Fuzzy Model with Inertial Sensors

  • Chapter
  • First Online:
  • 1519 Accesses

Part of the book series: Studies in Computational Intelligence ((SCI,volume 547))

Abstract

This chapter presents an approach on pedestrian dead reckoning (PDR) which incorporates activity classification over a fuzzy inference system (FIS) for step length estimation. In the proposed algorithm, the pedestrian is equipped with an inertial measurement unit attached to the waist, which provides three-axis accelerometer and gyroscope signals. The main goal is to integrate the activity classification and step-length estimation algorithms into a PDR system. In order to improve the step-length estimation, several types of activities are classified using a multi-layer perceptron (MLP) neural network with feature extraction based on statistical parameters from wavelet decomposition. This work focuses on classifying activities that a pedestrian performs routinely in his daily life, such as walking, walking fast, jogging and running. The step-length is dynamically estimated using a multiple-input–single-output (MISO) fuzzy inference system. Results provide an average classification rate of 87.49 % with an accuracy on step-length estimation about 92.57 % in average.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gartner, G., Ortag, F.: Advances in Location-based Services, Lecture Notes in Geoinformation and Cartography. Springer-Verlag, Berlin (2012)

    Google Scholar 

  2. Sun, Z., Mao, X., Tian, W., Zhang, X.: Activity classification and dead reckoning for pedestrian navigation with wearable sensors. Measur. Sci. Technol. 20(1), 1–10 (2009)

    Google Scholar 

  3. Altun, K., Barshan, B.: Pedestrian dead reckoning employing simultaneous activity recognition cues. Measur. Sci. Technol. 23(2), 1–20 (2012)

    Google Scholar 

  4. Bancroft, J.B., Garrett, D., Lachapelle, G.: Activity and environment classification using foot mounted navigation sensors. In: Proceedings of International Conference on Indoor Positioning and Indoor Navigation, pp. 13–15. Sydney, NSW (2012)

    Google Scholar 

  5. Chen, X., Hu, S., Shao, Z., Tan, J.: Pedestrian positioning with physical activity classification for indoors. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1311–1316. Shanghai, China May, 2011

    Google Scholar 

  6. Panahandeh, G., Mohammadiha, N., Leijon, A., Handel, P.: Continuous hidden markov model for pedestrian activity classification and gait analysis. IEEE Trans. Instrum. Meas. 62(5), 1073–1083 (2013)

    Article  Google Scholar 

  7. Mathie, M.J., Celler, B.G., Lovell, N.H., Coster, A.C.F.: Classification of basic daily movements using a triaxial accelerometer. Med. Biol. Eng. Comput. 42(5), 679–687 (2004)

    Article  Google Scholar 

  8. Yang, C.C., Hsu, Y.L.: A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors 10(8), 7772–7788 (2010)

    Article  Google Scholar 

  9. Mannini, A., Sabatini, A.M.: Accelerometry-based classification of human activities using markov modeling. Comput. Intell. Neurosci. 2011, 2–9 (2011)

    Article  Google Scholar 

  10. Preece, S.J., Goulermas, J.Y., Kenney, L.P.J., Howard, D.: A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. IEEE Trans. Biomed. Eng. 56(3), 871–879 (2009)

    Article  Google Scholar 

  11. Ravi, N., Dandekar, N., Mysore, P., Littman, M.L.: Activity recognition from accelerometer data. In: Proceedings of 17th Conference on Innovative Applications of Artificial Intelligence, vol. 5, pp. 1541–1546. Pittsburgh, Pennsylvania (2005)

    Google Scholar 

  12. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. ACM SIGKDD Explor. Newslett. 12(2), 74–82 (2011)

    Article  Google Scholar 

  13. Karantonis, D.M., Narayanan, M.R., Mathie, M., Lovell, N.H., Celler, B.G.: Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Trans. Inf. Technol. Biomed. 10(1), 156–167 (2006)

    Article  Google Scholar 

  14. Ning, W., Ambikairajah, E., Lovell, N.H., Celler, B.G.: Accelerometry based classification of walking patterns using time-frequency analysis. In: Proceedings of 29th IEEE Annual International Conference Engineering in Medicine and Biology Society, pp. 4899–4902. Lyon, France, 22–26 Aug 2007

    Google Scholar 

  15. Yunqian, M.A., Hesch, J.A.: Gait classification using wavelet descriptors in pedestrian navigation. In: Proceedings of 24th Institute of Navigation GNSS Conference, pp. 1328–1337. Portland, Oregon (2011)

    Google Scholar 

  16. West, B.J., Scafetta, N.: Nonlinear dynamical model of human gait. Phys. Rev. E. 67(5), 1–10 (2003)

    Google Scholar 

  17. ST Microelectronics: UM0937 User manual. http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/CD00271225.pdf. Visited 05 Dec 2013

  18. Priestley, M.B.: Wavelets and time-dependent spectral analysis. J. Time Ser. Anal. 17(1), 85–103 (2008)

    Article  MathSciNet  Google Scholar 

  19. Pinsky, M.A.: Introduction to Fourier Analysis and Wavelets. Graduate Studies in Mathematics, (102), American Mathematical Society (2009)

    Google Scholar 

  20. Demuth, H., Beale, M.: Neural Network Toolbox for Use with MATLAB, pp. 5-28–5-30. The Mathworks Inc, Natick (2001)

    Google Scholar 

  21. Kim, Y.K., Park, J.H., Kim, H.W., Hwang, S.Y., Lee, J.M.: Step estimation in accordance with wear position using the 3-axis accelerometer. In: Proceedings of 3rd SPENALO International Symposium. Bexco, Busan, Korea, Sep 2011

    Google Scholar 

  22. Nam, Y.: Map-based indoor people localization using an inertial measurement unit. J. Inf. Sci. Eng. 27(4), 1233–1248 (2011)

    MathSciNet  Google Scholar 

  23. Ibarra-Bonilla, M.N., Escamilla-Ambrosio, P.J., Ramírez-Cortes, J.M.: Pedestrian dead reckoning towards indoor location based applications. In: Proceedings of 8th International Conference on Electrical Engineering Computing Science and Automatic Control, Yucatán, México, Oct 2011

    Google Scholar 

  24. Park, S.K., Suh, Y.S.: A zero velocity detection algorithm using inertial sensors for pedestrian navigation systems. Sensors 10(10), 9163–9178 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The first author acknowledges the financial support from the Mexican National Council for Science and Technology (CONACYT), scholarship No. 237756.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Manuel Ramirez-Cortes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ibarra-Bonilla, M.N., Escamilla-Ambrosio, P.J., Ramirez-Cortes, J.M., Rangel-Magdaleno, J., Gomez-Gil, P. (2014). Step Length Estimation and Activity Detection in a PDR System Based on a Fuzzy Model with Inertial Sensors. In: Castillo, O., Melin, P., Pedrycz, W., Kacprzyk, J. (eds) Recent Advances on Hybrid Approaches for Designing Intelligent Systems. Studies in Computational Intelligence, vol 547. Springer, Cham. https://doi.org/10.1007/978-3-319-05170-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05170-3_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05169-7

  • Online ISBN: 978-3-319-05170-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics