Supplementary Material for WhatsHap: Weighted Haplotype Assembly for Future-Generation Sequencing Reads*

Murray Patterson ${ }^{\dagger, 1}$, Tobias Marschall ${ }^{\dagger}, 2,3$, Nadia Pisanti ${ }^{4}$, Leo van Iersel ${ }^{5}$, Leen Stougie ${ }^{5,6}$, Gunnar W. Klau ${ }^{\ddagger, 5,6}$, and Alexander Schönhuth ${ }^{\ddagger, 5}$

January 6, 2015

Here in Table 1 we include runtime tables of our method against three other methods (He et al., 2010; Chen et al., 2013; Deng et al., 2013) for chromosome 1 and 15 of Venter's genome in both the general and all-heterozygous case and for error profiles of 1% and 5% in the case of the artificial datasets. In Figure 1 give the same performance analsysis as Figure 2 of the main paper, but with an error profile of 5%.

[^0]| Data set | Chen et al. | He et al. | Deng et al. | WHATSHAP |
| :--- | ---: | ---: | ---: | ---: |
| chr1, all-het, Cov. $\mathbf{5}$ | | | | |
| $2 \times 100($ HiSeq) | 445.8 s | 965.2 s | 0.3 s | 1.8 s |
| $2 \times 150($ MiSeq) | 679.9 s | - | 0.4 s | 2.5 s |
| $1 \times 1000(1 \%)$ | 716.9 s | - | 0.5 s | 2.8 s |
| $1 \times 1000(5 \%)$ | 739.6 s | - | 0.4 s | 2.7 s |
| $1 \times 5000(1 \%)$ | 771.2 s | - | 0.6 s | 3.8 s |
| $1 \times 5000(5 \%)$ | 778.0 s | - | 0.6 s | 3.7 s |
| $1 \times 10000(1 \%)$ | 313.9 s | - | 0.5 s | 3.7 s |
| $1 \times 10000(5 \%)$ | 324.0 s | - | 0.5 s | 3.7 s |
| $1 \times 50000(1 \%)$ | 56.7 s | - | 0.4 s | 3.3 s |
| $1 \times 50000(5 \%)$ | 60.6 s | - | 0.4 s | 3.3 s |
| chr1, all-het, Cov. $\mathbf{1 0}$ | | | | |
| $2 \times 100($ HiSeq) | 452.8 s | - | 3.2 s | 5.5 s |
| $2 \times 150($ MiSeq) | 646.2 s | - | 5.3 s | 8.1 s |
| $1 \times 1000(1 \%)$ | 706.5 s | - | 9.6 s | 11.0 s |
| $1 \times 1000(5 \%)$ | 708.6 s | - | 10.0 s | 11.0 s |
| $1 \times 5000(1 \%)$ | 679.9 s | - | 10.3 s | 15.4 s |
| $1 \times 5000(5 \%)$ | 744.9 s | - | 10.7 s | 15.4 s |
| $1 \times 10000(1 \%)$ | 288.8 s | - | 9.7 s | 15.6 s |
| $1 \times 10000(5 \%)$ | 290.7 s | - | 9.1 s | 15.5 s |
| $1 \times 50000(1 \%)$ | 80.6 s | - | 7.1 s | 13.6 s |
| $1 \times 50000(5 \%)$ | 94.8 s | - | 7.1 s | 13.7 s |
| chr1, all-het, Cov. $\mathbf{1 5}$ | | | | |
| $2 \times 100($ HiSeq) | 479.5 s | - | 377.8 s | 62.6 s |
| $2 \times 150($ MiSeq) | 629.1 s | - | 708.5 s | 101.7 s |
| $1 \times 1000(1 \%)$ | 720.5 s | - | 3701.5 s | 192.6 s |
| $1 \times 1000(5 \%)$ | 732.6 s | - | 4197.6 s | 192.0 s |
| $1 \times 5000(1 \%)$ | 709.9 s | - | 2623.5 s | 271.9 s |
| $1 \times 5000(5 \%)$ | 696.9 s | - | 2377.8 s | 271.5 s |
| $1 \times 10000(1 \%)$ | 296.0 s | - | 1443.6 s | 276.9 s |
| $1 \times 10000(5 \%)$ | 303.7 s | - | 1294.4 s | 274.9 s |
| $1 \times 50000(1 \%)$ | 108.1 s | - | 440.5 s | 230.8 s |
| $1 \times 50000(5 \%)$ | 139.9 s | - | 401.6 s | 233.8 s |

Data set	Chen et al.	He et al.	Deng et al.	WHATSHAP
chr1, general, Cov. $\mathbf{5}$				
2×100 (HiSeq)	445.3 s	-	0.3 s	1.8 s
2×150 (MiSeq)	544.0 s	-	0.4 s	2.5 s
$1 \times 1000(1 \%)$	566.4 s	-	0.5 s	2.8 s
$1 \times 1000(5 \%)$	581.9 s	-	0.4 s	2.8 s
$1 \times 5000(1 \%)$	607.1 s	-	0.6 s	3.7 s
$1 \times 5000(5 \%)$	643.1 s	-	0.6 s	3.8 s
$1 \times 10000(1 \%)$	262.4 s	-	0.5 s	3.7 s
$1 \times 10000(5 \%)$	271.3 s	-	0.6 s	3.7 s
$1 \times 50000(1 \%)$	62.8 s	-	0.4 s	3.3 s
$1 \times 50000(5 \%)$	68.2 s	-	0.4 s	3.3 s
chr1, general, Cov. $\mathbf{1 0}$				
$2 \times 100($ HiSeq)	362.9 s	-	3.1 s	5.6 s
$2 \times 150($ MiSeq)	408.8 s	-	5.2 s	8.2 s
$1 \times 1000(1 \%)$	388.0 s	-	9.6 s	11.1 s
$1 \times 1000(5 \%)$	389.3 s	-	9.6 s	11.1 s
$1 \times 5000(1 \%)$	375.9 s	-	10.9 s	15.5 s
$1 \times 5000(5 \%)$	386.3 s	-	11.0 s	15.4 s
$1 \times 10000(1 \%)$	206.1 s	-	9.8 s	15.7 s
$1 \times 10000(5 \%)$	216.6 s	-	9.2 s	15.6 s
$1 \times 50000(1 \%)$	101.1 s	-	7.2 s	13.7 s
$1 \times 50000(5 \%)$	121.0 s	-	7.3 s	13.8 s
chr1, general, Cov. $\mathbf{1 5}$				
$2 \times 100($ HiSeq)	358.5 s	-	380.4 s	63.4 s
$2 \times 150($ MiSeq)	427.2 s	-	698.9 s	103.0 s
$1 \times 1000(1 \%)$	439.9 s	-	4248.1 s	194.8 s
$1 \times 1000(5 \%)$	458.2 s	-	4169.5 s	195.9 s
$1 \times 5000(1 \%)$	417.3 s	-	2583.2 s	274.8 s
$1 \times 5000(5 \%)$	458.0 s	-	2628.3 s	274.8 s
$1 \times 10000(1 \%)$	242.7 s	-	1486.5 s	279.6 s
$1 \times 10000(5 \%)$	261.5 s	-	1500.2 s	278.9 s
$1 \times 50000(1 \%)$	154.1 s	-	443.2 s	233.9 s
$1 \times 50000(5 \%)$	210.4 s	-	431.9 s	234.5 s

Data set	Chen et al.	He et al.	Deng et al.	WhatsHap
chr15, all-het, Cov. $\mathbf{5}$				
$2 \times 100($ HiSeq)	133.9 s	2.2 s	0.1 s	0.7 s
$2 \times 150($ MiSeq $)$	172.4 s	65.4 s	0.1 s	0.9 s
$1 \times 1000(1 \%)$	175.8 s	54.5 s	0.2 s	1.0 s
$1 \times 1000(5 \%)$	179.1 s	53.0 s	0.1 s	1.0 s
$1 \times 5000(1 \%)$	140.2 s	-	0.2 s	1.4 s
$1 \times 5000(5 \%)$	168.4 s	-	0.2 s	1.4 s
$1 \times 10000(1 \%)$	84.6 s	-	0.2 s	1.4 s
$1 \times 10000(5 \%)$	88.6 s	-	0.2 s	1.4 s
$1 \times 50000(1 \%)$	30.0 s	-	0.1 s	1.2 s
$1 \times 50000(5 \%)$	31.3 s	-	0.1 s	1.2 s
chr15, all-het, Cov. $\mathbf{1 0}$				
$2 \times 100($ HiSeq)	135.5 s	24.6 s	1.1 s	2.1 s
$2 \times 150($ MiSeq)	177.2 s	47.3 s	2.0 s	3.1 s
$1 \times 1000(1 \%)$	181.6 s	46.0 s	3.8 s	4.3 s
$1 \times 1000(5 \%)$	185.2 s	66.1 s	4.0 s	4.3 s
$1 \times 5000(1 \%)$	163.1 s	-	4.1 s	5.8 s
$1 \times 5000(5 \%)$	168.8 s	-	4.1 s	5.8 s
$1 \times 10000(1 \%)$	85.0 s	-	3.4 s	5.8 s
$1 \times 10000(5 \%)$	88.8 s	-	3.6 s	5.8 s
$1 \times 50000(1 \%)$	37.7 s	-	2.7 s	5.1 s
$1 \times 50000(5 \%)$	40.8 s	-	2.6 s	5.1 s
chr15, all-het, Cov. $\mathbf{1 5}$				
$2 \times 100($ HiSeq)	150.8 s	34.7 s	137.4 s	24.4 s
$2 \times 150($ MiSeq)	173.1 s	81.0 s	251.9 s	39.9 s
$1 \times 1000(1 \%)$	183.6 s	85.7 s	1534.8 s	75.5 s
$1 \times 1000(5 \%)$	189.8 s	88.5 s	1635.3 s	75.4 s
$1 \times 5000(1 \%)$	163.8 s	-	962.8 s	103.6 s
$1 \times 5000(5 \%)$	174.7 s	-	871.2 s	103.5 s
$1 \times 10000(1 \%)$	89.4 s	-	503.3 s	105.3 s
$1 \times 10000(5 \%)$	94.4 s	-	505.4 s	104.4 s
$1 \times 50000(1 \%)$	58.5 s	-	183.8 s	86.8 s
$1 \times 50000(5 \%)$	56.3 s	-	163.1 s	87.7 s

Data set	Chen et al.	He et al.	Deng et al.	WhatsHAP
chr15, general, Cov. $\mathbf{5}$				
$2 \times 100($ HiSeq	134.0 s	-	0.1 s	0.7 s
$2 \times 150($ MiSeq)	152.0 s	-	0.1 s	0.9 s
$1 \times 1000(1 \%)$	157.1 s	-	0.1 s	1.0 s
$1 \times 1000(5 \%)$	152.9 s	-	0.2 s	1.1 s
$1 \times 5000(1 \%)$	147.8 s	-	0.2 s	1.4 s
$1 \times 5000(5 \%)$	141.2 s	-	0.2 s	1.4 s
$1 \times 10000(1 \%)$	78.1 s	-	0.2 s	1.4 s
$1 \times 10000(5 \%)$	80.5 s	-	0.2 s	1.4 s
$1 \times 50000(1 \%)$	26.3 s	-	0.1 s	1.2 s
$1 \times 50000(5 \%)$	32.6 s	-	0.1 s	1.2 s
chr15, general, Cov. $\mathbf{1 0}$				
$2 \times 100($ HiSeq)	129.0 s	-	1.2 s	2.1 s
$2 \times 150($ MiSeq)	143.5 s	-	1.9 s	3.2 s
$1 \times 1000(1 \%)$	127.6 s	-	4.0 s	4.3 s
$1 \times 1000(5 \%)$	129.9 s	-	4.0 s	4.3 s
$1 \times 5000(1 \%)$	116.0 s	-	4.1 s	5.8 s
$1 \times 5000(5 \%)$	115.4 s	-	3.9 s	5.8 s
$1 \times 10000(1 \%)$	77.1 s	-	3.6 s	5.8 s
$1 \times 10000(5 \%)$	81.2 s	-	3.4 s	5.8 s
$1 \times 50000(1 \%)$	48.9 s	-	2.7 s	5.1 s
$1 \times 50000(5 \%)$	47.7 s	-	2.8 s	5.1 s
chr15, general, Cov. $\mathbf{1 5}$				
$2 \times 100($ HiSeq)	131.0 s	-	126.0 s	24.7 s
$2 \times 150($ MiSeq)	139.5 s	-	255.3 s	40.4 s
$1 \times 1000(1 \%)$	136.7 s	-	1516.5 s	76.4 s
$1 \times 1000(5 \%)$	139.2 s	-	1522.9 s	76.3 s
$1 \times 5000(1 \%)$	128.0 s	-	965.7 s	104.8 s
$1 \times 5000(5 \%)$	123.6 s	-	925.0 s	104.7 s
$1 \times 10000(1 \%)$	86.9 s	-	495.6 s	106.6 s
$1 \times 10000(5 \%)$	94.3 s	-	496.9 s	105.6 s
$1 \times 50000(1 \%)$	80.6 s	-	163.7 s	87.9 s
$1 \times 50000(5 \%)$	88.2 s	-	139.1 s	88.8 s

Table 1: Runtimes in CPU seconds for haplotype assembly approaches in the unweighted (both allhet and general) case on chromosomes 1 and 15 ofr J. Craig Venter's genome. A '-' stands for an unsuccessful run, either due to an exceeded time limit of 5 CPU h for an out of memory exception.

Figure 1: Performance of phasing human chromosome 1 with 68184 heterozygous SNPs in total using different simulated data sets and different coverages. The unphasable positions percentage (y-axis) gives the fraction of the SNP positions that could not be phased due to not being covered by reads that span more than one SNP position. The x-axis shows the percentage of all SNPs that were not unphasable but wrongly phased by the algorithm, either because of a flip error, a switch error, or due to being reported as ambiguous position by WhatsHap. Length $1000,5000,10000$, and 50000 refer to reads of this length from a hypothetical sequencer with an error rate of 5%. HiSeq/MiSeq refers to using error profiles specific to these instruments during read sampling. Data sets are pruned to three different target coverages ($5 \mathrm{x}, 10 \mathrm{x}, 15 \mathrm{x}$) encoded by different symbols in the plot (see legend).

References

Z.-Z. Chen, F. Deng, and L. Wang. Exact algorithms for haplotype assembly from whole-genome sequence data. Bioinformatics, 29(16):1938-45, 2013.
F. Deng, W. Cui, and L.-S. Wang. A highly accurate heuristic algorithm for the haplotype assembly problem. BMC Genomics, 14(Suppl 2):S2, 2013.
D. He, A. Choi, K. Pipatsrisawat, A. Darwiche, and E. Eskin. Optimal algorithms for haplotype assembly from whole-genome sequence data. Bioinformatics, 26(12):i183-i190, 2010.

[^0]: *This work was done while all authors were affiliated with or visiting the Life Sciences Group at Centrum Wiskunde \& Informatica (CWI).
 \dagger Joint first authorship.
 \ddagger Joint last authorship.
 ${ }^{1}$ Laboratoire de Biométrie et Biologie Évolutive (LBBE : UMR CNRS 5558), Université de Lyon 1, Villeurbanne, France
 ${ }^{2}$ Saarland University, Saarbrücken, Germany
 ${ }^{3}$ Max Planck Institute for Informatics, Saarbrücken, Germany
 ${ }^{4}$ Department of Computer Science, University of Pisa, Italy
 ${ }^{5}$ Life Sciences, Centrum Wiskunde \& Informatica (CWI), Amsterdam, The Netherlands
 ${ }^{6}$ VU University Amsterdam, The Netherlands
 murray.patterson@univ-lyon1.fr, t.marschall@mpi-inf.mpg.de,
 \{a.schoenhuth,gunnar.klau\}@cwi.nl

