
On the cloud-enabled refinement checking of
railway signalling interlockings

Andrew Simpson and Jaco Jacobs

Department of Computer Science, University of Oxford
Wolfson Building, Parks Road, Oxford OX1 3QD,

United Kingdom

Abstract. Railway signalling systems have received a great deal of at-
tention from the formal methods community. One reason for this is that
the domain is relatively accessible; another is that the safety analyses
to be undertaken are often highly parallelizable. In this paper we de-
scribe a ‘cloud interface’ for the refinement checker, Failures Divergences
Refinement (FDR), which has been motivated and validated by an ap-
proach to the modelling and analysis of railway signalling interlockings.
In particular, the approach allows us to perform safety checks on systems
consisting of billions of states.

1 Introduction

Railway signalling systems have received a great deal of attention from the for-
mal methods community. Early contributions include those of Hansen [1], Mor-
ley [2], and Haxthausen and Peleska [3]. More recent contributions include those
of Kanso et al. [4], James and Roggenbach [5], and Haxthausen et al. [6]. In many
ways, this level of attention is unsurprising. Crucially, the domain is relatively
accessible, enabling researchers to comprehend the problem at hand, and com-
municate their intentions and solutions to a receptive audience. Another reason,
which is offered by Fantechi et al. [7], is the fact that the safety-criticality of
the domain is attractive to formal methods researchers. The body of work is
substantial: one only has to consider the FMERail contributions from the late
1990s;1 the fact that such applications are considered a success story for the
formal methods community (see, for example, Bacherini et al. [8]); and the up-
coming 2013 Workshop on a Formal Methods Body of Knowledge for Railway
Control and Safety Systems.2

We would argue that another reason for this relative success is that the safety
analyses that can be undertaken are — depending on the model and the approach
used — often parallelizable. To this end, decomposition approaches have been
proposed by Simpson et al. [9], Winter and Robinson [10], as well as others.

In this paper we revisit the contribution of [9] — which utilised Communi-
cating Sequential Processes (CSP) [11, 12] and the associated refinement checker

1 See http://www2.imm.dtu.dk/ dibj/fmerail/fmerail/.
2 See http://ssfmgroup.wordpress.com/.

Failures Divergences Refinement (FDR) [13, 14] — as a means of motivating
and validating a cloud-enabled approach to refinement checking. Specifically,
we utilise the open source Eucalyptus framework [15] to demonstrate how the
(mostly) theoretical decomposition approach described [9] can now be made
practical — enabling the checking of systems consisting of billions of states in a
matter of minutes.

The structure of the remainder of this paper is as follows. In Section 2 we
provide a necessarily brief introduction to CSP and FDR, as well as our case
study. Then, in Section 3, we discuss our cloud-enabled interface for FDR. We
present our case study in Section 4. Finally, in Section 5, we summarise our
contribution, and outline our plans for future work.

2 On CSP, FDR, and railway interlockings

2.1 CSP

The language of CSP is a notation for describing the behaviour of concurrently-
evolving objects, or processes, in terms of their interaction with their environ-
ment. This interaction is modelled in terms of events: abstract, instantaneous,
synchronisations that may be shared between several processes. We denote the
set of all events within a given context as Σ; we can also give consideration to
the alphabet of a process — the events that a particular process can perform. In
the following we introduce a subset of the language of CSP.

We use compound events to represent communication. The event name c.x
may represent the communication of a value x on a channel named c. At the
event level, no distinction is made between input and output : the willingness
to engage in a variety of similar events — the readiness to accept input — is
modelled at the process level; the same is true of output, which corresponds to
an insistence upon a particular event from a range of possibilities.

A process describes the pattern of availability of certain events. The prefix
process e → P is ready to engage in event e; should this event occur, the
subsequent behaviour is that of P , which must itself be a process.

An external (or deterministic) choice of processes P 2 Q is resolved through
interaction with the environment — the first event to occur will determine the
subsequent behaviour. If this event was possible for only one of the two alter-
natives, then the choice will go on to behave as that process. If it was possible
for both, then the choice becomes non-deterministic. This form of choice exists
in an indexed form: 2 i : I • P(i) is an external choice between processes P(i),

where i ranges over the (finite) indexing set I .
We may denote input in one of two ways. The process c?x → P is willing

initially to accept any value (of the appropriate type) on channel c. Alternatively,
if we wish to restrict the set of possible input values to a subset of the type
associated with the channel c, then we may write 2 x : X • c.x → P .

There are various flavours of parallel combinations; in this paper, we shall
limit ourselves to only two. We write P ‖ Q to denote that the component

processes P and Q cooperate upon the events appearing in the alphabets of
both P and Q , with other events occurring independently. We write P ||| Q to
represent the interleaved parallel combination of P and Q .

2.2 FDR

The standard notion of refinement for CSP processes, which is defined in [16], is
based upon the failures/divergences model of CSP. In this model, each process
is associated with a set of behaviours: tuples of sequences and sets that record
the occurrence and availability of events.

The traces of a process P , denoted traces [P], are finite sequences of events
in which that process may participate in that order ; the failures of P , denoted
failures [P], are pairs of the form (tr ,X), such that tr is a trace of P and X is
a set of events which may be refused by P after the trace tr has been observed.
We shall not concern ourselves with divergences.

We write P vM Q when Q refines P under the model M — Q is ‘at least
as good as’ P . With respect to failures, the formal definition is as follows:

P vF Q ⇔ traces [[Q]] ⊆ traces [[P]] ∧ failures [[Q]] ⊆ failures [[P]]

The refinement checker FDR — which utilises the machine-readable dialect
of CSP, CSPM [17] — uses this theory of refinement to investigate whether a
potential design meets its specification. A pleasing feature of FDR is that if such
a test fails, a counter-example is returned to indicate why this is so.

2.3 Solid State Interlocking

Given the safety-critical nature of railway interlockings, it is important to be
able to guarantee a range of safety properties, and, considering the size of the
problem, any automated assistance that may support this activity is desirable.
The complexity of the task is characterised by Ferrari et al. thus:

“It is a well known fact that interlocking systems, due to their inherent
complexity related to the high number of variables involved, are not
amenable to automatic verification, typically incurring the state space
explosion problem.” [18]

Following [9], we consider Solid State Interlocking (SSI), a computer-based
control system, the system software of which can be divided into generic and
specific components. The latter (our concern) varies between locations and de-
scribes the signalling functions for that particular instance. We shall use the
simple junction of Figure 1 to illustrate a manageable (but still meaningful)
subset of the components of interest.

The track is divided into segments by track circuits, with each circuit being
fitted with a detection device that informs the interlocking if a specific segment
is occupied (o) or clear (c). Points help trains navigate junctions and can be ei-
ther controlled normal (cn) or controlled reverse (cr). As an example, if a train is

TAE

TAD

TAC

TAB

TAA

TAK

TAJ

TAH

TAG

TAF

P202

P203

P201

P204

S10
S11

S12

S14

S13

S15

S20
S21

S22

S24

S25

S23

TBA

TCA

Fig. 1. The Open Alvey interlocking

travelling over track circuit TAK towards track circuit TAJ and points P204 are
in controlled reverse position, then the train will follow the section of track cov-
ering track circuit TCA. Conversely, if points P204 are in the controlled normal
position, the train will continue along track circuit TAJ towards TAH. Boolean
checks may be performed on a set of points: these checks indicate whether it is
free to move into the controlled normal (free to go normal) or controlled reverse
(free to go reverse) directions. A set of points is controlled free to go normal (cfn)
if it is free to go normal or if it is already in controlled normal; a set of points
is controlled free to go reverse (cfr) if it is free to go reverse or if it is already in
controlled reverse. A signal grants a requesting train entry onto the particular
section of track that is under its control. Signal S11, for example, is concerned
with track circuits TAD, TAC and TBA. A route is a section of track between
two signals: route R13 is the section of track between the entry signal S13 and
the exit signal S21, running over three track circuits (TAB, TAA and TAK) and
one set of points (P201). A route can be requested (req), set (s), or unset (xs).
Subroutes are sections of routes associated with track circuits; there may exist
several subroutes over a particular track circuit. Track circuit TAB, for example,
has three entry / exit points (TAA, TAC and TBA), which are labelled clockwise
from a 12:00 position. Entry (or exit) from (or to) circuit TBA is labelled A,
entry (exit) from (to) TAC is labelled B, and C is associated with entry (exit)
from (to) TAA. Subroute UAB AC is associated with track circuit TAB, with
entry from track circuit TBA and exit at track circuit TAA. A subroute can
either be locked (l) or free (f).

The Geographic Data Language (GDL) is used for the purposes of describing
these interlocking functions in terms of signals, routes, points, etc. We restrict
ourselves to a subset of GDL and consider two types of conditional checks:
pertaining to route setting data and subroute release data, respectively.

As an example, route R14 runs from signal S14 over track circuits TAD and
TAE and points P202. The condition for setting this route is written

O14 if P202 cfn UAE AB f UAD AB f
then R14 s P202 cn UAD BA l UAE BA l

This tests if points P202 are controlled free to go normal and subroutes UAE AB
and UAD AB are free. If these checks evaluate to true, the route can be granted:
points P202 are set to controlled normal, and subroutes UAD BA and UAE BA
are locked.

Our second type of conditional check pertains to subroutes becoming free.
Consider again route R14. When this route is set, subroutes UAD BA and
UAE BA are both locked. The condition for releasing UAE BA is written

UAE BA f if TAE c UAD BA f UAD CA f

Here, UAE BA becomes free when track circuit TAE is clear and subroutes
UAD BA and UAD CA are both free.

There are variations on this pattern. For example, for UAD BA to become
free, track circuit TAD must be clear and route R14 must be unset:

UAD BA f if TAD c R14 xs

In [19] a number of safety invariants for GDL representations are listed.
Examples include:

1. If a route is set, then all of its subroutes are locked.

2. For every track circuit, at most one of subroutes passing over it should be
locked for a route at any time.

3. If a subroute over a track circuit containing points is locked for a route, then
the points are correctly aligned with that subroute.

4. If a track circuit containing points are occupied, then the points are locked.

5. If a subroute is locked for a route, then all subroutes ahead of it on that
route is also locked.

In [9, 19] an approach to the modelling, decomposition and analysis of GDL
representations is described. By taking advantage of the relationship that exists
between refinement and process composition in the failures model of CSP, it is
shown how safety checks of potentially billions of states might be decomposed
into thousands of checks of hundreds of states — giving rise to a parallelized
refinement-checking process. In the following, we show how that largely theoret-
ical process might be made practical via a cloud-enabled version of FDR.

3 A cloud-enabled FDR

3.1 Eucalyptus

Cloud computing — an aggregate of multi-core, multi-processor, distributed
compute nodes — enables access to a range of configurable and reliable comput-
ing resources that can scale on demand, which, from an automated verification
perspective, is extremely desirable. The nature of such activity is bursty: large
quantities of computing resources, particularly memory and processing power,
are required only when checks are being executed. It follows that the notion of
having significant quantities of resources available ‘on demand’ sits comfortably
with automated verification: it provides a viable approach to alleviate the state
space explosion problem and has the potential to increase throughput. The no-
tion of computing resources as a utility that can be provisioned and relinquished
as needed is a powerful one: it creates the illusion of infinite computing resources,
available on-demand, with no prior commitment as to how long they are used.
Moreover, when the computing resources are no longer required, they can be
released without incurring any penalties.

Cloud computing provision is typically characterised as one of Infrastructure
as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service
(SaaS). The first of these is our concern, with the core idea being that com-
puting resources should behave like physical hardware. Users select, control and
configure a virtualised server, consisting of the operating system kernel, plus all
required libraries, applications and data; administrative tasks (such as provision-
ing and releasing a virtual server) are typically automated. By having computing
instances at such a low level we place few limitations on the software that can
ultimately be deployed in this context; a consequence is that it is intrinsically
harder for the cloud provider to offer automatic scalability and failover.

Eucalyptus is an open source cloud computing platform that provides an
API for provisioning, managing and relinquishing virtual machines in an IaaS
cloud; each virtual machine is an instance. A virtual machine runs on top of
a hypervisor, which provides the capabilities necessary in order to provide an
isolated computing environment. A user of the cloud has no control over the
actual physical server that the instance is run on: it is therefore possible (and
highly likely), that the physical hardware that the instance is run on is shared
with another instance; (termed multi-tenancy). When a user wishes to start a
new instance in the Eucalyptus cloud, they do so using a pre-defined machine
image, which includes the operating system and any other pre-built software
required. It is possible to customise these, create a new image, and then launch
the instance using the custom image; this is a Eucalyptus Machine Image (EMI).

Eucalyptus is composed of several components that interact through well-
defined interfaces. The architecture is modular, with each high-level system com-
ponent operating as a stand-alone web service that can start, control, access and
terminate entire virtual machines using an emulation of the Amazon Elastic
Cloud Compute SOAP interface. These components are: node controllers (NC
in Figure 2), which control VM-related activities (termination, launch, etc.) on

CLC

CC

NC
VM VM

VM VM

NC
VM VM

VM VM

CC

NC
VM VM

VM VM

SCSC

Walrus

Fig. 2. An example set-up of a Eucalyptus cloud

a compute node; cluster controllers (CC), which manage the node controllers
within their clusters; storage controllers (SC), which can be attached to an in-
stance file system as a volume; Walrus, a storage service that provides a mecha-
nism for cloud-based persistent storage; and the cloud controller (CLC), which
coordinates and manages the cloud as a whole.

Figure 2 illustrates a possible configuration of a Eucalyptus cloud: the single
cloud controller communicates with the two cluster controllers, which, in turn,
manage the node controllers inside their respective clusters. The node controllers
are responsible for executing actions on the physical resources that host virtual
machine instances, such as launching, monitoring and shutting down instances.

3.2 A cloud interface for FDR

Parallel model checking techniques typically partition the state space. Our ap-
proach involves partitioning the problem not at the level of the state space, but
at the level of a particular model. Conceptually, then, we have a CSP model,
with a requirement being that the model is such that it allows for checks (ex-
pressed as refinements) to be broken down into several, smaller refinements.3

Once this partitioning is achieved, the refinement checks can then be allocated
to a farm of processors to be either confirmed or refuted.

Thus, our process (illustrated in Figure 3) is as follows.

1. Take as input a text file containing a CSP problem description.
2. Automatically derive process definitions from the input file.
3. Automatically extract appropriate process definitions and generate refine-

ment checks by composing the process definitions relevant to the particular
refinement check.

3 We acknowledge that this limits the applicability of the approach.

MASTER

Problem description

Derive process definitions

Generate specification and
implementation processes

to refinement check

Farm out refinements

Collect results

SLAVE 1

SLAVE 2

SLAVE N

Fig. 3. The approach

4. Distribute the refinement checks to compute nodes (each running a server
version of FDR).

5. Collect the results and display the end result.

Our case study is characteristic of a problem that can be decomposed into
several refinement checks and then distributed to various processing nodes: input
to the model checker is a text file representing data for a particular railway
interlocking; the CSP model is then automatically derived (along with refinement
checks) to assert various safety conditions. These checks can then be distributed
to the various processing nodes.

Eucalyptus is used to provide the private infrastructure as a service cloud.4

The set-up of Figure 4 consists of two servers: the first is configured as the
cloud controller, cluster controller, Walrus and storage controller; the second is
configured as a node controller capable of booting virtual instances. The node
controllers host the virtual instances which boots the machine image contain-
ing the FDR binary. Sitting above FDR is the software used to coordinate the
scheduling of refinement checks and processing of results. We utilise a single
master node and several slave nodes. The role of the master node is to distribute
refinements to, and collect results from, slaves. Additionally, the master node
is responsible for processing the input file, deriving suitable process definitions,
and then extracting the relevant processes in order to form refinements; these
are then distributed to the slave nodes.
4 We use the Ubuntu Enterprise Cloud which uses KVM as the default hypervisor.

SERVER 1C

CLC
CC

SC

Walrus

SERVER 2

NC
VM VM

VM VM

Fig. 4. Eucalyptus set-up

A job consists of the relevant CSP code and a refinement to check; jobs are
stored in a jobqueue. The available pool of slaves are stored in a slavepool — a
circular list of slaves, keeping a record of whether the slave has been allocated a
job. The master node cycles through the list of slaves in a round-robin fashion. If
a slave has been previously allocated a job, it checks whether the job is complete.
If it is, the result is saved and the slave’s state is marked as idle; if it is not, the
slave is simply added to the back of the list, to be checked on the next cycle.
Alternatively, if a slave is free and there are jobs in the job queue, the slave is
allocated the next available job, and its state is set to busy. A slave node simply
waits for a job from the master. Additionally, it responds to periodic status
requests (from the master) as to whether a refinement check is complete or not.

Four types of data are of interest: application data (the binary of the model
checker, and any other associated applications or scripts); input data (CSPM

scripts describing concurrent interactions of processes along with refinements we
wish to prove or refute); non-persistent application-generated data (data required
only for as long as the CSPM script is loaded and a refinement check is executed);
and persistent application-generated data (the result of a refinement check and
(possibly) counter-examples).

4 The case study

We have used the approach of Section 3 to model various interlockings; as a
means of illustration, we use the model of [19] and the example of Figure 1.

4.1 The CSP model

Initially, the system starts in a safe state: all track circuits are clear; all points
are controlled normal; no points are free to move in either direction; all subroutes
are initially locked; and all routes are initially unset.

The interlocking components involved in setting route R14 are subroutes
UAE AB, UAD AB, UAD BA and UAE BA and points P202. The process
R14true characterises when it is possible to set route R14: points P202 are

controlled free to go normal, and subroutes UAD AB and UAE AB are free. If
any of the conditions necessary to set the route becomes false, then the process
state is updated and the process subsequently behaves as R14false. Should there
be a request to set the route, points P202 are locked in the controlled normal
position, UAD BA and UAE BA are both locked, and route R14 is set.

R14true =
routeState.R14.req → pointPosition.P202.cn →

subrouteState.UAD BA.l → subrouteState.UAE BA.l →
routeState.R14.s → R14true

2

pointState.P202.cfn.false → R14false(false, f , f)
2

subrouteState.UAE AB .l → R14false(true, l , f)
2

subrouteState.UAD AB .l → R14false(true, f , l)

The process R14false models when it is not possible to set route R14, i.e. when
one or more of the conditional checks evaluates to false. The variable x represents
the state of points P202 (controlled free to go normal or not); y and z are
concerned with the states of subroutes UAE AB and UAD AB (free or locked).
Changes in state for P202, UAE AB and UAD AB may be observed. Once all
conditions required for setting the route are met, the process behaves as R14true.

R14false(x , y , z) =
if x = true ∧ y = f ∧ z = f then R14true
else (pointState.P202.cfn?i → R14false(i , y , z)

2

subrouteState.UAE AB?i → R14false(x , i , z)
2

subrouteState.UAD AB?i → R14false(x , y , i))

Subroute-releasing processes are defined similarly. In UAE BAlocked , vari-
able x represents the state of track circuit TAE, and variables y and z represent
the states of UAD BA and UAD CA respectively. If all the conditions are met,
the subroute can be freed and the process then behaves as UAE BAfree. Alter-
natively, the process allows changes to the relevant components, updating the
relevant variable accordingly.

UAE BAlocked(x , y , z) =
if x = c ∧ y = f ∧ z = f then

subrouteState.UAE BA.f → UAE BAfree(x , y , z)
else (circuitState.TAE?i → UAE BAlocked(i , y , z)

2

subrouteState.UAD BA?i → UAE BAlocked(x , i , z)
2

subrouteState.UAD CA?i → UAE BAlocked(x , y , i))

The conditional check on subroute UAE BA when it is free is modelled by the
process UAE BAfree.

UAE BAfree(x , y , z) =
subrouteState.UAE BA.l → UAE BAlocked(x , y , z)
2

circuitState.TAE?i → UAE BAfree(i , y , z)
2

subrouteState.UAD BA?i → UAE BAfree(x , i , z)
2

subrouteState.UAD CA?i → UAE BAfree(x , y , i)

Subroute release data depending on a route rather than subroutes (which is
usually the case for the first subroute of a route) are modelled slightly differently.
For example, in the case of subroute UAD BA we have the following:

UAD BAlocked(x , y) =
if x = c ∧ y = xs then

subrouteState.UAD BA.f → UAD BAfree(x , y)
else (circuitState.TAD?i → UAD BAlocked(i , y)

2

2 i : {req , xs} • routeState.R14.i → UAD BAlocked(x , i))

UAD BAfree(x , y) =
subrouteState.UAD BA.l → UAD BAlocked(x , y)
2

circuitState.TAD?i → UAD BAfree(i , y)
2

2 i : {req , xs} • routeState.R14.i → UAD BAfree(x , i)

4.2 Translating GDL into CSP

We have used the lexical analyser and parser generator PLY (a lex–yacc parsing
tool for Python),5 with a representation of the syntax of GDL being given in
terms of EBNF.

During the parsing phase, we record semantic information regarding the
GDL: this is used to construct process definitions and to decide which processes
need to be combined for a particular refinement check. In particular, we record:
the set of track circuits, Circuit ; the set of points, Points; the set of routes,
Route; and the set of subroutes, Subroute. In addition, we build a syntax tree
that relates the various interlocking components; we also construct various func-
tions that relate different interlocking components. For example, the following

5 See http://www.dabeaz.com/ply.

functions relate track circuits to the subroutes associated with them, and return
the set of all locked points for a given route (when the route is set) respectively.

subroutesOfCircuit : Circuit → P Subroute
pointsOfRoute : Route → P Points

The function subroutesOfRoute maps a route to its constituent subroutes:.

subroutesOfRoute : Route → seq Subroute

The translation tool reads the whole file and then translates it, which involves
building tree structures which are efficient at retrieving the components of the file
read. Once all the input is parsed we can then transform this into corresponding
CSP process definitions.

4.3 Safety invariants in CSP

We now demonstrate how we can model safety invariants. We illustrate this via
the first of our invariants: if a route is set, then all of its subroutes are locked.

For any route r , we define

U = {u : Subroute | u ∈ set(subroutesOfRoute(r))}

where set converts a sequence into a set.
We represent the invariant as a process thus:

S1(r ,U , locked) =
if locked = U then

2 u : locked • subrouteState.u.f → S1(r ,U , locked \ {u})
2

2 routeState.r .s → routeState.r .xs → S1(r ,U , locked)

else

2 u : U \ locked • subrouteState.u.l → S(r ,U , locked ∪ {u})
2

2 u : locked • subrouteState.u.f → S1(r ,U , locked \ {u})

It is clear that we can only set a route r when all the subroutes along that route
are locked; we also require the route to become unset before any associated
subroutes can become free.

The next step is to derive a suitable implementation process, which involves
extracting relevant process descriptions from the GDL and then combining them
using parallel composition. The following determines the necessary processes to
be composed for r ∈ Route.

1. Include the processes representing route setting data for r .
2. Consider all processes related to subroute release data for each subroute

along r , i.e. for each element in the set set(subroutesOfRoute(r)).

3. The process Train(r , subroutesOfRoute(r), pointsOfRoute(r)) models a train
moving along route r .

Consider route R10A, where

set (subroutesOfRoute (R10A)) = {UAB CA,UBA BA}

It follows that we have

I1 (R10A) =
R10A ‖ UAB CA ‖ UBA BA ‖ Train(R10A, 〈TAB ,TBA〉, {P201})

as the implementation process for safety invariant 1 and route R10A. Via FDR
we can verify

S1 (R10A, {UAB CA,UBA BA}, {UAB CA,UBA BA}) vF I1 (R10A)

By verifying similar refinements for all routes in the interlocking, we can
assert that safety invariant 1 holds for that interlocking. The proof of this re-
lies on the fact that all relevant behaviours relevant to the verification of the
safety invariant for route r can be observed in the implementation process I1 (r)
(see [19]).

The round-trip execution times for checking each of the 16 routes of Figure 1
are typically in the range 3–5 seconds; this results in a cumulative time of under 1
minute to check this safety invariant for the example interlocking, which consists
of 4.84662992×1022 states;6 the cumulative times for the other safety invariants
are of a similar order.

5 Conclusions

We have described how a cloud-enabled interface for FDR gives rise to a means
of parallelized safety checks on railway interlockings. For the sake of readability,
we have based our account on a relatively simple scenario; [19] shows how the
theoretical approach — which we have made practical — is scalable to ‘real-life’
interlockings.

One of the biggest challenges of model checking in a practical setting is
handling the enumeration of the state space in an efficient manner. Various
approaches to alleviate the state space explosion problem are known from the
literature: partial order reduction techniques (see, for example, [20]) are one ap-
proach; the local search approach proposed by Roscoe et al. [21], whereby states
spaces are partitioned into ‘blocks’, is another. An experimental parallel imple-
mentation of FDR is described in [22]: states are randomly allocated between
different computing nodes using a hash function; the state space is explored using
a breadth-first search algorithm, and at the end of each level successor states are

6 12 track circuits, 4 points, 16 routes and 30 subroutes, giving rise to 212×44×316×230

states.

exchanged between the compute nodes. An alternative approach is that taken
by FDR Explorer [23], whereby an API “makes possible to create optimised
CSP code to perform refinement checks that are more space or time efficient,
enabling the analysis of more complex and data-intensive specifications.” Our
approach involves partitioning the problem not at the level of the state space,
but at the level of the CSP model — which means it is applicable only in certain
scenarios, with one being the contribution of [19]. All of the refinement checks
are generated automatically and subsequently sent to slave nodes for processing.

The initial prototype implementation of the software that schedules the
checks between processing nodes can be extended in several ways. At the mo-
ment, there is a single point of failure: should the master node die there would
be no way to schedule more refinement checks or to collect the results. Another
point to consider would be the costing model used by the cloud provider: given
that virtual instances are priced per hour, if many of the refinement checks are
similar (like in the case study of this paper), we can try and optimise the cost
by considering the execution time of a single check. The most pressing item of
future work, however, is the consideration of further case studies — with a view
to identifying classes of problems that may benefit from this approach.

References

1. Hansen, K.M.: Validation of a railway interlocking model. In Naftalin, M., Denvir,
T., Bertran, M., eds.: Proceedings of the 2nd International Symposium of Formal
Methods Europe (FME 1994). Springer-Verlag Lecture Notes in Computer Science
volume 873 (1994) 582–601

2. Morley, M.J.: Safety in railway signalling data: a behavioural analysis. In Joyce,
J., Seger, C., eds.: Proceedings of the 6th Annual Workshop on Higher Order Logic
and its Applications, Springer-Verlag Lecture Notes in Computer Science volume
780 (1994) 465–474

3. Haxthausen, A.E., Peleska, J.: Formal development and verification of a distributed
railway control system. IEEE Transaction on Software Engineering 26(8) (2000)
687–701

4. Kanso, K., Moller, F., Setzer, A.: Automated verification of signalling principles
in railway interlocking systems. Electronic Notes in Theoretical Computer Science
(250) (2009) 19–31

5. James, P., Roggenbach, M.: Automatically verifying railway interlockings using
SAT-based model checking. In: Proceedings of the 10th International Workshop
on Automated Verification of Critical Systems (AVoCS 2010), Electronic Commu-
nication of the European Association of Software Science and Technology volume
35 (2010)

6. Haxthausen, A.E., Peleska, J., Kinder, S.: A formal approach for the construction
and verification of railway control systems. Formal Aspects of Computing 23(2)
(2011) 191–219

7. Fantechi, A., Fokkink, W., Morzenti, A.: Some trends in formal methods applica-
tions to railway signalling. In Gnesi, S., Margaria, T., eds.: Formal Methods for
Industrial Critical Systems: A Survey of Applications. John Wiley & Sons (2013)
63–82

8. Bacherini, S., Fantechi, A., Tempestini, M., Zingoni, N.: A story about formal
methods adoption by a railway signaling manfacturer. In Misra, J., Nipkow, T.,
Sekerinski, E., eds.: Proceedings of the 14th International Symposium on Formal
Methods (FM 2006). Springer-Verlag Lecture Notes in Computer Science volume
4085 (2006) 179–189

9. Simpson, A.C., Woodcock, J.C.P., Davies, J.W.M.: The mechanical verification of
Solid State Interlocking geographic data. In Groves, L., Reeves, S., eds.: Proceed-
ings of Formal Methods Pacific 1997. Springer-Verlag (1997) 223–242

10. Winter, K., Robinson, N.J.: Modelling large interlocking systems and model check-
ing small ones. In Oudshoorn, M., ed.: Proceedings of the 26th Australasian Com-
puter Science Conference (ACSC 2003), Australian Computer Science Communi-
cations volume 16 309–316

11. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall (1985)
12. Roscoe, A.W.: Understanding Concurrent Systems. Springer-Verlag (2010)
13. Roscoe, A.W.: Model checking CSP. In Roscoe, A.W., ed.: A Classical Mind:

Essays in honour of C. A. R. Hoare. Prentice-Hall (1994)
14. Roscoe, A.W., Gardiner, P.H.B., Goldsmith, M.H., Hulance, J.R., Jackson, D.M.,

Scattergood, J.B.: Hierarchical compression for model-checking csp or how to check
1020 dining philosophers for deadlock. In: Proceedings of the First International
Workshop on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 1995). Springer-Verlag Lecture Notes in Computer Science volume 1019
(1995) 133–152

15. Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L.,
Zagorodnov, D.: The Eucalyptus open-source cloud-computing system. In: Pro-
ceedings of the 9th IEEE/ACM International Symposium on Cluster Computing
and the Grid (CCGRID 2009). (2009) 124–131

16. Brookes, S.D., Roscoe, A.W.: An improved failures model for communicating
processes. In Brookes, S.D., Roscoe, A.W., Winskel, G., eds.: Proceedings of the
NSF-SERC Seminar on Concurrency. Springer-Verlag Lecture Notes in Computer
Science volume 197 (1985) 281–305

17. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall Interna-
tional (1997)

18. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model checking interlocking
control tables. In: Proceedings of Formal Methods for Automation and Safety
in Railway and Automotive Systems 2010 (FORMS/FORMAT 2010). Springer
(2011) 107–115

19. Simpson, A.C.: Safety through security. DPhil thesis, Oxford University Comput-
ing Laboratory (1996)

20. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems:
An Approach to the State-Explosion Problem. Springer-Verlag (1996)

21. Roscoe, A.W., Armstrong, P.J., Pragyesh: Local search in model checking. In:
Proceedings of the 7th International Symposium on Automated Technology for
Verification and Analysis (ATVA 2009), Springer-Verlag Lecture Notes in Com-
puter Science volume 5799 (2009) 22–38

22. Goldsmith, M.H., Martin, J.M.R.: The parallelisation of FDR. In: Proceedings of
Workshop on Parallel and Distributed Model Checking (PDMC 2002). (2002)

23. Freitas, L., Woodcock, J.C.P.: FDR Explorer. Formal Aspects of Computing
21(1–2) (2009) 133–154

