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Abstract. In this paper, we propose algorithms to extract explicit con-
cepts from general games and these concepts are useful to understand
semantics of games using General Game Playing as a research domain.
General Game Playing is a research domain to invent game players which
are able to play general games without any human intervention. There
are many approaches to General Game Playing, for example, UCT, Neu-
ral Network, and Simulation-based approaches. Successful knowledge ac-
quisition is reported in these approaches. However, generated knowledge
is not explicit in conventional methods. We extract explicit concepts
from heuristic functions obtained using a simulation based approach.
Concepts to understand the semantics of Tic-tac-toe are generated by
our approach. These concepts are also available to understand the se-
mantics of Connect Four. We conclude that our approach is applicable
to general games and is able to extract explicit concepts which are able
to be understood by humans.

1 Introduction

An intelligent system is able to adapt itself to its environment. To invent artificial
intelligence, it is a good strategy to make a program which learns knowledge
from the environment. We can use our living world itself as the environment
for a system, e.g., Natural Language Processing. In this study, we focus on
artificial environments, i.e., games. A game has concrete rules, and is easy to
simulate and evaluate without any human intervention. We tried to discover new
concepts from experience in this artificial environment. We use General Game
Playing (GGP) as a research domain. GGP is a research domain to invent game
players which are able to play general games.

There are many General Game Players. J. Méhat et al. developed a UCT
based player [8], and D. Michulke et al. developed a machine learning based
player [9]. Also, simulation and knowledge based approaches are studied. T.
Kaneko et al. developed a successful method to learn logical features using a
Boolean network approach [5]. P. Skowronski et al. extracted features for se-
lective search extensions [12]. H. Finnsson et al. also extracted knowledge for
general games to improve search efficiency of their player [1, 3]. However, gen-
erated knowledge is not explicit in this conventional research. In this study, we
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propose the generation of new concepts which are explicit enough to be under-
stood by humans.

2 Method

We made our General Game Player using ECLiPSe Prolog and Java. It reads
games expressed in the Game Description Language (GDL) [7] through a parser [11]
into a Prolog engine, then the engine is called from Java through a Java-Prolog
interface to simulate a game.

We automatically produced heuristics for the game by statistical analysis of
simulation results. GDL is convertible to first-order predicate logic, therefore we
can write GDL in Prolog [8]. Also, we can write positions of games as Prolog like
facts. Thus, we made heuristics out of a set of Prolog rules. For each rule, the
body is a subset of a game position, and the argument of head is the evaluation
value of the position.

evaluation(value) : −a subset of position of game. (1)

We used Tic-tac-toe and Connect Four as subject games. In Tic-tac-toe, x
player and o player try to make a straight line on a 3x3 two-dimensional board
using his/her mark. In Connect Four, white player and red player also try to
make a straight line with one’s color, but the board size is 7x6. Additionally, it
has gravity, so the players need to drop the tokens of their color from the top
and pile them up. Therefore, players need to play Connect Four using a different
strategy to Tic-tac-toe.

Even though the game rules are different, the representation of the board is
shared by both games. In both games, a board is represented by a set of cell
terms with arity 3, two arguments are for the coordinate and one is for the mark
or color on the cell. This situation is convenient for our purpose.

3 Automated Generation of Heuristic Functions from
Simulations

We tried automated generation of heuristic functions from random simulations of
Tic-tac-toe and Connect Four. J. Clune successfully generated heuristic functions
for GGP [2]. M. Kirci et al. successfully extracted winning positions of general
games from playouts [6]. We statistically evaluated positions.

We simulated Tic-tac-toe games till we got 10,000 playouts with each player
as the winner. Then, we counted up what kind of subset of position is included
in playouts and calculated the frequency to appear for each player. Finally, we
picked the top 10% of frequent subsets and made Prolog rules which have the
frequency as its evaluation value as written in Algorithm 1. We cut off Prolog
rules in the heuristic functions which have greater body size than a specific size.
We made three heuristic functions by using three different cut off sizes, 1, 2 and
3.
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The following rules were included in generated heuristic functions.

evaluation(0.238...) : −cell(3, 1, o), cell(2, 2, o). (2)

evaluation(0.237...) : −cell(3, 3, o), cell(2, 2, o), cell(1, 3, x). (3)

These heuristics are appropriate for Tic-tac-toe. An evaluation value of a position
is a sum of evaluation values of heuristic functions which match to the position.
We generated heuristic functions in the same way for Connect Four by 1000
simulations for each player. For Connect Four, we used a cut off size of 1 and 2.
We omitted cut off size 3 to reduce simulation time.

We evaluated the performance of each heuristic function by simulation. In
the simulation, a 1-depth alpha-beta search player with each heuristic function
played against both a random player and a 1-depth alpha-beta search player
without heuristics. The 1-depth alpha-beta search player chooses a winning move
when it is found by 1-depth search. Otherwise, the player chooses a random move.
We did 10,000 simulations for Tic-tac-toe, 1000 simulations for Connect Four.
Against a random player, for both games, winning ratios tend to improve when
the cut off size gets greater, as can be seen in Table 1. If the cut off size is 0,
it means that the player has no heuristic function. The same tendency was seen
against an alpha-beta search player in Table 2. These results suggest that this
algorithm successfully extracted features of games properly and encoded them
as heuristic functions.

Algorithm 1 makeStatisticalHeuristics(playouts)

M ⇐ Hash Map
for all playout p in playouts do

S ⇐ getSubset(p)
for all subset s in S do

if M contains s then
increment counter for s

else
create hash for s and set the counter as 1

end if
end for

end for
for all m in M do

v ⇐ counter for m / size of playouts
add Prolog rule type heuristic, “evaluation(v):-m.” into H

end for
H ⇐ pick up rules which have top 10% of its evaluation value from H
return H
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Table 1. Evaluation of heuristic functions for Tic-tac-toe and Connect Four against a
random player.

cut off size
0 1 2 3

game player win(%)/lose(%)/draw(%)

Tic-tac x 80.73/12.32/6.95 93.38/4.53/2.09 90.17/7.45/2.38 96.49/2.76/0.75
-toe o 50.57/40.69/8.74 65.64/27.50/6.86 68.10/28.11/3.79 73.65/24.77/1.58

Connect white 81.4/18.6/0 84.4/15.6/0 90.2/9.8/0 -
Four red 71.3/28.6/0.1 70.4/29.6/0 77.4/22.6/0 -

Table 2. Evaluation of heuristic functions for Tic-tac-toe and Connect Four against a
1-depth alpha-beta search player.

cut off size
0 1 2 3

game player win(%)/lose(%)/draw(%)

Tic-tac-toe x 67.98/27.51/4.51 85.81/13.57/0.62 74.53/25.47/0 91.42/8.58/0
o 27.00/68.71/4.29 41.78/55.40/2.82 41.95/57.87/0.18 50.42/49.58/0

Connect white 57.4/42.6/0 62.2/37.8/0 79.7/20.3/0 -
Four red 40.1/59.9/0 40.4/59.6/0 54.4/45.6/0 -

4 Automated Generation of New Concepts for Games
from Heuristic Functions

We consider that heuristic functions include essential concepts about games. We
tried to extract them as explicit new concepts. This is the Predicate Invention,
one of the research areas of Inductive Logic Programming [4].

First, for all Prolog rules in each heuristic function, we made pairs of terms
included in its body. Then we replaced arguments with variables in the pairs if an
argument in one of the terms in the pair relates to the corresponding argument
in the other term. If an argument was a number, the argument was replaced by
a new variable and the other was replaced by the sum of the variable and the
difference between the two arguments. If the arguments were the same strings, we
replaced them with a new variable. We introduced variables into original terms
in this way. After removing duplicates, finally we got explicit new concepts from
Prolog like heuristic functions, as written in Algorithm 2.

We extracted new concepts from heuristic functions for Tic-tac-toe generated
in section 3. Typical concepts are as follows.

concept1(X0, X1, X2) : −cell(X0, X1, X2), cell(X0, X1 + 1, X2). (4)

concept11(X0, X1, X2) : −cell(X0, X1, X2), cell(X0 + 2, X1 + 2, X2). (5)

concept20(X0, X1) : −cell(X0, X1, x), cell(X0 + 2, X1 + 2, o). (6)

We are able to interpret these concepts as human language. Equation 4 means
“a cell and its right cell are marked by the same symbol”. Equation 5 means “a
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cell and its lower right cell are marked by the same symbol”. Equation 6 means
“a cell is marked by x and its lower right cell is marked by o”. These are natural
concepts for humans to play Tic-tac-toe. Concepts which have a variable as
the role argument are general concepts which are available for both Tic-tac-toe
and Connect Four. Concepts which do not have a variable as the role argument
are specialized for Tic-tac-toe and not available for Connect Four because role
symbols are different between Tic-tac-toe and Connect Four.

Algorithm 2 generateNewConcept(prolog rules)

for all rule r in prolog rules do
P ⇐ all pairs of terms in the body of r
for all pair (p1, p2) in P do

for i = 0 to arity of p1 do
if i-th argument of p1, ai and i-th argument of p2, bi are instances of the
same class then

if ai is an instance of number then
replace ai to a new variable and bi to sum of the variable and bi − ai

else if ai equals to bi then
replace ai and bi to a new variable

end if
end if

end for
if generated pair (p1, p2) is not in C then

add generated pair (p1, p2) to C as a new concept
end if

end for
end for
return C

5 Applying Automated Generated Concepts to Games

We tried to use the generated concepts to reconstruct heuristic functions. We
send queries to a Prolog engine whether each generated concept matches to
subsets of simulated playouts. If the query matched, we saved the matching
result and counted up how many times it matched. Then we assert a Prolog like
heuristic rule of which an evaluation value is the ratio of number of matches
frequency to number of subsets as written in Algorithm 3. In our experience,
reconstructed heuristic functions are made of only binary relations because all
of the generated concepts in section 4 are binary relations on terms.

For Tic-tac-toe, we made heuristic functions from 10,000 random game play-
outs with each player as the winner, then we evaluated performance using 10,000
simulations against both a random game player and a 1-depth alpha-beta search
player. In the results, improvements were seen compared to the player who has
no heuristic function, for example, winning ratio of x player improved 14%, but
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not to players whose heuristic function is better than the 1-body size heuristic
function as seen in Tables 3 and 4. We think this is because they lack 1-body
and 3-body Prolog rules as we mentioned above.

We also made heuristic functions for Connect Four in the same way. We made
two different heuristic functions, one is made from only 10 simulations and the
other is made from 100 simulations. Even though only a few simulations, for
white player, the generated heuristic functions have good performance. Only 10
simulations are enough to compete with 1-body heuristic functions. 100 simu-
lations are enough to be competitive with 2-body heuristic functions as seen in
Tables 3 and 4. This is proof that concepts learned from experience of small
games can play bigger games.

We successfully generated new concepts for games from experience of Tic-tac-
toe. However, for red player, the result is not good. The difference is that white
is the first player and red is the second player. From random game simulation
results, it is suggested that the second player has a disadvantage compared to
the first player. The difference of performance is possibly due to this property.

Algorithm 3 makeStructuredHeuristics(concepts,playouts)

for all concept c in concepts do
M ⇐ Hash Map
for all playout p in playouts do

S ⇐ getSubset(p)
for all subset s in S do

if prolog query of c matches to s then
r ⇐ matching result of s
if M contains r then

increment counter for r
else

create a hash for r and set the counter as 1
end if

end if
increment the number of subsets size

end for
end for
for all m in M do

v ⇐ the counter for m / size
add a heuristic, “evaluation(v):-m.” into H

end for
end for
return H
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Table 3. Evaluation of heuristic functions made of new concepts for Tic-tac-toe and
Connect Four against a random player.

game player simulation size win(%)/lose(%)/draw(%)

Tic-tac-toe x 10000 94.60/3.77/1.63
o 10000 56.91/38.05/5.04

white 10 90.6/9.4/0
Connect white 100 92.3/7.7/0
Four red 10 61.8/38.2/0

red 100 69.4/30.6/0

Table 4. Evaluation of heuristic functions made of new concepts for Tic-tac-toe and
Connect Four against a 1-depth alpha-beta search player.

game player simulation size win(%)/lose(%)/draw(%)

Tic-tac-toe x 10000 89.64/10.36/0
o 10000 39.16/56.87/3.97

white 10 74.5/25.5/0
Connect white 100 78.3/21.7/0
Four red 10 29.5/70.5/0

red 100 44.3/55.7/0

6 Automated Generation of Ternary Concepts from
Binary Concepts

Generated concepts in Algorithm 2 are relationships between a cell and another
cell, i.e., binary relationships. We tried to make ternary relationships as a con-
junction of binary relationships. If two binary concepts are satisfied at the same
time and a cell is shared in both concepts, the situation is a ternary relationship.
Therefore, ternary relationships are made by unification of pairs of terms in each
binary concept as written in Algorithm 4.

We generated ternary concepts from the binary concepts generated in Sec-
tion 4. Typical generated concepts are as follows.

concept67(X1, X2, X3) : −cell(X1, X2, X3), cell(X1, X2 + 1, X3),

cell(X1, X2 + 2, X3). (7)

concept155(X1, X2, X3) : −cell(X1, X2, X3), cell(X1 + 1, X2 + 1, X3),

cell(X1 − 1, X2 − 1, X3). (8)

Equation 7 and 8 represent an idea of line in Tic-tac-toe. Important ternary
concepts are successfully generated by this algorithm. The same algorithm has
a possibility to make more complex concepts.

We also made heuristic functions made of ternary concepts for Connect Four
by Algorithm 3. To reduce generation time, we input 10 simulations and ternary
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Algorithm 4 makeTernaryConcepts(concepts)

P ⇐ makePairsOfConcept(concepts)
for all pair (c1, c2) in P do

for all term t1 in body of c1 do
for all term t2 in body of c2 do

if t1 is able to unificate to t2 then
t3 ⇐ unification result of t1 to t2
b1 ⇐ make new body as like t3 appearing in c1 by unification
b2 ⇐ make new body as like t3 appearing in c2 by unification
if b1 is not equals to b2 then

R ⇐ make new concept by conjunction of b1 and b2
end if

end if
end for

end for
end for
R ⇐ remove overlap from R
return R

concepts generated as above to Algorithm 3 and made heuristic functions. Then,
we evaluated it using 1,000 simulations against a random game player or a 1-
depth alpha-beta search player. Results are not good as seen in Table 5 and 6.
We think this is due to noises from less important concepts. In Algorithm 3,
all input concepts are concerned, therefore, not only important concepts like
Equation 7 or 8 but also less important concepts affect evaluation values. This
result suggests a limitation of Algorithm 3 and a need for better algorithm.

Table 5. Evaluation of heuristic functions made of ternary concepts for Connect Four
against a random player.

game player simulation size win(%)/lose(%)/draw(%)

Connect Four white 10 72.7/27.3/0
red 10 71.7/28.3/0

7 Discussion

In this study, we successfully extracted the essential concepts included in the
game automatically. The proposed algorithm is applicable to general games.
The algorithm learns new concepts without any supervised signals but from
experience in a certain environment. The generated concepts are fundamental
features of the environment, and can be used to play some games with different
rules.
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Table 6. Evaluation of heuristic functions made of ternary concepts for Connect Four
against a 1-depth alpha-beta search player.

game player simulation size win(%)/lose(%)/draw(%)

Connect Four white 10 39.7/60.3/0
red 10 37.8/62.2/0

A typical concept learned in this study is as follows.

concept(X0, X1, X2) : −cell(X0, X1, X2), cell(X0, X1 + 1, X2). (9)

This concept is applicable to all games in which players put a mark or piece on
a two-dimensional board. Even more, through appropriate filters, it is possible
to apply the concept to computer vision to understand semantics of a picture.
If one makes a filter which converts a picture to Prolog like facts, this concept is
applicable for recognizing semantics of series of squares with contents. In other
words, concepts generated in this study are available to understand semantics
of our living world, not only of artificial game worlds.

It is necessary for a human being to input supervised signals when an artificial
intelligence learns concepts about our living world. For example, when we do
Natural Language Processing to generate ontology, we need to input well written
texts which are written by human beings [10]. It is impossible to learn ontology
from automatically generated strings. However, in this study, we successfully
generated concepts about our world without any supervised signals by human
beings. This property is due to the special advantage of games, i.e., environments
having concrete rules. In other words, human beings do not have to judge a
meaning of record of random games because a simulator is able to judge it,
i.e., who is the winner according to its game rules. This tremendously desirable
advantage is available only in games, not in other fields. In our study, it is proven
that we are able to generate essential concepts about our living world from games
according to the advantage.

8 Conclusions

In our study, we automatically generated concepts which were applicable to
understand the world of the games for General Game Playing. Obtained concepts
were general and useful to understand several games. General Game Playing is a
desirable research area for automatically learning concepts of our living world. To
apply obtained concepts to more games and to generate more complex concepts
are the problems which remain to be solved.
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