
User-centric Quality of Experience Measurement

Bachir Chihani1, 4, Khalil ur Rehman Laghari3, Emmanuel Bertin1, 4, Denis
Collange2, and Noël Crespi4, and Tiago H. Falk3

1Orange Labs, 42 rue des Coutures, 14066 Caen, France,

2Orange Labs Sophia Antipolis, 905 rue Albert Einstein, 06560 Valbonne
{firstname.lastname}@orange.com

3Institut National de la Recherche Scientifique (EMT-INRS), Montreal, QC, Canada

4Institut Mines-Telecom, Telecom SudParis, CNRS 5157
9 rue Charles Fourier, 91011 Evry, France

{firstname.lastname}@ mines-telecom.fr

Abstract. Quality-of-experience (QoE) produces the blue print of human
perception, feelings, needs and intentions, while Quality-of-Service (QoS) is a
technology centric metric used to assess the performance of a multimedia
services and/or network. .It is quite important for service/content providers to
understand user/customer experience requirements in order to improve the
service quality or the content recommendation. With advent of 3G and 4G
wireless networks, and efficient smart phones, the band-width hungry
multimedia applications are becoming common in use on end-user devices.
Thus,it is also important for telecom operators to understand the impact of
wireless network performances on the user experience in mobile environment.
On the fly evaluation of user experience for multimedia services is a
challenging problem especially in mobile environments. It implies the
collection and the correlation of a mixture of variables on network conditions,
on the service, as well as on the user itself. This paper proposes an innovative
mobile application that can be used for measuring user quality-of-experience on
the fly with a high accuracy and the consideration of multiple parameters about
the user, the network and the system. This application takes advantages of
current advances in mobile technologies to measure user experience directly on
the user device. In addition, it aims to preserve the user privacy by transmitting
only estimated quality-of-experience to the service provider.

Keywords: QoE; QoS; context; mobile computing; 3G UMTS; video
streaming; machine learning.

1 Introduction1

The wide spread deployment of Wi-Fi, 3G and 4G cellular networks has increased the
use of smart phones, which has changed the landscape of information and
communications technology. Due to advanced operating capabilities of smart phones,

1 A short abstract of this article has been accepted as a work-in-progress report in the IEEE Pervasive

Computing magazine, Oct-Dec issue, 2012. [1]

multimedia applications are now being developed massively and made available
through Google or Apple stores. These services have stringent Quality-of-Service
(QoS) requirements. However, in a mobile environment, the user context (e.g.
location) and network QoS change continuously, in turn continually influencing the
user’s behavior and experience. Thus, it is critical to identify requirements for mobile
multimedia applications that are not only related to the wireless network QoS but also
to the user context and feedback. These requirements can be derived from user
Quality-of-Experience (QoE) demands that can be understood by mapping the user’s
subjective ratings to the objective QoS and contextual parameters.

We propose in this paper an innovative user-centric, context-aware solution that
can be used for measuring QoE on smartphones. The objective is to design an
intelligent and user-centric QoE measurement framework for Android-based
smartphones. Such framework can be used to analyze and evaluate user experience
requirements for multimedia services and applications in a mobile environment. In
this paper, we propose a framework which is implemented with a standalone
intelligent QoE application installed on smartphone. End-user usesa multimedia
service, and s/he gives a QoE score using our framework. These subjective scores are
correlated with QoS and context parameters. The resulting dataset is then analyzed
locally by our proposed framework in order to generate a personalized QoE model to
assess the user perception regarding the studied service. The generated QoE model is
updated over time with respect to changes in the QoS or contextual parameters, i.e.
network or application performance criteria. This application not only captures QoS,
contextual parameters and the user ratings but also analyzes and generates the
personalized QoE results for a given user session. Furthermore, QoE is never a fixed
value; it keeps updated over the time with respect to changes in QoS or in contextual
parameters.

The novelties of our solution are first, the collection of QoS, contextual and user
ratings locally on user smartphones; and second, the client-side analysis of the
collected data to generate a personalized QoE model locally on smartphones. The data
are analyzed as soon as the user finishes interacting with the studied service or after a
consequent change in the user perception.

2 Challenges and Motivations

From the telecom perspective [2], the network’s performance can be monitored by
collecting and investigating key performance indicators such as QoS parameters.
These technical indicators are measured at the different levels in a wireless network.
The examples of theseindicators collected at network layer are bandwidth, delay,
jitter, packet loss rate, etc., and at end-user device level(e.g. noise/interference level,
signal strength, connection establishment time, drop rate, etc.).

On the other hand, from the user perspective [2], the network’s performance can be
monitored by collecting user feedback, i.e. QoE data. In contrast to QoS, QoE
provides an assessment of human perceptions, feelings, emotions and intentions with
respect to a particular product, service or application [18]. QoE is affected by various
technological, business and contextual factors [19] [3].

It is extremely difficult for telecom operators to measure QoE as it depends on
various factors [4]: objective ones related to network condition and subjective ones
related to user perception. For example, the QoE for a video streaming service
depends on network conditions (e.g. bit rate, packet loss rate) and viewing conditions
(e.g. type of used device, at home or work, etc.).

Moreover, it is quite challenging to establish an accurate QoS to QoE mapping
method for different applications as it is hard to choose the relevant QoS parameters
for a given application [5]. It is also challenging to evaluate feedback with respect to
QoS and context data as acquiring these different parameters is difficult in a mobile
environment. Another challenge [6] was due to the limited computing capabilities of
user terminals which make QoE processing on these devices hardly possible. This
challenge was valid for traditional featured phones as they were limited in terms of
processing powers and not designed for calculation task. This is no longer valid as
current smartphones have improved processing capabilities and they are equipped
with flexible operating system allowing the development of advanced applications.
For example, the Google Nexus runs the Android 4.1 operating system; it has 1 Gb
RAM memory and 1.2 GHz CPU processor.

These improvements in mobile device capabilities as well as the fact that the
mobile devices are the closest elements to end-user motivate our work for a full
client-based QoE measurement framework. This proposed framework aims to collect
and process both QoS and QoE data locally on the user device and create a
personalized QoE model. Compared to QoS-based approaches, this approach is closer
to user and provides better insights about user experience.

3 User-centric QoE measurement

Existing QoE frameworks tend to upload the data needed for generating QoE model
from multiple users to a central server to process and aggregate them. Our objective is
to avoid unnecessary Internet traffic generated by uploading data to a distant server by
performing a local management of QoE parameters. This enables the generation of a
personalized QoE model and better user privacy by storing and processing user
information locally on his device. We propose a user-centric way for measuring QoE
parameters, directly on the user device.

3.1 Framework architecture

Our architecture is composed of an Android application running on the user
Smartphone for measuring user QoE; multimedia server (e.g. YouTube) from which
the videos will be streamed over a 3G/WiFi connection via Real Time Streaming
Protocol (RSTP).

Figure 1 presents main components of the Android application responsible for QoE
measurement, interaction with the end-user and with the remote multimedia service
provider (MSP).

Fig. 1. Architecture of the Android application for QoE measurement.

The manager component (MC) is the main component responsible for interacting
with the outside world (user and service provider) and managing rest of the system
components. The data collection component (DCC) is responsible for acquiring QoS
(e.g. jitter, packet loss) and user context (e.g. GPS data) related information. The
Cache Component (CC) is responsible of caching temporarily, a set of collected data
(QoS, context and QoE) and the generated QoE model. The processing/updating
component (PUC) works in two modes: learning and automation modes. In the
learning mode, this component uses a supervised learning algorithm (for instance a
linear regression) to generate a personalized QoE model and stores it into the cache
component. The generated model is updated continuously with the cached data and
each time the cached data is consumed, the cache is emptied.

In the automation mode, the component is responsible for predicting QoE
parameters (e.g. did the user like the video content?), with the use of the cached QoE
model. Thanks to this mode, a multimedia and telecom service provider can use our
framework as an integrated component to its multimedia service to evaluate the the
user experience regarding the usage of the service. In this case, the predicted QoE
values can be for instance sent to the multimedia and telecom service provider in
order to personalize the recommended videos.

3.2 Collected parameters

Smartphones are a rich source of information about user and his/her environment.
Table 1 summarizes the data we are collecting on the client-side for generating user
QoE model. These collected data belong to the following categories.

User related information: input from user describing his satisfaction through
various ratings after viewing a video;

Table 1. Collected parameters for QoE model generation.

Parameter Unit Value Sampling

User related information
Satisfaction state [yes, no] On thumbs up/down
Video Quality integer [1, 5] When user stop watching
Video Content integer [1, 5] When user stop watching

Application related information
Watched % [0, 100] When user stop watching
Error

% [0, 100] On error

Device related information
CPU % [0, 100] Each second
Memory % [0, 100] Each second
Battery level % [0, 100] Each second
Latitude double [0, 180] On location changes
Longitude double [0, 90] On location changes

Network related information
Jitter second [0, ∞[On RTSP packets arrival
Loss rate % [0, 100] On RTSP packets reordering
Network Type state [WiFi,3G,L

TE]
On changes

RSSI dBm]-∞, +∞[On changes

Application related information: Video parameters like time spent watching the

video (i.e. if or not the whole video was watched) or the moment when an error had
happened (e.g. related to a bug in the application) while the user was watching the
video;

Device related information: battery related information like level, its health (e.g.
good), its status (e.g. charging); CPU usage (e.g. percentage consumed by our
application); memory usage (e.g. amount of memory needed by our application);
Location information like the name of the location provider, altitude, longitude, etc.

Network Performance related information like signal strength, QoS parameters
like delay and jitter, received packets; network type (e.g. UMTS, LTE, GPRS);

In our implementation, there is no fix sampling rate as the Android platform allows
applications to subscribe for specific events (e.g. network type/location changes) to be
notified on their occurrence. This way, there is no need for a continuous polling of the
event source (e.g. GPS sensor, network manager).

3.3 Implementation details

The different components in Figure 2 are implemented as Android threads (i.e.
AsyncTask) except the cache which is implemented as an Android ContentProvider
able to store data locally into the Android SQLite database. The application has two
Android activities: the first one displays a list of videos; the second one displays the
chosen video. We used the YouTube API (Application Programming Interface) to

stream videos from the multimedia service provider. Some Android APIs are used to
get contextual information (e.g. location) and QoS parameters (e.g. jitter).

When the application is started, a list of videos is displayed from which the user
can choose one video to watch. Two ways are provided to user to report his/her
satisfaction (which is represented by the reported QoE score): While s/he is watching
the video thanks to thumbs up (QoE score = 4) or thumbsdown (QoE score = 1)
buttons, or at the end of the video by answering the questions (QoE score ranges from
0 to 5). The reported QoE will be stored in the cache to be processed later when there
will be enough available data; i.e when the cache becomes full.

(a) (b)

Fig. 2. Screenshots from the QoE measurement application.

Figure 2 depicts a screenshot from an implementation of the QoE measurement
frame work. The GUI (Graphical User Interface) showed in (a) displays a list of
videos. The one in (b) is composed of a top area where the video is displayed. In the
middle, the user can use the thumbs up/down buttons to express his current liking and
disliking of the displayed video. At the bottom, there is a button for submitting this
user survey.

3.4 Components interaction

Figure 3, illustrates the framework sequence diagram. When the user reports its QoE,
the Manager sends this value to the data collection component. In addition to the QoE
value, it collects the current QoS and user context information, and stores them into
the cache. When the stored examples in the cache reach a certain value (configurable
parameter), the processing-updating component is notified to consume them and to
generate an updated version of user QoE model.

When the multimedia service provider requests a QoE value for the currently
streamed video, the manager component sends back the user reported QoE (if there is)
or a predicted value generated by the processing-updating component.

Fig. 3. Sequence diagram for QoE management.

4 Learning and Processing

All the data is not available at a single time but it is gathered continuously and
progressively over the time. Thus, the iterative nature of linear regression may help in
building accurate model which fits our needs. Our learning algorithm, implemented
by the processing/updating component, is based on the multivariate linear regression
[7] where input parameters are QoS and contextual information and QoE is the output
or target variable. For each learning phase, the size of the training set or number of
samples is ‘m’ which is also the size of the cache. The hypothesis (h) represents the
model to be learned for predicting future values of QoE (ypredicted) for a giving sample
vector (X), i.e. ypredicted = h(X). Mathematically, h is defined in equation (1), where xi
is an input parameter, n is the number of input parameters, and θj the weight of the
corresponding input parameter. It is the set of weights that represent the parameters to
be learned.

h(X) = θ0x0 + θ1x1 + θ2x2 + … + θnxn (1)

The learning algorithm tries to predict the best values of the hypothesis parameters

(vector of θ values) minimizing the difference between the output QoE value and real

value (ypredicted – yreal). Equation (2) defines mathematically the cost function ‘J’ which
is based on a model (vector of θ values) to output the cost of this model by the
summation of distances between predicted values hθ(x) and real values y for all
samples (rows) of the dataset.

(2)

To predict best values of θ parameters, we use a modified version of Batch

Gradient Descent (BGD) [8]. BGD is an iterative optimization algorithm that requires
the whole data set to be available and then it does line search to find the best step size,
which makes it a slow algorithm. Instead, our modified version (which is also an
iterative optimization algorithm) operates on the data stored into the cache when ‘m’
(cache size) samples become available, i.e. when the cache becomes fullThe
motivations behind M-BGD is that on a mobile environment the samples are streamed
(i.e. continuously collected) and thus traditional BGD cannot be applied in a single
learning phase as we cannot have a full dataset. In this case, the learning should
instead be continuously performed.

M-BGD (Modified Batch Gradient Descent) first normalizes input parameters (P)
as shown in equation (3).. This normalization aims to project data into the [-1, 1]
interval in order to avoid parameters scaling problem that may influence the resulting
model.

(3)

Second, M-BGD updates θ values continuously until convergence or stagnation at

a local minimum given the following algorithm:

Initialize θ parameters (e.g., to 0);

Repeat until convergence:

By replacing J derivative with its value, the last loop becomes:
Repeat {

}

Where Xi is a vector representing the ith sample/input features, Yi is the QoE value

corresponding to the ith row of the training set, and θj represents the learned
parameters corresponding to the jth feature/column. The latter are initialized the first
time to zero. Then, after each training phase, θj are stored to be reused the next phase
as initialization values. The ‘α’ regulate the convergence speed of θj values.

The cost function ‘J’ is a convex function; it has then a unique minimum which is
the global minimum at which θ values are best values that gives the minimal distance
between predicted and real output values. Convergence of θj to best values is
guaranteed. But gradient descent is an iterative algorithm and it is known to be too
slow as the all dataset is used many times during each iteration. The ‘α’ parameter
needs to be well chosen to speed up the algorithm convergence.

5 Evaluation

Our first goal is to understand the impact of the modification brought to the original
Batch Gradient Descent (BGD) algorithm with respect to the optimization of an
objective function. In our case, this optimization aims to calculate the best weights
that correspond to the QoS and context variables used in the objective function to
measure the QoE score. We implemented the original Batch Gradient Descent (BGD)
algorithm and our variant Modified BGD (M-BGD) algorithm to compare their
performance in term of evolution of the output cost function (equation 2) after each
algorithm step. Figure 4 depicts the graphs related to cost function calculated for each
algorithm. To generate these graphs, we used some data collected from a QoE study
of a multimedia service (video streaming) that involved 24 subjects (6 women and 18
men) aged between 20 to 35 years. The data is composed of output parameters (QoE
values given by users) and input parameters including the video category (‘0’ for fast
videos like football match, and ‘1’ for slow videos like a ship moving in the large
sea), and QoS parameters (packet loss, packet reorder, video bit rate).

In case of BGD, the cost function is calculated for the whole dataset each time and
this is why its graph is smooth (it can be represented with a linear function) and the
cost value is decreasing in a steady way. At the other hand, the cost function of M-
BDG is calculated only for the available data in the Cache component which makes
the cost value oscillate continuously as the model may fit current data while not
perfectly fit the next set. The BGD need more data to output a low cost value, while
M-BGD is able to output an acceptable cost (less than 1).

Fig. 4. Cost function graphs of two methods.

A second goal is to understand the relation between QoS parameters and QoE
scores. For this, we conducted a set of experiments with our framework to collect
QoE scores under varied QoS conditions (network related). After aggregating the
resulting data, the Figure 5 shows the relation between users QoE and network QoS.
It is clear that the obtained QoE scores are inversely related to disturbance of QoS
parameters as stated in [9].

Fig. 5. Relationship between QoE score (y-axis) and QoS values (x-axis).

6 Related works

Commonly, QoE is evaluated in Living Labs [9] which is a user-centric ecosystem
that involves users in testing/assessing new services (e.g. multimedia, games).
Another possibility for measuring QoE is to hire a representative panel of real users of
the service (e.g. telephony). In both cases, the evaluation is based on questionnaires
where users have to answer after a service usage session. After collecting multiple
answers from the participant users, the Mean Opinion Score (MOS) [10] method is
used to evaluate the overall QoE of the service. These methods are experimental and
passive in way they need to: hire a group of users, put them in a controlled
environment, experiment the service under study in different conditions, collect data
from users and correlate them with experiments setups to finally generate an
aggregated QoE model. An example of such approach is presented in [11] where the
authors propose a QoE framework for smart phones and use subjective assessment
technique for the measurement of QoE. Their framework is based on a client-server
model. Once, user data are collected; the server side takes the control of all user data
and analyzes it. The purpose of the client-side application is limited to video
streaming and reporting user feedback data to the server side. It is not intelligent
enough to make any analysis over data and/or produce personalized QoE results for
smart phone users.

Objective QoE assessment methods represent another class of approaches which
are more active [12] as they attempts to measure QoE by mapping it to some QoS
parameters without end-user involvement. An example of such approaches is
presented in [6] where the authors proposed a QoE measurements method for smart
phones. The method is based on the collection and the processing of QoS data on the
user terminal and reporting QoE based on objective (QoS) assessment. Hence they do
not require any user feedback. However our work is based on a subjective assessment
scheme and it provides more reliable and accurate user QoE. In fact, the generated
QoE model is personal as it relies on user input as well as system and network
information acquired directly from the user device. These methods rely heavily on
QoS indicators to try to approximate the evaluation of the user perception ignoring
user contextual information like location. Also, if a QoS to QoE mapping is accurate
for a given class of applications, it may become obsolete for another class as different
applications have different QoE/QoS requirements. For example, some application
may be sensitive to jitter and delay like online video games while others are more
sensitive to packet loss like file transferring.; some applications may need a quiet
environment to be used (e.g. telephony), while others may need a suitable lighting
arrangement (e.g., texting).

Table 2 summarizes the description of these two main QoE measurement

approaches, and illustrates as well a comparison between them.

Table 2. QoE measurement approches comparaision.

 Data
Collection

Data
Transmission

Comparison

Objective
Methods

QoS Huge data
transmission

Generalized QoE (QoS- specific),
Saves time.
No User feedback, lacks accuracy

Subjective
Methods

Surveyed
QoS / QoE

No need for data
transmission

Personalized QoE (User-Specific),
Time consuming
Reliable and Accurate QoE
Based on user feedback

Most of the existing QoE measurement tools aims to analyze the user web

browsing activities, especially video downloading as it represents a major part of the
Internet traffic [13]. Some of these tools usually implement a polling interface to ask
more or less interactively the users about their satisfaction. For instance, HostView
[14] is an end-host tracing tool that implements a combination of objective and
subjective QoE measurement methods. It collects network traffic, system performance
information, and prompts also the user for feedback on network performance. Another
tool combining both QoE assessment approaches is presented in [15]. This tool does
not require any installation on the user side; it uses a heuristic approach to collect user
feedbacks in an explicit way. It is able to infer the user impatience from collecting
and analyzing the last flags of the TCP connections generated by the user activity as
well as the end-to-end network performance. QOM frame work [20] combines both
subjective and objective factors, but the most of the QoE processing and management
is done at server side.

Typical examples of objective QoE measurement tools include: Netalyzr [16] and a
modified version of FasterFox [17]. Netalyzr [16] is client-server application that
allows the user to download an applet through which active tests are conducted and
collected data are uploaded to some of the predefined Netalyzr servers. In [2] the
authors attempted another deployment architecture based on plugins (e.g. browser
plugin.); they modified FasterFox [17] which is a Firefox plugin originally developed
to speed-up network performances. They used this plugin to collect data from the user
browser and to report it to a remote server.

The existing tools relying on QoS data imply the transfer of an important quantity
of low level data about network metrics. The aggregation made at the back-end side
produce a generalized model about user experience which may lack accuracy. The
tools combining objective with subjective measurement approaches provide an
enhanced accuracy with a more personalized QoE assessment. Nevertheless, most of
these tools do not consider information about user situation which may be important
for a more precise user experience assessment. The following table summarizes the
description of the presented QoE measurement tools and attempt to compare those
tools regarding different implementation and operational characteristics.

Table 3. Summary of existing QoE measurment tools.

A
rc

hi
te

ct
u

re

M
ea

su
re

m
en

t
te

ch
n

iq
ue

P
er

so
na

liz
at

io
n

M
et

ric
s

Z. Qia et al. [6] Client
side

Objective QoE
Assessment

No Network parameters

I. Ketykó et al. [11] Client-
Server

Subjective
assessment

Partial Network parameters
User feedback

HostView [14] Client-
Server

Combined
approache

Yes Network parameters
System performance
User feedback

D. Collange et al. [15] Network
centric

Objective QoE No Network parameters

Netalyzr [16] Client-
Server

Objective QoE Partial Network parameters

J. Shaikh [2] Client-
Server

Objective QoE No Application
parameters

Laghari et al.[20] Client-
Server

Combined
approch

Partial Network parameters
Application params
User information

Our proposal Client
side

Combined
approache

Yes Network parameters
Device parameters
Application params
User information

Our proposed QoE framework is a simple, intelligent and self-functioning QoE

framework which not only monitors contextual, QoS and user ratings but also makes
QoE analysis and decisions on its own at the client side. It does not require any third
party servers for data analysis and it produces run time QoE Evaluation. However, the
used machine learning technique is rather simple which makes the accuracy of the
generated QoE model relatively low. More advanced techniques (e.g. neural
networks, Bayesian networks) should be used to enhance the accuracy. To our
knowledge there are currently no robust and reliable libraries implementing these
techniques on mobile Operating Systems. In further studies, we will investigate the
possibility of using such advanced machine learning techniques on mobile platforms,
like Android, by porting existing libraries in the Android environment.

7 Conclusion

In this paper, we propose a smartphone-based framework that enables the evaluation
of the user experience regarding multimedia streaming services. We present the
framework architecture and implementation details. The advantages related to our
solution are twofold. First, from the service provider perspective, the framework
provides a better user perception assessment as the processed technical and user
parameters (QoS, context and user rating data) are collected close to user, directly
from the his/her device. Second, from the user viewpoint, he/she has freedom to give

his feedback about offered quality at any time through thumbs up/thumbs down icon
and/or user rating, with respect to a particular service, and in any situation. Third,
from the telecom operator perspective, our framework handles “monitor, analyze and
decide” functions on user data on smartphone and it does not require any other server
side for these functions, hence there is no need for bulk data transfer. Also, it may
give a privacy control to user behavioral requirements. In a future work, we plan to
investigate the possibility of using more advanced machine learning techniques (on an
Android device) like neural networks to generate a QoE model with better accuracy.

References

1. B. Chihani, E. Bertin, N. Crespi, “Android-based QoE Management Framework,” Work in
Progress report, IEEE Pervasive Computing, Issue Oct/Dec 2012.

2. J. Shaikh, M. Fiedler, D. Collange, “Quality of Experience from user and network
perspectives,” Annals of Telecommunications, vol 65 N° 1-2, pp 47-57, February 2010.

3. B. Chihani, E. Bertin, F. Jeanne, and N. Crespi, “Context-aware systems: a case study,”
International Conference on Digital Information and Communication Technology and its
Applications, France, 2011.

4. P. Hubbe, S. Kerboeuf, Y. Leprovost, Y. Mahfoufi, “An Innovative Tool for Measuring
Video Streaming QoE,” TECHzine Technology and Research E-ZINE, 2011.

5. R. Serral-Gracià, E. Cerqueira, M. Curado, M. Yannuzzi, E. Monteiro, X. Masip-Bruin, “An
overview of quality of experience measurement challenges for video applications in IP
networks,” in International Conference on Wired/Wireless Internet Connections, Sweden,
2010.

6. Z. Qiao, “Smarter Phone based Live QoE Measurement,” 15th International Conference on
Intelligence in Next Generation Networks (ICIN'11), Berlin, Germany, 2011.

7. A. Kaw, E. Kalu, “Numerical Methods with Applications: Abridged,” Second Edition,
ISBN: 9780578057651, 2011.

8. I.Nabney, “NetLab: Algorithms for Pattern Recognition,” Springer 2002.
9. H. Rifai, S. Mohammed, A. Mellouk, “A brief synthesis of QoS-QoE methodologies,” 10th

International Symposium on Programming and Systems (ISPS), Algiers, Algeria, 2011.
10. International Telecommunication Union, “Methods for Subjective Determination of

Tranmission Quality,” ITU Recommendation P.800, August 1996.
11. I. Ketykó, K. De Moor, T. De Pessemier, A. J. Verdejo, K. Vanhecke, W. Joseph, L.

Martens, L. De Marez, “QoE measurement of mobile YouTube video streaming,”
Proceedings of the 3rd workshop on Mobile video delivery (MoViD'10), Firenze, Italy,
2010.

12. P. Calyam, E. Ekicio, C. Lee, M. Haffner and N. Howes, “A gap-model based framework
for online VVoIP QoE measurement,” Journal of Communications and Networks, Vol. 9,
No.4, Dec. 2007, pp. 446-56.

13. R. Schatz, S. Egger, “Vienna Surfing - Assessing Mobile Broadband Quality in the Field,”
Workshop on Measurements Up the STack (W-MUST), collocated with ACM SIGCOMM,
Toronto (Canada), August 2011.

14. D. Joumblatt, R. Teixeira, J. Chandrashekar, N. Taft, “HostView: Annotating End-Host
Performance Measurements with User Feedback,” HotMetrics Workshop, collocated with
SIGMETRICS, USA, 2010.

15. D. Collange, M. Hajji, J. Shaikh (BTH), M. Fiedler (BTH), Patrik Arlos (BTH), “User
impatience and network performance,” 8th Euro-NF Conference on Next Generation
Internet (NGI), Karlskrona (Sweden), June 2012.

16. C. Kreibich, N. Weaver, B. Nechaev, V. Paxson, “Netalyzr: Illuminating the edge
network,” ACM Internet Measurement Conference (IMC), Melbourne, Australia, 2010.

17. FasterFox, URL: http://fasterfox.mozdev.org/, accessed on March 2013.
18. K. ur Rehman Laghari, B. Molina, C.E. Palau, "QoE Aware Service Delivery in Distributed

Environment," IEEE Workshops of International Conference on Advanced Information
Networking and Applications (WAINA'11), pp.837-842, 22-25 March 2011.

19. K.U.R. Laghari, K. Connelly, N. Crespi, "Toward total quality of experience: A QoE model
in a communication ecosystem," IEEE Communications Magazine, vol.50, no.4, pp.58,65,
April 2012.

20. K. R. Laghari, T. T. Pham, H. Nguyen, and N. Crespi, QoM: A new quality of experience
framework for multimedia services, Proceeding of IEEE Symposium on Computers and
Communications (ISCC), 851-856 (2012).

