Skip to main content

Design of Radial Basis Function Classifier Based on Polynomial Neural Networks

  • Conference paper
Soft Computing in Artificial Intelligence

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 270))

Abstract

In this paper, to improve the generalization ability of radial basis function networks, we apply the polynomial neural networks as the virtual input variables of radial basis function networks. The parameters of each polynomial neuron are estimated by linear discriminant analysis. In each layer of polynomial neural networks, the polynomial neurons are selected in terms of the objective function of linear discriminant analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Renjifo, C., Barsic, D., Carmen, C., Norman, K., Peacock, G.S.: Improving radial basis function kernel classification through incremental learning and automatic parameter selection. Neurocomputing 72, 3–14 (2008)

    Article  Google Scholar 

  2. Rocha, M., Cortez, P., Neves, J.: Simultaneous evolution of neural network topologies and weights for classification and regression. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 59–66. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Pedrycz, W., Park, H.S., Oh, S.K.: A granular-oriented development of functional radial basis function neural networks. Neurocomputing 72, 420–435 (2008)

    Article  Google Scholar 

  4. Pedrycz, W.: Conditional Fuzzy C-Means. Pattern Recognition Letter 17(6), 625–632 (1996)

    Article  Google Scholar 

  5. Oh, S.K., Kim, W.D., Pedrycz, W., Park, B.J.: Polynomial-based radial basis function neural networks (P-RBF NNs) realized with the aid of particle swarm optimization. Fuzzy Sets and Systems 163, 54–77 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ivahnenko, A.G.: Polynomial theory of complex systems. IEEE Trans. on Systems, Man and Cybernetics SMC-12, 364–378 (1971)

    Article  MathSciNet  Google Scholar 

  7. Oh, S.-K., Pedrycz, W.: The design of self-organizing Polynomial Neural Networks. Information Science 141, 237–258 (2002)

    Article  MATH  Google Scholar 

  8. Oh, S.-K., Pedrycz, W., Park, B.-J.: Polynomial Neural Networks Architecture: Analysis and Design. Computers and Electrical Engineering 29(6), 703–725 (2003)

    Article  Google Scholar 

  9. Parades, R., Vidal, E.: Learning prototypes and distance: A prototype reduction technique based on nearest neighbor error minimization. Pattern Recognition 39, 180–188 (2006)

    Article  Google Scholar 

  10. Farrow, S.J.: The GMDH algorithm. In: Farrow, S.J. (ed.) Self-organizing Methods in Modeling: GMDH Type Algorithms, Marcel Dekker, New York (1984)

    Google Scholar 

  11. Kleinsteuber, S., Sepehri, N.: A polynomial network modeling approach to a class of large-scale hydraulic systems. Computers Elect. Eng. 22, 151–168 (1996)

    Article  Google Scholar 

  12. Er, M.J., Wu, S.Q., Lu, J.W., Toh, H.L.: Face recognition with radical basis function (RBF) neural networks. IEEE Transactions on Neural Networks 13(5), 697–710 (2002)

    Google Scholar 

  13. Jing, X.Y., Yao, Y.F., Zhang, D., Yang, J.Y., Li, M.: Face and palm print pixel level fusion and Kernel DCV-RBF classifier for small sample biometric recognition. Pattern Recognition 40, 3209–3224 (2007)

    Article  MATH  Google Scholar 

  14. Hwang, H.: Daily Electric Load Forecasting Based on RBF Neural Network Models. International Journal of Fuzzy Logic and Intelligent Systems 13(1), 37–46 (2013)

    Article  Google Scholar 

  15. Ha, S.-H., Jeon, H.-T.: Development of Intelligent Gear-shifting Map Based on Radial Basis Function Neural Networks. International Journal of Fuzzy Logic and Intelligent Systems 13(2), 116–123 (2013)

    Article  Google Scholar 

  16. Na, J.H., Park, M.S., Choi, J.Y.: Linear boundary discriminant analysis. Pattern Recognition 43, 929–936 (2010)

    Article  MATH  Google Scholar 

  17. Cervantes, A., Galvan, I.M., Isasi, P.: AMSPO: A New Particle Swarm Method for Nearest Neighborhood Classification. IEEE Transaction on Systems, Man, and Cybernetics Part B 39(5), 1082–1091 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Chon Ahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ahn, T.C., Roh, S.B., Yin, Z.L., Kim, Y.S. (2014). Design of Radial Basis Function Classifier Based on Polynomial Neural Networks. In: Cho, Y., Matson, E. (eds) Soft Computing in Artificial Intelligence. Advances in Intelligent Systems and Computing, vol 270. Springer, Cham. https://doi.org/10.1007/978-3-319-05515-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05515-2_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05514-5

  • Online ISBN: 978-3-319-05515-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics