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Abstract. The automatic segmentation of human knee cartilage from
3D MR images is a useful yet challenging task due to the thin sheet struc-
ture of the cartilage with diffuse boundaries and inhomogeneous intensi-
ties. In this paper, we present an iterative multi-class learning method to
segment the femoral, tibial and patellar cartilage simultaneously, which
effectively exploits the spatial contextual constraints between bone and
cartilage, and also between different cartilages. First, based on the fact
that the cartilage grows in only certain area of the corresponding bone
surface, we extract the distance features of not only to the surface of
the bone, but more informatively, to the densely registered anatomical
landmarks on the bone surface. Second, we introduce a set of iterative
discriminative classifiers that at each iteration, probability comparison
features are constructed from the class confidence maps derived by pre-
viously learned classifiers. These features automatically embed the se-
mantic context information between different cartilages of interest. Vali-
dated on a total of 176 volumes from the Osteoarthritis Initiative (OAI)
dataset, the proposed approach demonstrates high robustness and ac-
curacy of segmentation in comparison with existing state-of-the-art MR
cartilage segmentation methods.

1 Introduction

The quantitative analysis of knee cartilage is advantageous for the study of car-
tilage morphology and physiology. In particular, it is an important prerequisite
for the clinical assessment and surgical planning of the cartilage diseases, such
as knee osteoarthritis which is characterized as the cartilage deterioration and a
prevalent cause of disability among elderly population. As the leading imaging
modality used for articular cartilage quantification [1], magnetic resonance (MR)
imaging provides direct and noninvasive visualization of the whole knee joint in-
cluding the soft cartilage tissues (Fig. 1c). However, automatic segmentation of
the cartilage tissues from MR images, which is required for accurate and repro-
ducible quantitative cartilage measures, still remains an open problem because
of the inhomogeneity, small size, low tissue contrast, and shape irregularity of
the cartilage.

An earlier endeavor on this problem is Folkesson et al.’s voxel classification
approach [2], which runs an approximate kNN classifier on voxel intensity and
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absolute position based features. However, due to the overlap of intensity distri-
bution between cartilage and other tissues such as menisci and muscles, as well
as the variability of the cartilage locations from scan to scan, the performance
of this method is limited. More recently, Vincent et al. have developed a knee
joint segmentation approach based on active appearance model (AAM), which
captures the statistics of both object shape and image cues. Though promising
results are reported in [3], the search for the initial model pose parameter can
be very time consuming even if a coarse to fine searching strategy is used.

Given the strong spatial relation between the cartilages and bones in the
knee joint, most proposed cartilage segmentation methods are based on a frame-
work that each bone is segmented first in the knee joint [4,5,6], which is usually
easier than direct cartilage segmentation because the bones are much larger in
size with more regular shapes. Fripp et al. segment the bones based on 3D ac-
tive shape model (ASM) incorporating the cartilage thickness statistics, and the
outer cartilage boundary is then determined by examining the intensity profile
along the normal to the bone surface, while being constrained by the cartilage
thickness model [4]. In Yin’s work [5], the volume of interest containing the bones
and cartilages is first detected using a learning-based approach, then the bones
and cartilages are jointly segmented by solving an optimal multi-surface detec-
tion problem via multi-column graph cuts [7]. Lee et al. employ a constrained
branch-and-mincut method with shape priors to obtain the bone surface, and
then segment the cartilage with MRF optimization based on local shape and ap-
pearance information [6]. In spite of the differences, these approaches all require
classification of bone surface voxels into bone cartilage interface (BCI) and non-
BCI, which is an important intermediate step to determine the search space or
impose prior constraint for cartilage segmentation. Therefore, any classification
error of BCI will probably propagate to the final cartilage segmentation result.

In this paper, we present a fully automatic learning-based voxel classification
method for cartilage segmentation. It also requires pre-segmentation of corre-
sponding bones in the knee joint. However, the new approach does not rely on
explicit classification of BCI. Instead, we construct distance features from each
voxel to a large number of anatomical landmarks on the surface of the bones
to capture the spatial relation between the cartilages and bones. By removing
the intermediate step of BCI extraction, the whole framework is simplified and
classification error propagation can be avoided.

Besides the connection between the cartilages and bones, strong spatial re-
lation also exists among different cartilages which is more often overlooked in
earlier approaches. For example, the femoral cartilage is always above the tibial
cartilage and two cartilages touch each other in the region where two bones slide
over each other during joint movements. To utilize this constraint, we introduce
the iterative discriminative classification that at each iteration, the multi-class
probability maps obtained by previous classifiers are used to extract semantic
context features. In particular, we compare the probabilities at positions with
random shift and compute the difference. These features, which we name as
the random shift probability difference (RSPD) features, are more computation-
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ally efficient and more flexible for different range of context compared to the
calculation of probability statistics at fixed relative positions [8,9].

2 Review of Bone Segmentation

In this work, we employ a learning-based bone segmentation approach which has
shown the efficiency and effectiveness in different medical image segmentation
problems [10,11]. We represent the shape of a bone by a closed triangle meshM.
Given a number of training volumes with manual bone annotations, we use the
coherent point drift algorithm (CPD) [12] to find anatomical correspondences of
the mesh points and thereof construct the statistical shape models with mean
shape M [13]. As shown in Fig. 1a, the whole bone segmentation framework
comprises three steps.

1. Pose Estimation: For a volume V, the bone is first localized by searching for
the (sub-)optimal pose parameters (t̂, r̂, ŝ), i.e., the translation, rotation and
anisotropic scaling, using the marginal space learning (MSL) [11]:

(t̂, r̂, ŝ) ≈ (arg max
t
P (t|V), arg max

r
P (r|V, t̂), arg max

s
P (s|V, t̂, r̂)), (1)

and the shape is initialized by linearly transforming the mean shape M.
2. Model Deformation: At this stage, the shape is repeatedly deformed to fit

the boundary and projected to the variation subspace until convergence.
3. Boundary Refinement: To further improve the segmentation accuracy, we use

the random walks algorithm [14] to refine the bone boundary (see Table 1
and Fig. 4 for results) and employ the CPD algorithm to obtain anatomically
equivalent landmarks on the refined bone surface.

3 Cartilage Classification

Given all three knee bones being segmented, we first extract a band of interest
within a maximum distance threshold from each of the bone surface, and only
classify voxels in the band of interest to simplify the training and testing by
removing irrelevant negative voxels.

3.1 Feature Extraction

For each voxel with spatial coordinate x, we construct a number of base features
which can be categorized into three subsets.

Intensity Features include the voxel intensity and its gradient magnitude,
respectively: f1(x) = I(x), f2(x) = ||∇I(x)||.

Distance Features measure the signed Euclidean distances from each voxel
to different knee bone boundaries: f3(x) = dF (x), f4(x) = dT (x), f5(x) = dP (x),
where dF is the signed distance to the femur, dT to tibia, and dP to patella. Then
we have their linear combinations:

f6/7(x) = dF (x)± dT (x), f8/9(x) = dF (x)± dP (x). (2)
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These features are useful because the sum features f6 and f8 measure whether
voxel x locates within the narrow space between two bones, and the difference
features f7 and f9 measure which bone it is closer to. Fig. 3b shows how f6 and
f7 in addition to intensity feature f1 separate tibial cartilage from femoral and
patellar cartilages.

Given the prior knowledge that the cartilage can only grow in certain area
on the bone surface, it is useful for the cartilage segmentation to not only know
how close the voxel is to the bone surface, but also where it is anatomically.
Therefore we define the distance features to the densely registered landmarks on
the bone surface as described in Section 2: f10(x, ζ) = ||x− zζ ||, where zζ is the
spatial coordinate of the ζth landmark of all bone mesh points. ζ is randomly
generated in training due to the great number of mesh points available (Fig. 3a).

Femur DSC (%) Tibia DSC (%) Patella DSC (%)

Before RW 92.37 ± 1.58 94.64 ± 1.18 92.07 ± 1.47
After RW 94.86 ± 1.85 95.96 ± 1.64 94.31 ± 2.15

Table 1: The Dice similarity coefficient (DSC) of bone segmentation results be-
fore and after random walks (3-fold cross validation on 176 OAI volumes).

Context Features compare the intensity of the current voxel x and another
voxel x + u with random offset u: f11(x,u) = I(x + u) − I(x), where u is a
random offset vector. This subset of features, named as random shift intensity
difference (RSID) features in this paper, capture the context information in
different ranges by randomly generating a large number of different values of
u from a uniform distribution in training. They were earlier used to solve pose
classification [15] and keypoint recognition [16] problems.

3.2 Iterative Semantic Context Forests

In this paper, we present a multi-pass iterative classification method to automat-
ically exploit the semantic context for multiple object segmentation problems.
In each pass, the generated probability maps will be used to extract the con-
text embedded features to enhance the classification performance of the next
pass. Fig. 1d shows a 2-pass iterative classification framework with the random
forests [15,16,17,18,19,20] selected as the base classifier for each pass. However,
the method can be extended to more iterations with the use of other discrimi-
native classifiers.

Semantic Context Features After each pass of the classification, the prob-
ability maps are generated and used to extract semantic context features as
defined below: f12(x) = PF (x), f13(x) = PT (x), f14(x) = PP (x), where PF , PT
and PP stand for the femoral, tibia and patellar cartilage probability map, re-
spectively. In the same fashion as the RSID features, we compare the probability
response of two voxels with random shift:

f15/16/17(x,u) = PF/T/P (x + u)− PF/T/P (x), (3)
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Fig. 1: (a) The bone segmentation framework. (b) 3D anatomy of knee joint. (c)
Example of a 2D MR slice [6]. (d) The semantic context forests diagram.

(a) (b) (c) (d)

Fig. 2: Probability maps of femoral cartilage by semantic context forests. (a)
Original image. (b) Prob. map of the 1st pass. (c) Prob. map of the 2nd pass.
(d) Ground truth.

which is called random shift probability difference features (RSPD). RSPD pro-
vides semantic context information because the probability map values are di-
rectly associated with anatomical labels, rather than original intensity volume.

In Fig. 2, it can be observed that the probability map of the second pass
classification is significantly enhanced with much less noisy responses, compared
with the first pass.
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Fig. 3: (a) Distances to densely registered bone landmarks encode anatomical po-
sition of a voxel. (b) Feature scatter plot: intensity and distance features separate
tibial cartilage from femoral and patellar cartilages. (c) Frequency of each fea-
ture selected by the classifier in the 2nd pass. (d) A comparison of segmentation
performance (DSC): 1-pass/2-pass forests without using distance to landmark
(LM) features; 1-pass/2-pass/3-pass forests using distance to landmark features;
2-pass forests with graph cuts optimization (3-fold cross validation).

3.3 Post-processing by Graph Cuts Optimization

After the classification, we finally use the probabilities of being the background
and the three cartilages to construct the energy functions and perform multi-
label graph cuts [21] to refine the segmentation with smoothness constraints.

The graph cuts algorithm assigns a label l(x) to each voxel x, such that the
energy below is minimized:

E(L) =
∑

{x,y}∈N

Vx,y(l(x), l(y)) +
∑
x

Dx(l(x)), (4)

where L is the global label configuration, N is the neighborhood system, Vx,y(·)
is the smoothness energy, and Dx(·) is the data energy. We define

Dx(l(x)) = −λ lnPl(x)(x), (5)

Vx,y(l(x), l(y)) = δl(x) 6=l(y)e
(I(x)−I(y))2

2σ2 . (6)
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δl(x)6=l(y) takes value 1 when l(x) and l(y) are different labels, and takes value 0
when l(x) = l(y). Pl(x)(x) takes the value PF (x), PT (x), PP (x) or 1− PF (x)−
PT (x)−PP (x), depending on the label l(x). λ and σ are two parameters. λ spec-
ifies the weight of data energy versus smoothness energy, while σ is associated
with the image noise [22].

4 Experimental Results

4.1 Dataset and Experiment Settings

The dataset we use in our work is the publicly available Osteoarthritis Initiative
(OAI) dataset, which contains both 3D MR images and ground truth cartilage
annotations, referred to as “kMRI segmentations (iMorphics)”. The sagittal 3D
3T (Tesla) DESS (dual echo steady state) WE (water-excitation) MR images in
OAI have high-resolution, good delineation of articular cartilage, fast acquisition
time and high SNR. Our dataset consists of 176 volumes from 88 subjects, and
belongs to the Progression subcohort, where all subjects show symptoms of OA.
Each subject has two volumes scanned in different years. The size of each image
volume is 384× 384× 160 voxels, and the voxel size is 0.365× 0.365× 0.7 mm3.

For the validation, we divide the OAI dataset to three equally-sized subsets:
D1, D2 and D3, and perform a three-fold validation. The two volumes from the
same subject are always placed in the same subset. For each randomized decision
tree, we set the depth of the tree to 18, and train 60 trees in each pass. During
training, the number of candidates at each non-leaf node is set to 1000. The dice
similarity coefficient (DSC) is used to measure the performance of our method
since it is commonly reported in previous literature [2,4,5,6,23].

4.2 Results

First, we compare the frequency of different features that is selected by the
classifiers. As shown in Fig. 3c, RSID, RSPD and the distance to dense landmarks
are very informative features to embed spatial constraints.

Then we compare the segmentation performance with and without the use
of the distance features to the anatomical dense landmarks, and also the results
with different number of classification iterations. The results in Fig. 3d demon-
strate the effectiveness of the distance features to dense landmarks and iterative
classification with semantic context forests. In particular, 2-pass random forests
achieve significant performance improvement, whereas the gain seems quite neg-
ligible by adding more passes.

Finally, the quantitative results (2-pass classification) are listed in Table 2
together with the numbers reported in the earlier literature. Because the datasets
used are different by all these approaches, the numbers in the table are only for
reference. Note that only our experiments are based on a relatively large dataset.
As shown in the table, we achieved high performance with regard to the femoral
and tibial cartilage, whereas the DSC of patellar cartilage is notably lower than
the other two cartilages. This is partly because the size of patellar cartilage
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is much smaller than femoral and tibial cartilage, so that the same amount of
segmentation error will result in lower DSC. Besides, some patellar cartilage
annotations in the dataset do not appear very consistent with others. Example
segmentation results are shown in Fig. 5.

Fig. 4: Example bone segmentations. Each case has three views, from left to
right: transversal plane, sagittal plane, coronal plane. Red: femur; green: tibia;
blue: patella.

5 Conclusion

We have presented a new approach to segment the three knee cartilages in 3-D
MR images, which effectively exploits the semantic context information in the
knee joint. By using the distance features to the bone surface as well as to the
dense anatomical landmarks on the bone surface, the spatial constraints between
cartilages and bones are incorporated without the need of explicit extraction of
the bone cartilage interface. Furthermore, the use of multi-pass iterative classi-
fication with semantic context forests provides more spatial constraints between
different cartilages to further improve the segmentation. The experiment vali-
dation shows the effectiveness of this method. Ongoing work include the joint
bone-and-cartilage voxel classification in the iterative classification framework.
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