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Abstract

Accurate segmentation of whole brain MR images including the cortex, white matter and 

subcortical structures is challenging due to inter-subject variability and the complex geometry of 

brain anatomy. However a precise solution would enable accurate, objective measurement of 

structure volumes for disease quantification. Our contribution is three-fold. First we construct an 

adaptive statistical atlas that combines structure specific relaxation and spatially varying 

adaptivity. Second we integrate an isotropic pairwise class-specific MRF model of label 

connectivity. Together these permit precise control over adaptivity, allowing many structures to be 

segmented simultaneously with superior accuracy. Third, we develop a framework combining the 

improved adaptive statistical atlas with a multi-atlas method which achieves simultaneous accurate 

segmentation of the cortex, ventricles, and sub-cortical structures in severely diseased brains, a 

feat not attained in [18]. We test the proposed method on 46 brains including 28 diseased brain 

with Alzheimer’s and 18 healthy brains. Our proposed method yields higher accuracy than state-

of-the-art approaches on both healthy and diseased brains.
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1 Introduction

The neurologic study and clinical diagnosis of many brain diseases, such as Alzheimer’s 

Disease (AD) or hydrocephalus, often requires magnetic resonance (MR) imaging of the 

brain. Segmentation of distinct brain structures from MR images is a vital process for 

objective diagnosis, treatment planning, therapy monitoring and drug development. Manual 

labeling of brain structures in MR images by a human expert can require up to 1 week per 

subject and is operator dependent. For large data sets, manual segmentation of individual 

structures is not practical; however automating the segmentation is difficult due to image 

artifacts, noise, complex textures, complex shapes and partial volume effect. In recent 
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decades, many approaches have been proposed to segment human organs or tissues in MR 

images or other modalities [11], for example classification based methods [6], deformable 

model based methods [10], and atlas-guided approaches [1,7,9,12,14,16]. Among these 

approaches, atlas based methods are the most commonly used approaches for brain image 

segmentation. In medical image segmentation (e.g. [15]), an atlas is defined as a pair of an 

MR intensity scan (e.g. T1) and its corresponding manual segmentation. Given several 

atlases, there are two ways to segment a new target image. The first is to learn a single 

statistical atlas that models the spatial priors for individual structures. A single probabilistic 

atlas is fit in a Bayesian framework for voxel classification [1,14]. Single statistical atlas 

based methods are accurate when the target scan has similar anatomical characteristics as the 

atlas populations. The second approach is to register the set of atlases (multi-atlas) to the 

target image and then compute the final segmentation via a label fusion approach 

[7,9,12,16]. A multi-atlas method tends to be computationally expensive due to the required 

multiple non-linear registrations [2,17] and also has limited ability to handle diseased brains 

with anatomical characteristics that vary from the training atlases.

Recently, several adaptive statistical atlas-based expectation maximization (EM) algorithms 

were proposed to deal with the above limitation of atlas based methods. One by Shiee et al. 

[13] was applied to segment brains with ventriculomegaly. Another by Cardoso et al. [3] was 

applied to measure cortical thickness. In their work the brain is segmented into only 4–6 

coarse structures: white matter (WM), gray matter (GM), ventricles, cerebrospinal fluid 

(CSF). However, the subcortical GM structures (e.g. hippocampus), which are critical in 

clinical diagnoses are not handled. In [18], we proposed an extended adaptive statistical atlas 

(EASA) using spatially varying adaptivity prior to segment many structures from whole 

brain MR scans, and use a strategy to combine the statistical atlas with multi-atlas to 

enhance the accuracy of segmenting diseased brains. This method can fail for some 

structures such as the cerebral cortex which is critical for disease detection (e.g. cortical 

thinning in AD). One reason is the use of a simplistic Markov Random Field (MRF) model 

that assumes every pair of voxel label arrangements has the same probability. This can lead 

to leaking, an unregulated, undesirable form of atlas adaptivity.

In this work, we segment the whole brain into 34 anatomical structures simultaneously and 

accurately by improving the adaptive atlas methods [13,18]. Our methodological 

contributions include: (1) structure specific relaxation along with the spatial adaptivity prior, 

(2) an isotropic pairwise class-specific MRF model, (3) a complete hybrid framework of our 

proposed method, denoted EASA++, with a multi-atlas approach which improves 

segmentation accuracy on diseased brains, especially for the cerebral cortex and ventricles. 

We evaluate our hybrid method on 46 brains. We qualitatively evaluate our results on all 46 

brains including 19 with moderately enlarged ventricles, and quantitatively evaluate on 27 

brains including 18 normal brains, and 9 AD brains with severely enlarged ventricles. 

Finally we compare our performance against state-of-the-art approaches such as FreeSurfer 

[5].
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2 Methods

Background for the Extended Adaptive Single Statistical Atlas (EASA) and Weighted 
Majority Voting (WMV) multi-atlas methods.

In [13] an EM-based adaptive single statistical atlas (ASA) brain segmentation method was 

proposed to address the common clinical situation in which the target brain to be segmented 

is poorly represented by the brains in the training set. This method assumes that the brain 

consists of K structures (k = 1,…,K), the number of voxels in the T1 MR image is N (i = 1,

…, N), and that the intensity distribution of each structure follows a Gaussian distribution. 

The observed image is modeled by a K-component Gaussian Mixture Model (GMM) [14] 

with unknown parameters: the mixing coefficients πik and θk = μk, σk
2 , where μk and σk

2 are 

the means and variances, respectively. The true label for voxel i is denoted as zi (a K × 1 

binary-valued vector), while the prior probability that voxel i belongs to structure k is 

written as pi = (pi1,…, piK), and its posterior probability as wik. Since brain structure labels 

are piecewise constant, a MRF prior on zi’s is incorporated to the complete model:

f (Z, X π , θ) = 1
Norm ∏

i = 1

N
∏

k = 1

K
πik G xi; θk

zikexp −β ∑
j ∈ Ni

∑
l = 1, l ≠ k

K
zikz jl

where xi is the intensity in target image at voxel i, G(xi; θk) is the Gaussian model of 

structure k, Norm is the MRF normalizer term and Ni is the 6-connected neighborhood of 

voxel i. The EM algorithm is used to solve the maximum a posteriori (MAP) estimation of 

parameters πik and θi. Assuming πi follows a Dirichlet distribution and applying a Gaussian 

smooth filter on wik
t , they used πik

t + 1 ≈ (1 − κ)pik + κ G * wik
t  to trade off spatial prior fidelity 

and the current EM estimate. The method in [13] is limited in that it can only parcellate 4 

coarse anatomical classes (WM, GM, exterior CSF and ventricular CSF).

In [18] we extended ASA (denoted EASA) to parcellate many more (30+) structures 

throughout the brain. This was achieved through two steps. First we took the global invariant 

relaxation parameter κ = 0.5 and made it spatially variant. The spatially variant adaptivity 

map κ(x):ℝ3 ℝ depends on the coordinates of voxel x ∈ ℝ3. Second to segment diseased 

brains more accurately, we combined EASA with a multi-atlas label fusion approach called 

intensity weighted majority voting (WMV) [9]. WMV extends canonical majority voting 

label fusion by incorporating the intensity of the target subject to further guide the final label 

selection. This approach, which we denote simply as [18], applies the multi-atlas WMV to 

the target. This (1) generates a rough initial parcellation for subsequent EM-based EASA, 

and (2) enables the creation of ASA priors that are target subject specific since the multi-

atlas WMV maps the training atlases to the target.

While [18] successfully extended ASA to segment 30+ structures the method’s limitations 

include an inaccurate segmentation of structures, such as the cerebral-cortex and 

neighboring WM. There was also limited quantitative evaluation in [18]. In this paper we 

propose a new ASA approach, EASA++, and two new hybrid approaches, Hybrid2 and 
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Hybrid3, which address these methodological limitations and we perform a thorough 

quantitative evaluation of the impact of our new methods.

Our proposed EASA++ and hybrid approaches.

Though the IBSR1 atlas is extensively used in the brain segmentation literature, its manual 

labels contain errors including an over segmentation of cortical gray (exterior CSF voxels 

labeled as cortex). Consequently multi-atlas approaches, such as WMV, can fail to achieve 

good cortical GM parcellation because the propagated atlases consistently over segment the 

target’s cortex. [18] does not improve cortical GM segmentation because all registered 

atlases are incorrect in the same way, causing low label entropy (high confidence) which 

would have otherwise triggered relaxation and subject-specific adaptivity. This motivates our 

first improvement to improve segmentation accuracy for cortex, external CSF, and WM, by 

making the spatially varying relaxation map κ(x) dependent on the anatomical structure. 

This yields greater adaptivity for structures whose manually segmentation is problematic. 

Formally, our new relaxation map is a function of location x and structure k:

κ(x, k) =

α1 ⋅ κ(x) i f k = kECSF

α2 ⋅ κ(x) i f k ∈ kWM′s

κ(x) otherwise

where the white matter structures, kWM′s include left and right cerebral WM, α1,α2 ∈ (0..1)
are empirically determined structure specific relaxation coefficients. κ(x) is computed via 

voxel label entropy: H(x) = ∑k = 1
K −rk(x)log rk(x)  where rk (x) is the rate that voxel x is 

labeled as k in training data. More relaxation is allowed at voxels with larger entropy and 

less where entropy is lower.

Studying the evolution of labels of [18], we observe that if the initial segmentation had miss-

labeled a voxel as another similar-intensity class to the true label, then incorrect label can be 

propagated to neighboring voxels with similar intensity values. To suppress such error 

propagation, we replace the isotropic MRF of [18], with a pairwise class-specific MRF 

model:

f (Z, X π, θ) = 1
Norm ∏

i = 1

N
∏

k = 1

K
πikG xi; θk

zikexp − ∑
j ∈ Ni

∑
l = 1, l ≠ k

K
β(l, k)zikz jl

where β(l, k) is the K × K MRF parameter matrix. These parameters are estimated in 3 steps. 

First for neighboring voxels throughout the whole atlas, we compute the pairwise class 

probability. Specifically we compute the probability that a voxel with label c2 appears next 

to the voxel with label c1 as Ppair(c1, c2) = # of pairs c1, c2
# of voxels with label c1  and average Ppair (c1, c2) 

over all atlases. Finally we map Ppair (c1, c2) to β(c1, c2) values, where the larger the value 

1http://www.cma.mgh.harvard.edu/ibsr/
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of Ppair (c1, c2) the smaller β(c1, c2) should be to make the model have a larger probability 

of connecting classes. We model the relation as follows:

β(c1, c2) =
γ

Ppair(c1, c2) if Ppair(c1, c2) > γ

1 otherwise

where γ ∈ (0..1).

Having described EASAH++, we combine it with multi-atlas method forming the new 

hybrid algorithm Hybrid3, which is illustrated in Fig. 1. After removing the skull using 

ROBEX [8], the preprocessed target (shown in the top left) is then non-linearly registered to 

each training scan using a diffeomorphic symmetric normalization [2]. The same transforms 

are used to propagate training subject label maps to the target. We combine these target 

specific label maps: (1) to form statistical probability maps pik for each structure, (2) to 

estimate isotropic pairwise class-specific MRF parameters, and (3) to compute the relaxation 

map κ(x). We initialize wik
0  by the pik (rather than the hard initialization wik

0 = zik
label f us in 

[18]) and then apply adaptive segmentation using the structure specific κ(x, k) in using in an 

EM framework. Similar to Hybrid3 method, we define Hybrid2 method with only the 

structure specific relaxation enhancement.

Figure 2 shows, for the same subject, the impact of the addition of structure specific 

relaxation and isotropic pairwise class-specific MRF. We observe that [18] mislabels many 

exterior CSF voxels as cortical GM. Hybrid2 improves cortical GM segmentation but has 

some exterior to CSF voxels labeled as lateral ventricle (purple). For the Hybrid3 method 

both enhancements are used and this yields the most precise parcellation.

3 Experiments

In this section, we evaluate the proposed Hybrid3 method and compare it to state-of-the-art 

methods. We use two datasets. One is the IBSR data set which has 18 healthy subjects with 

T1 intensity volumes and medical expert delineated ground truth. Each brain volume has 

256 × 256 × 128 voxels, 1 mm in-axial plane resolution and 1.5 mm between-axial plane 

resolution. Each segmentation has 30+ labels including the left and right WM, GM, 

ventricles, and the subcortical GM structures (e.g. putamen, hippocampus, etc.). The other 

dataset consists of 28 Alzheimer’s disease subjects randomly selected from the AIBL 

database2. Each brain volume has about 240 × 256 × 160 voxels, 1 mm in-slice resolution 

and 1.2 mm between-slice resolution. The AIBL dataset consists of 9 subjects with severely 

enlarged lateral ventricles (denoted as Severe_AD) and 19 subjects with moderately 

enlarged lateral ventricles (denoted Moderate.AD). We manually labeled each subject 

volume in Severe_AD to provide ground truth for diseased brains.

In our first experiment we compared EASA++, Hybrid3 to EASA and FreeSurfer on the 

IBSR dataset. From leave-one-out cross-validation tests, we observe overall best 

2Data was collected by the AIBL study group. AIBL study methodology has been reported previously ([4]).
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performance from the proposed Hybrid3 method (see Fig. 3). The bar graph shows results 

from the first experiment and the second experiment (denoted as *_AD).

In our second experiment, we used the 18 healthy brains of IBSR as a training dataset and 

used the 28 subjects from the AIBL Alzheimer’s disease dataset for testing. We evaluated 

and compared results of Hybrid3 with FreeSurfer v5.1.0 and our implementation of WMV 

and [18]. For the Hybrid3 approach we use empirically chosen parameters α1 = 0.7, α2 = 

0.9, γ = 0.001. For quantitative evaluation, we compute average dice scores for 30+ 

structures in Severe_AD data set based on the ground truth. As shown in Fig. 3, the 

proposed approach yields better results than FreeSurfer in 27 out of 34 structures and 16 of 
these 27 are statistically significant differences by t-test, (p ≤ 0.05). These 16 structures 

include the Lateral Ventricles, which are known biomarkers for early detection of AD and 

can distinguish the stages of AD. FreeSurfer is not statistically significantly better for any 

structure. Comparing with [18], the proposed Hybrid3 performs better for cerebral WM, 

cerebral cortex and ventricles. For general analysis, we recommend the Hybrid3 approach 

as it works well for diseased and healthy appearing brains. Its computation time depends on 

the non-linear registrations performed to register atlases to target image and the number of 

training atlases. Once these registrations are performed (in parallel they take 30 min), the 

proposed algorithm only requires 7 minutes to segment one brain volume. For clinical 

practices where the subject is known to be similar in morphology to the set of training 

atlases, then our EASA or EASA++ algorithm could be used alone (without the multi-atlas 

initialization step) in which case the entire segmentation requires just 7 minutes.

Qualitative results for two of Severe_AD subjects are shown in Fig. 4, while qualitative 

results for all 28 subjects are shown in the supplemental file. In Fig. 4, each row is for an 

axial slice of one subject in Severe_AD. The first column is the T1 input image; the second 

column is the result by WMV method; the third is FreeSurfer result; the fourth column 

comes from [18]; the fifth is the proposed Hybrid3 result and the last column is ground truth 

(GT). The GT for each subject in Severe_AD is obtained by taking the WMV label fusion 

results as the starting point and manually re-labeling it. As shown by yellow circles in Fig. 4, 

neither FreeSurfer, a statistical atlas method, nor WMV a multi-atlas method are able to 

reliably segment diseased ventricles. Blue circles indicate the areas where voxel based 

FreeSurfer under-segments the cortex, while yellow circles show where WMV and [18] 

over-segment the cortex. In our tests, only Hybrid3 is able to accurately segment the 
ventricles and cortex of these diseased brains.

4 Conclusions and Future Work

We develop a new adaptive statistical atlas, EASA++, using structure specific relaxation 

priors, refined by a non-stationary relaxation map and isotropic pair-wise class-specific 

MRF model. We propose a new hybrid approach Hybrid3 that combines EASA++ with the 

multi-atlas method. Our hybrid approach simultaneously segments 34 structures throughout 

the brain with state-of-the-art accuracy. We evaluate our method on normal brains and those 

with moderate and severe Alzheimer’s. Qualitative and quantitative results demonstrate the 

superior performance of the proposed Hybrid3 method to FreeSurfer for multiple structures 

including the cortex and ventricles. Since modern large datasets, such as ADNI and AIBL, 
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have thousands of subjects, our fully automated proposed method is well suited for 

segmenting these images automatically across a wide range of disease severity. Future work 

entails improving accuracies for other small structures simultaneously and utilizing 

volumetry and thickness measures from our segmentations to quantify disease stage and help 

guide treatment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Proposed Hybrid3 algorithm first applies a multi-atlas to robustly initialize the segmentation 

and then applies an adaptive single statistical atlas for precise subject specific parcellation.
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Fig. 2. 
Our development of κ(x, k) and isotropic pairwise class-specific MRF for the proposed 

Hybrid3 approach visibly improves cortical GM segmentation.
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Fig. 3. 
Comparison of dice score per structure on 18 healthy subjects and 9 severe AD subjects. 

Proposed algorithm out performs benchmark methods such as FreeSurfer for most 

structures. ‘L&R’ stands for average result of structure in left and right spheres.

Yan et al. Page 11

Med Comput Vis (2013). Author manuscript; available in PMC 2019 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Method comparison on AD patients. Proposed Hybrid3 provides visibly improved 

parcellation (circled regions) throughout the brain
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