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Abstract. Traditional technologies for solving hand-eye calibration and
inverse kinematics are cumbersome and time consuming due to the high
nonlinearity in the models. An alternative to the traditional approaches
is the artificial neural network inspired by the remarkable abilities of the
animals in different tasks. This paper describes the theory and implemen-
tation of neural networks for hand-eye calibration and inverse kinemat-
ics of a six degrees of freedom robot arm equipped with a stereo vision
system. The feedforward neural network and the network training with
error propagation algorithm are applied. The proposed approaches are
validated in experiments. The results indicate that the hand-eye calibra-
tion with simple neural network outperforms the conventional method.
Meanwhile, the neural network exhibits a promising performance in solv-
ing inverse kinematics.
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1 Introduction

Applying robot arm for dexterous tasks, e.g. object gasping and hanging, chal-
lenges both machine vision and control fields. These tasks often requires high-
speed sensor feedback as well as fast and precise control of robot arm. Thanks
to the advances of camera technology and image processing methodology, visual
information has been widely used in various tasks, e.g. for object recognition,
3D localization, scene reconstruction, motion detection and so on [1–3]. In or-
der to utilize the visual feedback in the control loop, it often requires a cali-
bration between the vision system and the robot arm, e.g. for a ’eye to hand’
setup, see Fig.1. The hand-eye calibration gives a mapping of 2D image coor-
dinates [u, v] to 3D Cartesian coordinates [x, y, z]. Moreover, the control tasks
with robot arm are usually performed in Cartesian space with visual feedback
providing 3D object information. However, the robot arm is manipulated in
joint space. Therefore, it involves a mapping from Cartesian space [x, y, z] to
joint space [q1, q2, . . . , qn]. This paper focuses on these two fundamental issues
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Fig. 1. Eye-to-hand setup.

in robot arm control, namely the hand-eye calibration issue and the inverse kine-
matics issue, which will be studied in a 6-DOF (degrees of freedom) robot arm
control system equipped with a stereo vision system.

The hand-eye calibration problem has fascinated many researchers over the
last 30 years. It is traditionally dealt with through triangulation methods [4–6].
However, the triangulation method usually requires camera calibration, cali-
bration from camera frame to gripper frame or robot base frame, and stereo
triangulation (if a stereo vision system is applied). Therefore, the calibration
procedure is cumbersome and time consuming. Besides, the triangulation in-
volves camera intrinsic and extrinsic parameters. As a result, the performance
of the traditional calibration method is susceptible to these parameters. Regard-
ing the inverse kinematics problem, there are several techniques to simplify it and
they can be in general grouped into two categories: analytical solution and geo-
metrical solution [7]. For manipulators with higher DOF or with non-spherical
wrist, the inverse kinematics problem becomes complex due to the high non-
linearities in the kinematics model, and thus, it is difficult to find a closed-form
solution. Inspired by animals’ noteworthy abilities in a very wide range of differ-
ent tasks with their remarkable analogous in biology, the artificial counterpart-
neural network is used in robotics for several different purposes [9–14]. In [9]
neural network estimators are trained offline for non-linear state estimation as-
suming non-Gaussian distributions of the states and the disturbances; neural
networks can also be used to solve the camera calibration and 3D reconstruction
problems [10,11]; the fast inverse kinematics of a 3-DOF planar redundant robot
is achieved through neural network in [13]; in order to overcome the problems of
singularities and uncertainties in arm configurations, artificial neural network is
applied for the motion control of a 6-DOF robot manipulator in [14].

The benefits of neural network with regard to low computational cost and
high efficiency inspires neural network based solutions for hand-eye calibration
and inverse kinematics of a 6-DOF robot arm presented in this paper. The
main purpose of this work is to implement the neural network for a real robot
arm equipped with a stereo vision system. Different from some existing works,
the robot arm used in this work has an offset wrist which poses difficulties for



solving inverse kinematics in the traditional analytical or geometrical way. Data
samples from real robot arm is utilized for performance analysis. Furthermore,
this work is implemented as an initial step towards a realtime vision-guided
robotic manipulation system based on neural network.

The remainder of this paper is organized as follows: The overall platform
consisting of a robot arm and a stereo vision system is described in Section 2.
In Section 3, the feedforward neural network is briefly introduced. Then, the
training of neural networks for calibration and inverse kinematics is presented.
In Section 4, the experimental validation and performance comparison are dis-
cussed. Finally, conclusions are given in Section 5.

2 System Overview

As mentioned in the previous section, in the present work the neural network is
applied for a 6-DOF robot arm (’hand’) with a stereo vision system (’eye’). In
this section, these two hardware components will be introduced.

2.1 6-DOF robot arm

Universal robot UR5 is a 6-DOF robot arm with relatively lightweight (18.4 kg),
see Fig. 2. It consists of six revolute joints which allows a sphere workspace
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Fig. 2. UR5 robot and its joint coordinate system. Left : UR5 robot and PolyScope
GUI [15]; Right : joint coordinate system.

with a diameter of approximately 170 cm. The Movements close to its boundary
should be avoided considering the singularity of the arm. The arm is equipped
with a graphic interface PolyScope, which allows users to move the robot in a



user-friendly environment through a touch screen. In this work, the connection
to the robot controller is realized at script level using TCP/IP socket. Once the
TCP/IP connection is established, the robot broadcasts data packets with a rate
of 125 Hz.

The UR5 robot arm has a non-spherical wrist, as shown in Fig. 2. The
D-H (Denavit-Hartenberg) parameters of the robot arm is given in Table 1.
With the D-H parameters the forward kinematics can be calculated through the

Table 1. Denavit-Hartenberg parameters of UR5

Joint ai [m] αi [rad] di [m] θi [rad]

1 0 π/2 0.089 q1
2 -0.425 0 0 q2
3 -0.392 0 0 q3
4 0 π/2 0.109 q4
5 0 −π/2 0.095 q5
6 0 0 0.082 q6

equation given below
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where T i
j denotes the homogeneous transformation from frame i to frame j, and
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 , i = 1, 2, . . . , 6.

2.2 Stereo vision system

The stereo vision system consists of two Guppy Cameras F-036. Each camera
has a resolution of 752 × 480 pixels and runs at a frame rate of 64 fps. Camera
calibration is required to determine the intrinsic parameters of each camera, in-
cluding focal length, principle point, skew coefficients and distortion coefficients.
In this work the skew coefficients are not calculated as the pixels are assumed
to be rectangular. The calibration is carried out based on Camera Calibration
Toolbox in Matlab [16]. The calibration results are given in Table 2. These in-
trinsic parameters will be applied in geometric stereo triangulation in Section 4.1
for performance comparison.

Table 2. Intrinsic parameters of left and right cameras.

Parameter Left camera Right camera

Focal length [pixel] [683.89±2.49, 685.71±2.51] [674.03±2.44, 676.18±2.55]
Principle point [pixel] [307.76±3.26, 236.63±3.08] [327.05±3.78, 247.40±2.88]
Distortion coef. [-0.24±0.010, 0.222±0.046] [-0.210±0.008, 0.168±0.034]



3 Neural network for a 6-DoF robot arm

3.1 Feedforward neural network

According to the different ways of arranging neurons in a network, there are
several different architectures of neural network, e.g. feedforward neural network,
radial basis function network, recurrent neural network, etc. [8,17]. In this section,
the feedforward neural network is introduced.

In feedforward neural network all the neurons are divided into layers, as
shown in Fig.3. The neurons in one layer are not connected with each other.

Fig. 3. An example of feedforward neural network.

Moreover, each neuron in a layer receives inputs from all the neurons of the
previous layer and has an output connected to all the neurons of the following
layer. The first layer is called input layer which receives input from external en-
vironment, while the last layer is called output layer which transmits the results
of the network. The layers in between are called hidden layers which are invis-
ible to the external environment. The number of neurons in the input/output
layer is related with the number of variables that are dealt with. The number of
neurons in hidden layers is decided by the complexity of the problem. Generally
speaking, a more complex problem requires more hidden layers and neurons. In
most cases, one hidden layer will be sufficient [18].

In order to determine the connection weights among the neurons, a network
training strategy needs to be carefully selected. In this work, the well-known
error back propagation algorithm is applied. The back propagation algorithm is
a gradient descent procedure that finds the set of weights minimizing the output
error [19].

3.2 Training of neural network for hand-eye calibration

In hand-eye calibration, the 2D information is used to retrieve the 3D information
with regard to a reference frame. In this work, the aim of hand-eye calibration
is to determine the 3D location of an object in the robot base frame, based on



the 2D coordinates in two cameras. In order to build the neural network, the
network training is required to set the weights of the connections between the
neurons. Therefore, a training sample is demanded which is acquired through
the approach described below:

1. First, attach the object to the end-effector of the robot arm;
2. Move the robot arm to random positions within its workspace;
3. Detect the coordinates of the object in image space;
4. Finally, save both the 3D information and 2D information in a file.

With the collected sample data the network is trained based on error back propa-
gation algorithm. After the training, the neural network for hand-eye calibration
is built, which transforms 2D image coordinates [u, v] to 3D Cartesian coordi-
nates [x, y, z]. Then, the performance of the neural network is evaluated with
another set of samples. The cumulative distribution function (CDF) and root
mean square error (RMSE) are selected for results analysis. The CDF describes
the probability of a variable X being less than or equal to x

CDFX(x) = P (X ≤ x). (2)

The RMSE is often used as a measure of the difference between the predicted
values and the observed values, defined as

RMSE =

√∑n
i=1(obsi − prei)

2

n
, (3)

where obsi is observed value, prei is predicted value at time instant i, and n is
the number of observed/predicted data.

3.3 Training of neural network for inverse kinematics

Through hand-eye calibration, the object position is determined with regard to a
reference base frame, e.g. the robot base frame. For tasks such as object tracking
and grasping the inverse kinematics is required to convert the 3D Cartesian co-
ordinates [x, y, z] to joint coordinates [q1, q2, . . . , qn]. It has to be mentioned that
in this work the orientation of the object [α, β, γ] is also considered for inverse
kinematics. The orientation information can be obtained through several meth-
ods, e.g. through image feature matching algorithm utilized in [20] and particle
filter based on one position sensor and one IMU described in [21]. Therefore,
the neural network for inverse kinematics has six inputs [x, y, z, α, β, γ]. For a
6-DOF robot-arm, the output of the network is the corresponding six joint val-
ues [q1, q2, . . . , q6].

Similar to the neural network training in Section 3.2, a set of sample data is
required. It is obtained through the following approach:

1. Move the end-effector of the robot arm to random positions and orientations
within its workspace;

2. Save the joint angles, end-effector positions and end-effector orientations.



The step 1 and step 2 are repeated several times in order to better approximate
the uniform distribution of the sample data points. Furthermore, another sample
of data is needed for performance evaluation. The CDF and RMSE defined by
Eqs. (2)(3) are also applied for results analysis.

4 Experiments

In this part, experiments are carried out to evaluate the performances of the
neural networks for hand-eye calibration and inverse kinematics. The experi-
mental setup is shown in Fig. 4. A table-tennis ball is chosen as the object,

Fig. 4. Experimental setup.

which is mounted on the end-effector of the robot arm. Two Guppy Cam-
eras F-036 are used to build the stereo vision system. Each camera works at
30 fps@640×480 pixels. Before stereo triangulation, image processing algorithm
is applied to extract the ball in the 2D image space. First, frames from each cam-
era are converted from RGB colour space to HSV colour space, see Fig. 5(a)(b).
Then, the coordinate of the ball is determined based on the colour, contour and

(a) (b) (c)

Fig. 5. Image processing for determining the 2D coordinate of a ball in the image space.
(a): RGB image; (b) HSV image converted from RGB image; (c): ball detected (high-
lighted by green-circle) in image space.

radius information. Fig. 5(c) shows an example of the image processing result.



After the image processing, the ball positions in both images from left and right
cameras are found and saved to a file for neural network training.

4.1 Experiment I: Neural Network for hand-eye calibration

In this experiment, neural network is trained for hand-eye calibration, as intro-
duced in Section 3.2. The ball was randomly moved to 2000 different positions by
the robot arm. Then, the 2D ball coordinates [ul, vl], [ur, vr] in the left and right
cameras were saved to a file. Besides, the 3D ball position [x, y, z] with regard
to the robot base frame was also recorded. The network was trained using 80%
of the sample, while the remaining 20% was utilized to test the performance.

A network with 4 input neurons, 3 output neurons and 2 hidden layers
with 8 neurons each was heuristically selected. The results are in shown in Fig. 6,
which gives the CDF (left) and histogram (right) of the RMSE and the mean
absolute error mean(|x|, |y|, |z|) along different axis. Here, the RMSE describes
the absolute distance between the measured 3D ball position and the predicted
3D ball position. The results are also summarized in Table 3. It is noticed that
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Fig. 6. Cumulative distribution (left) and histogram (right) of the calibration error
based on the neural network approach. The neural network has 4 input neurons, 3
output neurons and 2 hidden layers with 8 neurons each.

the error is not homogeneously distributed along the different directions: the
error on the x-direction is considerably bigger. The mean absolute error on the
x-axis is mean|x| = 1.81 mm. It is due to the fact that the x-direction of the base
frame is roughly parallel to the optical axis of the cameras (see Fig. 4), which is
more susceptible to the estimation uncertainty.

Moreover, the performance of the neural network based approach is compared
with the one of the standard geometrical triangulation approach. As shown in
table 3, the hand-eye calibration error is reduced dramatically by the proposed
approach. For example, the RMSE of the proposed approach is 2.65 mm, while
that of the geometrical approach is 19.10 mm. In addition, a deduction of ap-
proximate 80% of the mean absolute error on axis x, y, z is gained through the



Table 3. Results of the neural network for hand-eye calibration and against that of
the geometrical triangulation.

Parameter Neural Network Geometric Triang.

RMSE 2.65 (−86.1%) 19.10
95th percentile 5.29 32.42
99.5th percentile 8.44 41.41

Mean absolute error [|x|, |y|, |z|] [1.81, 1.10, 1.07]
(−86.7%,−88.0%,−78.8%)

[13.56, 9.193, 5.039]

95th percentile [|x|, |y|, |z|] [4.49, 3.01, 2.38] [27.46, 21.74, 11.61]
99.5th percentile [|x|, |y|, |z|] [8.02, 4.20, 4.56] [38.70, 25.75, 16.09]

∗All the values are expressed in [mm].

neural network approach. Based on the experimental results it is concluded that
hand-eye calibration with the neural network can achieve a good performance
and thus, can be implemented for different applications such as object tracking
and grasping.

4.2 Experiment II: Neural Network for inverse kinematics

In this experiment, the neural network is trained for solving inverse kinematics
as proposed in Section 3.3. The robot arm is moved randomly in its workspace.
A sample of data is recorded, including the six joint values [q1, q2, . . . , q6] and
the position and the orientation of the end-effector [x, y, z, α, β, γ]. Similarly to
the experiment in Section 4.1, 80% of the sample data is used for training the
neural network, while the remaining 20% is utilized for performance evaluation.

A network with 6 input neurons, 6 output neurons and 1 hidden layer with
12 neurons was trained to solve the inverse kinematics problem. The experimen-
tal results are shown in Fig. 7 and Table 4. The maximum mean error of the
joints is 8.57×10−3 rad with a standard deviation of 10.95×10−3 rad. In general
the error is smaller than 0.04 rad. It is also noticed that the neural network gives
comparatively more imprecise results on the last joint, which needs to be further
investigated in the future.

Table 4. Results of the neural network for inverse kinematics.

Joint 1 2 3 4 5 6

RMSE 5.11 5.73 5.50 6.16 3.42 8.57
Std. deviation 7.02 7.54 7.63 8.14 4.53 10.95
95th percentile 13.03 14.46 14.29 15.95 9.01 21.29
99.5th percentile 28.18 27.29 30.91 29.99 15.34 36.73

∗All the values are expressed in [10−3 rad].

5 Conclusion

In order to overcome the high complexity and high computational cost of tradi-
tional technologies, the neural networks are applied for hand-eye calibration and
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Fig. 7. Cumulative distribution (left) and histogram (right) of the error of inverse
kinematics based on the neural network approach. The neural network has six input
neurons, six output neurons and one hidden layer with 12 neurons.

inverse kinematics in this paper. The feedforward neural network is selected and
trained through the well-known error back propagation algorithm. The hand-eye
calibration and inverse kinematics problems solved through neural network are
investigated in a 6-DOF robot-arm control system equipped with a stereo vision
system. The neural network is trained to transform the 2D image coordinates
from the stereo vision system to the 3D Cartesian coordinates. Furthermore,
the 3D coordinates combined with orientation information is converted to joint
coordinates through inverse kinematics based also on neural network.

The experimental results indicate a significant improvement (a 80% deduc-
tion in the mean error) in the performance of the hand-eye calibration compared
to the traditional method. A promising performance of inverse kinematics (mean
error smaller than 9×10−3 rad) is achieved through neural network based ap-
proach. The proposed approaches can be directly extended to different hand-eye
setups and robot-arms.
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