Skip to main content

Bowling with the DARwIn-Op Humanoid Robot

  • Chapter

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 274))

Abstract

In this paper, we will describe our approach in building an application, which empowers the DARwIn-OP Humanoid robot to play a bowling game. The main difficulties of bowling, in both humans and robots, is steady walking control, vision processing to detect the pins and ball, precise localization of the ball and decision-making of angles to throw. The aim of this project is to contribute to better and more enjoyable robot and human interaction as well as to humanoid robot research area.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Krzyzaniak, M.: TellDarwin Reference. Idea Lab. University of Georgia Web (June 15, 2013), http://idealab.uga.edu/Projects/Darwin/Reference.html

  2. Pan, Z., Xu, W., Huang, J., Zhang, M., Shi, J.: Easybowling: a small bowling machine based on virtual simulation. Computers & Graphics 27, 231–238 (2003)

    Article  Google Scholar 

  3. Bowling, M., Veloso, M.: Motion control in dynamic multi-robot environments. In: Proceedings of the 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation, CIRA 1999. IEEE (1999)

    Google Scholar 

  4. Inyong, H.A., et al.: Development of open humanoid platform DARwIn-OP. In: 2011 Proceedings of the SICE Annual Conference (SICE), pp. 2178–2181. IEEE (2011)

    Google Scholar 

  5. Budden, D., Fenn, S., Walker, J., Mendes, A.: A novel approach to ball detection for humanoid robot soccer. In: Thielscher, M., Zhang, D. (eds.) AI 2012. LNCS, vol. 7691, pp. 827–838. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Kosof, M.E.: Method of playing a bowling game. U.S. Patent No. 4,597,575 (July 1, 1986)

    Google Scholar 

  7. Kitano, H., et al.: Robocup: The robot world cup initiative. In: Proceedings of the First International Conference on Autonomous Agents. ACM (1997)

    Google Scholar 

  8. Yow, D., Yeo, B., Yeung, M.: Analysis and Presentation of Soccer Highlights from Digital Video. In: Second Asian Conference on Computer Vision, pp. 499–503 (1995)

    Google Scholar 

  9. Ohno, Y., Miura, J., Shirai, Y.: Tracking players and estimation of the 3D position of a ball in soccer games. In: Proceedings of the 15th International Conference on Pattern Recognition, vol. 1. IEEE (2000)

    Google Scholar 

  10. D’Orazio, T., Ancona, N., Cicirelli, G., Nitti, M.: A ball detection algorithm for real soccer image sequences. In: Proceedings of the 16th International Conference Pattern Recognition, vol. 1. IEEE (2002)

    Google Scholar 

  11. Yu, X., Xu, C., Leong, H.W., Tian, Q., Tang, Q., Wan, K.W.: Trajectory-based ball detection and tracking with applications to semantic analysis of broadcast soccer video. In: Proceedings of the Eleventh ACM International Conference on Multimedia. ACM (2003)

    Google Scholar 

  12. Gevers, T., Smeulders, A.W.: Color-based object recognition. Pattern Recognition 32(3), 453–464 (1999)

    Article  Google Scholar 

  13. Caleiro, P.M.R., Neves, A.J.R., Pinho, A.J.: Color-spaces and color segmentation for real-time object recognition in robotic applications. Electrónica e Telecomunicações, 940–945 (2013)

    Google Scholar 

  14. Billard, A.: Robota: Clever toy and educational tool. Robotics and Autonomous Systems 42(3), 259–269 (2003)

    Article  MATH  Google Scholar 

  15. Fujita, M., Kitano, H.: Development of an autonomous quadruped robot for robot entertainment. Autonomous Robots 5(1), 7–18 (1998)

    Article  Google Scholar 

  16. Sun, Y., et al.: Balance motion generation for a humanoid robot playing table tennis. In: 2011 11th IEEE-RAS International Conference on Humanoid Robots (Humanoids). IEEE (2011)

    Google Scholar 

  17. Faconti, D.: Technical description of REEM-A. In: RoboCup Humanoid League Team Descriptions, Atlanta, GA (July 2007)

    Google Scholar 

  18. Robotis. RoboPlus.Robotis support site, Web (June 15, 2013), http://support.robotis.com/en/software/roboplus_main.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saltanat B. Tazhibayeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tazhibayeva, S.B., Kuanyshbaiuly, M., Aldabergenov, A., Hong, J.H., Matson, E.T. (2014). Bowling with the DARwIn-Op Humanoid Robot. In: Kim, JH., Matson, E., Myung, H., Xu, P., Karray, F. (eds) Robot Intelligence Technology and Applications 2. Advances in Intelligent Systems and Computing, vol 274. Springer, Cham. https://doi.org/10.1007/978-3-319-05582-4_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05582-4_64

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05581-7

  • Online ISBN: 978-3-319-05582-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics