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Abstract. The most energy-efficient configuration of a single-server DBMS
is the highest performing one, if we exclusively focus on specific ap-
plications where the DBMS can steadily run in the peak-performance
range. However, typical DBMS activity levels—or their average system
utilization—are much lower and their energy use is far from being en-
ergy proportional. Built of commodity hardware, WattDB—a distributed
DBMS—runs on a cluster of computing nodes where energy proportion-
ality is approached by dynamically adapting the cluster size. In this
work, we combine our previous findings on energy-proportional storage
layers and query processing into a single, transactional DBMS. We verify
our vision by a series of benchmarks running OLTP and OLAP queries
with varying degrees of parallelism. These experiments illustrate that
WattDB dynamically adjusts to the workload present and reconfigures
itself to satisfy performance demands while keeping its energy consump-
tion at a minimum.

1 Introduction

The need for more energy efficiency in all areas of IT is not debatable. Besides
reducing the energy consumption of servers, other ideas like improving the cool-
ing infrastructure and lowering its power consumption help reducing the energy
footprint of data centers. Due to their narrow power spectrum between idle and
full utilization [1], the goal of satisfactory energy efficiency cannot be reached
using today’s (server) hardware. Reducing energy usage of servers to a sufficient
level leads to a demand for energy-proportional hardware. Because such a goal
seems impractical, we should at least aim at an emulation of the appropriate
outcome at the system level.

Energy proportionality describes the ability of a system to reduce its power
consumption to the actual workload, i.e., a system, delivering only 10% of its
peak performance, must not consume more than 10% of its peak power. That
goal could be approached by exploiting hardware-intrinsic properties, e.g., CPUs
automatically entering sleep states or hard disks spinning down when idle. Un-
fortunately, current hardware is not energy proportional. For example, DRAM
chips consume a constant amount of power—regardless of their use—and it is
not possible to turn off unused memory chips in order to reduce energy consump-
tion. Spinning down hard disks when idle conflicts with long transition times and
results in slow query evaluation.
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Fig. 1: Performance and energy consumption running the TPC-C trace

1.1 Energy Efficiency Limits of Single-Server DBMSs

Using a key result of experiments with a single-server DBMS [10], we want to
illustrate the close linkage of execution times and energy efficiency. All experi-
ments were conducted in an identical system setting, i. e., ATX, IDE, memory
size, OS, DBMS (except buffer management), and workload were left unchanged.
For this reason, the details are not important in this context. Our goal was to
reveal the relationship concerning performance and energy use for different ex-
ternal storage media1 and buffer management algorithms2.

To represent a realistic application for our empirical measurements, we recorded
an OLTP trace (a buffer reference string using a relational DBMS) of a 20-
minutes TPC-C workload with a scaling factor of 50 warehouses. The test data
(as a DB file) resided on a separate magnetic disk/SSD (data disk, denoted as
SATA). The data disks, connected one at a time to the system, represent low-
end (HDD1/SSD1), middle-class (HDD2/SSD2), and high-end (HDD3/SSD3)
devices. Execution times and related energy use in Figure 1 are indicative for
what we can expect for single-server DBMSs by varying the storage system con-
figurations. The storage device type dominantly determines execution time im-
provement and, in turn, reduction of energy use. In our experiment, the algorith-
mic optimizations and their relative influence to energy efficiency are noticeable,
but less drastic.

The key effect identified by Figure 1 is further explained by Figure 2, where
the break-down of the average working power of hardware components of interest

1 We used magnetic disks (HDD1: 7.200 rpm, 70 IOPS; HDD2: 10.000 rpm, 210 IOPS;
HDD3: 15.000 rpm, 500 IOPS) and flash storage (read/write IOPS) (SSD1: 2.700/50,
SSD2: 12.000/130, SSD3: 35.000/3.300).

2 CFDC [9] optimizes page caching for SSDs. Here, we cross-compared CFDC to LRU,
CFLRU [11], LRU-WSR [7], and REF [15], some of which are also tailor-made for
SSD use.
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Fig. 2: Break-down of average power (W)

is compared with their idle power values. The figures shown for HDD3 and SSD3
are indicative for all configurations; they are similar for all devices, because
ATX—consuming the lion’s share of the energy—and IDE remained unchanged.
Ideally, utilization should determine the power usage of a component. But, no
significant power variation could be observed when the system state changes
from idle to working or even to full utilization. Because the time needed to run
the trace is proportional to the energy consumption, the fastest algorithm is
also the most energy-efficient one. This key observation was complemented by
[17] with a similar conclusion that “within a single node intended for use in
scale-out (shared-nothing) architectures, the most energy-efficient configuration
is typically the highest performing one”.

In summary, energy saving is impressive, if we consider the experiment in
isolation where system utilization is steadily kept very high, i. e., > 90%. How-
ever, typical servers mostly reach an average CPU utilization of only ∼30% and
often even less than ∼20% [2].

1.2 Varying DBMS Service Needs

We have shown in [14] that real-world workloads usually do not stress DB sys-
tems 24/7 with peak loads. Instead, the workloads alternate in patterns be-
tween high and near-idle utilization. But, DB systems have to be tailored to the
peak performance to satisfy incoming queries and potential users. Therefore, DB
servers usually come with big DRAM buffers and a number of disks as external
storage—both components that consume a lot of energy. The majority of these
resources is only needed in rare time intervals to handle peak workloads. All
other times, they lie waste, thereby substantially decreasing the overall energy
efficiency of the server. During times of underutilization, overprovisioned compo-
nents are not needed to satisfy the workload. By adjusting the DB systems to the
current workload’s needs, i.e., making the system energy proportional, energy
usage could be lowered while still allowing the maximum possible performance.



Both observations sketched above have strongly guided the design of WattDB:
Section 2 outlines its cluster hardware, the related power consumption, and the
most important aspects of its software design. In Section 3, we introduce our
experimental setup, before we discuss the results of our empirical benchmark
runs in Section 4. Finally, we conclude our results and give an outlook to our
future work in Section 5.

2 The WattDB Approach

Based on the findings outlined above, we concluded that a single-server-based
DBMS will never be able to process real-world workloads in an energy-efficient
way. A cluster of lightweight (wimpy) nodes is more promising, as nodes can
be dynamically switched on or off, such that the cluster can be adjusted to the
current workload. Lang et al. [8] have shown that a cluster suffers from “friction
losses” due to coordination and data shipping overhead and is therefore not as
powerful as a comparable heavyweight server. On the other hand, for moderate
workloads, i. e., the majority of real-world database applications, a scale-out
cluster can exploit its ability to reduce or increase its size sufficiently fast and,
in turn, gain far better energy efficiency.

In [12], we already explored the capabilities and limitations of a clustered
storage architecture that dynamically adjusts the number of nodes to varying
workloads consisting of simple read-only page requests where a large file had
to be accessed via an index3. We concluded that it is possible to approximate
energy proportionality in the storage layer with a cluster of wimpy nodes. How-
ever, attaching or detaching a storage server is rather expensive, because (parts
of) datasets may have to be migrated. Therefore, such events (in appropriate
workloads) should happen on a scale of minutes or hours, but not seconds.

In [13], we have focused on the query processing layer—again for varying
workloads consisting of two types of read-only SQL queries—and drawn simi-
lar conclusions. In this contribution, we revealed that attaching or detaching a
(pure) processing node is rather inexpensive. Hence, such an event can happen in
the range of a few seconds—without disturbing the current workload too much.

In this paper, we substantially extended the kind of DBMS processing sup-
ported by WattDB to complex OLAP / OLTP workloads consisting of read-write
transactions. For this purpose, we refined and combined both approaches to get
one step closer to a fully-featured DBMS. Opposed to our previous work, we
treat all nodes identical in this paper; hence, all nodes will act as storage and
processing nodes simultaneously.

2.1 Cluster Hardware

Our cluster hardware consists of n (currently 10) identical nodes, interconnected
by a Gigabit-ethernet switch. Each node is equipped with an Intel Atom D510

3 Starting our WattDB development and testing with rather simple workloads facili-
tated the understanding of the internal system behavior, the debugging process, as
well as the identification of performance bottlenecks.



CPU, 2 GB DRAM and three storage devices: one HDD and two SSDs. The
configuration is considered Amdahl-balanced [16], i. e., balanced between I/O
and network throughput on one hand and processing power on the other. By
choosing commodity hardware with limited data bandwidth, Ethernet wiring is
sufficient for interconnecting the nodes. All nodes are connected to the same
Ethernet segment and can communicate with each other.

2.2 Power Consumption

As we have chosen lightweight nodes, the power consumption of each node is
rather low. A single node consumes ∼22 - 26 Watts when active (based on uti-
lization) and 2.5 Watts in standby mode. The interconnecting switch needs 20
Watts and is included in all measurements.

The minimal configuration of the cluster consists of a single node, called the
master node. All functionalities (storage, processing, and coordination) can be
centralized using only a single node, thereby minimizing the static energy usage.
In case, all nodes are running, the overall energy use of the cluster reaches ∼270
Watts. This is another reason for choosing commodity hardware which uses much
less energy compared to server-grade components. For example, main memory
consumes ∼2.5 Watts per DIMM module, whereas ECC memory, typically used
in servers, consumes ∼10 Watts per DIMM. Likewise, our HDDs need less power
than high-performance drives, which makes them more energy efficient.

2.3 Software Design

A single wimpy node can quickly become a hotspot which may slow down query
processing of the entire cluster. To mitigate bottlenecks, WattDB is designed to
allow dynamic reconfiguration of the storage and query processing layers.

The master node accepts client connections, distributes incoming queries,
and administrates metadata for all cluster nodes. This node is also responsible
for controlling the power consumption of the cluster by turning nodes on and
off. However, the master is not different from the rest of the nodes; it is also able
to process queries and manage its own storage disks.

Storage Structures and Indexes In WattDB, data is stored in tables, which
are subdivided into partitions. Each partition is organized as a heap and consists
of a set of segments, where a segment specifies a range of pages on a hard drive.
Physical clustering of pages is guaranteed inside each segment. To preserve lo-
cality of data, segments are always assigned to disks on the same node managing
the partition. Indexes implemented as B*-trees can be created within a partition
to speed up query evaluation.

Dynamic Partitioning Scheme From a logical point of view, database ta-
bles in WattDB are horizontally sliced into partitions by primary-key ranges.
Each partition is assigned to a single node, possibly using several local hard
disks. This node is responsible for the partition, i. e., for reading pages, per-
forming projections and selections, and for propagating modified pages while
maintaining isolation and consistency.



To support dynamic reorganization, the partitioning scheme is not static.
Primary-key ranges for partitions can be changed and data can migrate among
partitions on different nodes to reflect the new scheme. Hence, partitions can also
be split up into smaller units, thereby distributing the data access cost among
nodes, and can be consolidated to reduce its storage and energy needs.

Partitioning information is kept on the master node in an ordered, unbalanced
tree to quickly identify partitions needed for specific queries. Pointers reference
either inner nodes with further fragmentation of the primary-key range or point
to a partition where the data is stored. Note, while moving or restructuring of a
partition is in progress, its old and new state must be reachable. Therefore, each
pointer field in the tree can hold two pointers. While a partition is reorganized
(split or merged), the pointers may point to two different partitions: In case of a
split, the first pointer refers to the new partition to which a writing transaction
copies the corresponding records, whereas the second pointer references the old
partition where non-moved records still remain (and vice versa in case a merge is
in progress). An appropriate concurrency control scheme should enable reads and
updates of the new and old partition while such a reorganization is in progress.

Figure 3 plots three stages of an exemplary partition tree while a split is
processed. The first stage shows (a fraction of) the initial key distribution. In
the second stage, the key range between 1,000 and 2,000 contained in partition
3.4 is split into two partitions, where a new partition 3.6 has to be created. A
transaction scans the old partition 3.4 and moves records with keys between 1,000
and 1,500 to the new partition 3.6. Records with primary keys above 1,500 stay
in the old partition. To allow concurrent readers to access the records, the read
pointer (marked r) still points to the old partition. Thus, reading transactions
will access both, the new and old partition to look for records. The write pointer
already references the new partition, redirecting updates to the new location. In
the last stage, the move operation is assumed to have succeeded, and read and
write pointer both reference the new partition. Moving an entire partition can
be considered as a special case of such a split.

By keeping records logically clustered, the query optimizer on the master
node can quickly determine eligible partitions and distribute query plan opera-
tors to run in parallel. At query execution time, no additional look-ups have to
go through the master node.

Concurrency Control As every other DBMS, WattDB needs to implement
mechanisms for concurrency control to ensure ACID properties [5]. Therefore,
access to records needs to be coordinated to isolate read/write transactions.
When changing the partitioning schema and moving records among partitions,
concurrency control must also coordinate access to the records in transit. Classi-
cal pessimistic locking protocols block transactions from accessing these records
until the moving transaction commits. This leads to high transaction latency,
since even readers need to wait for the move to succeed. Furthermore, writers
must postpone their updates to wait for the move to terminate.
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Fig. 3: Three steps of a split in the partition tree with updates of r/w pointers

Multiversion Concurrency Control (MVCC) allows multiple versions of da-
tabase objects to exist. Each modification of data creates a new version of it.
Hence, readers can still access old versions, even if new transactions changed
the data. Each data element keeps a version counter of its creation and deletion
date to enable transactions to decide which records to read by comparing the
version information with the transaction’s own version counter. While concur-
rent writers still need to synchronize access to records, readers will always have
the correct version and will not get blocked by writers [3]. The obsolete versions
of the records need to be removed from the database from time to time by a
process we call garbage collection (GC).4

While MVCC allows multiple readers lock-free access to records, writing
transactions still need to synchronize access with locks. Hence, deadlocks can
arise where two or more transactions wait for each other and none can make any
progress. Therefore, each node has a deadlock detection component that keeps
track of locally waiting transactions in a wait-for graph (see [4]). To detect dead-
locks spanning multiple nodes, a centralized detector on the master aggregates
information of the individual nodes to create a global wait-for graph.

Move Semantics Transactions need to be ACID compliant; hence, moving
records among partitions must also adhere to these properties. Therefore, it is
vital to move the records inside a dedicated transaction acting as follows:

1. Update the partition tree information with pending changes
2. Read records from the source partition
3. Insert the records into the target partition
4. Delete the records from the source5

5. Update the partition tree information with final changes
6. Commit

4 PostgreSQL calls it vacuum.
5 Note that the order of Insert and Delete is not important.



Because the movement is covered by a transaction, it is guaranteed that con-
current accesses to the records will not harm data consistency. Let Tmove be the
move transaction stated above, Told any older, concurrently running transaction,
and Tnew any newer, concurrently running transaction. Told can read all records
deleted by Tmove in the old partition until it commits and the records are finally
removed by GC. Told will not see the records newly created in the target par-
tition, as the creation timestamp/version of the record is higher than its own.
Tnew will also read the records in the source partition, as the deletion version
info of those records is older, but refers to a concurrently running transaction.
Tnew will not read the records in the target partition, as they were created by a
concurrently running transaction. Any transactions starting after the commit of
Tmove will only see the records in the target partition. These properties follow
directly from the use of MVCC.

Using traditional MVCC, writers still need to synchronize access to avoid
blind overwrites. For the move transaction, we know that it will not alter the
data. Therefore, blindly overwriting the newly created version in the target par-
tition would be acceptable. We have modified the MVCC algorithm in WattDB
to allow an exception from the traditional MVCC approach: Records that were
moved to another partition can be immediately overwritten, i. e., they have a
new version, without waiting for the move to commit.

Cost of reorganization In the following experiments, data is migrated in or-
der to shutdown nodes, thus, reducing the power consumption of the cluster, or
data is distributed in order to reduce query response times, which, in turn, also
reduces the queries’ energy consumption. Moving data is an expensive task, in
terms of energy consumption and performance impact on concurrently running
queries. We have observed data transfer rates of ∼80 Mbit/s in parallel to the
OLTP/OLAP workload, hence, it takes less than 2 minutes to move 1 GByte
of data from one node to another. The overhead of the move operations should
amortize by reducing the energy consumption of subsequent queries. Though it
is difficult to calculate the exact energy consumption of a data move operation
with respect to the impact of running queries, the energy cost can be estimated
with the duration of the move operation and the (additional) power consump-
tion. Hence, moving 1 GByte of data to a dedicated node with 25 Watts power
consumption will require approximately 2.600 Joules.

Monitoring & Control The previously described techniques allow WattDB
to dynamically adjust the size of partitions on each node by moving records
among them. Thus, we can control the utilization of each of the nodes.

Figure 4 sketches the feedback control loop in WattDB that monitors the
cluster, processes the measurements, and takes actions to keep up performance
at minimal energy cost. First, the CPU utilization, the buffer hit rate, and the
disk utilization on each node is measured and sent to the master node. On the
master node, the measurements are evaluated, i. e., each performance indicator
is compared to a predefined high and low watermark. If the master detects a
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workload change and a resulting imbalance in performance or energy consump-
tion, the cluster configuration is examined and actions are evaluated to resolve
the issue. Adjustment steps include the re-distribution of partitions among nodes
to reduce disk utilization, re-distributing query plans to lower the CPU utiliza-
tion of nodes, and powering up/down nodes in the cluster to adjust the number
of available nodes. For example, the high watermark for CPU utilization is at
85%, hence, exceeding that value will induce the need for another node to help
processing queries. Likewise, a disk utilization below 20 IOPS will mark this
disk as underutilized and eligible for shutdown. The master node sends out
change requests to the cluster nodes, which execute the desired configuration
changes, e. g., re-partitioning transactions are started and nodes are powered up
and down. Because the master controls transaction execution and query pro-
cessing, it can rewrite query plans of incoming queries to execute operators on
designated, underutilized nodes.

The master node is also handling incoming queries and coordinating the clus-
ter. On the master node, a dedicated component, called EnergyController, moni-
tors and controls the cluster’s energy consumption. This component monitors the
performance of all nodes in the cluster. Depending on the current query work-
load and node utilization, the EnergyController activates and suspends nodes
to guarantee a sufficiently high node utilization depending on the workload de-
mand. Suspended nodes do only consume a fraction of the idle power, but can be
brought back online in a matter of seconds. It also modifies query plans to dy-
namically distribute the current workload on all running nodes thereby achieving
balanced utilization of the active processing nodes.

3 Experimental Setup

The 10 nodes running WattDB and the Ethernet switch are connected to a mea-
surement box which logs the power consumption of each device. A more detailed
description of the measurement box can be found in [6]. To submit workloads to
the master node, a dedicated DB-client machine, running a predefined bench-
mark, is used. That machine also aggregates the power measurements and the
benchmark results, e. g., throughput and response time, to file. Therefore, we



are able to identify the energy consumption of each benchmark run, even of each
query.

In this paper, we are using an adapted TPC-H dataset6 for the cluster. Some
data types of the TPC-H specification are yet unsupported by WattDB and
therefore replaced by equivalent types. For example, the DATE type was re-
placed by an INTEGER, storing the date as YYYYMMDD, which is function-
ally identical. Key constraints were not enforced because of the same reason.
We pre-created the TPC-H dataset with a scale factor of 100; hence, the DB
holds 100 GB of raw data initially. The data distribution strongly depends on
the partitioning scheme and the number of nodes online, e. g., with 10 nodes,
each node would store ∼10 GB of data. Therefore, the amount of data shipped
among nodes under reorganization typically ranges from 100 MB to a few GB.

The OLAP part of the benchmark is running TPC-H-like queries that access
most of the records in a single query. These queries heavily rely on grouping
and aggregation and are therefore memory intensive compared to OLTP queries.
TPC-H is a decision support benchmark, hence, we were able to use its queries as
analytical workloads. OLAP clients will select one query at a time to run from a
list of queries by round-robin. For OLTP, we have taken queries from the TPC-H
data generator. In addition, we created corresponding DELETE and UPDATE
queries, because the generator is only using INSERT for creating the dataset.
Typical OLTP queries are adding/updating/deleting customers and warehouse
items; furthermore, they are submitting and updating orders.

A workload consists of a single DB client submitting one OLAP query per
minute and a given number of DB clients sending OLTP queries. OLTP clients
will wait for the query to finish, sleep for 3 seconds of “think time” and start
over by submitting a new query. Every 120 seconds, a differing workload is
initiated where the number of DB clients may change. Thus, WattDB will have
to adjust its configuration to satisfy the changing workloads while keeping energy
consumption low. Alltogether, a single benchmark run consists of 63 workloads,
resulting in a total duration of ∼2 hours.

4 Experimental Results

We have executed four different benchmarks on the cluster. First, we used the
benchmark BENCH1 which spawns an increasing number of DB clients sending
queries to a fixed 10-node cluster without dynamic reconfiguration. The DB data
was uniformly distributed to the disks of all nodes. This experiment serves as the
baseline for all future measurements. Next, we ran the same benchmark against a
fully dynamic cluster, where WattDB will adjust itself to fit the number of nodes
and data distribution to the current workload (BENCH2). Hence, initially all
DB data was allocated to the disks of the master node. With growing number
of DB clients, the dynamic partitioning scheme initiated a redistribution of the

6 http://www.tpc.org/tpch/
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Fig. 5: BENCH1: Increasing load on a static cluster

DB data with each additional node activated7, such that the data was uniformly
allocated to all disks of all nodes at the end of BENCH2. In the third experi-
ment, we shuffled the workload intensities by growing and shrinking the number
of (OLTP) DB clients to provide a more realistic, variable workload and, in
turn, to provoke more sophisticated partitioning patterns. The cluster was able
to react based on the current utilization only, as it did not have any knowledge
of upcoming workloads (BENCH3). Finally, we re-ran the benchmark from our
third experiment but provided forecasting data to the cluster. Thus, in the last
experiment, the cluster could use that information to pre-configure itself for up-
coming workloads (BENCH4).

Results of BENCH1: Figure 5a plots the performance of a static database
cluster with 10 nodes. All nodes were constantly online and data was uniformly
distributed on them. The number of DB clients is increasing over time (x-axis
from left to right). Every client is sending OLTP queries sequentially, thus, the
number of DB clients defines the number of parallel queries WattDB has to
handle. With no OLTP queries in parallel, the cluster takes about 10.5 seconds
for an OLAP query. With rising workload, i. e., more parallel queries, response
times for OLTP and OLAP queries increase. With 200 clients, the OLAP queries
take 16 seconds to finish while OLTP response times increased from 0.2 to 3.3
seconds.8 Figure 5a depicts the response times for both query types. While the
performance of the static cluster is unmatched in all other experiments, its power
consumption is the highest. Figure 5b shows the power consumption of the clus-
ter (primary y-axis in Watts) and the energy consumption per query (secondary
y-axis in Joules). Obviously, a static configuration will yield higher performance
at the price of worse energy efficiency, especially at low utilization levels. As the
plots indicate, the energy consumption per query is very high at low utilization.

7 As far as repartitioning overhead is concerned, frequency and volume of data move-
ment in BENCH2 can be considered as a kind of worst case.

8 All reported query response times are averages over 120 seconds.
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Fig. 6: BENCH2: Increasing load on a dynamic cluster

Results of BENCH2: Next, in order to test dynamic reconfiguration ability
of WattDB, we have re-run the same benchmark on a dynamic cluster. Figure
6a depicts the performance while increasing the number of DB clients. Starting
with a low utilization, the database is running on a single node only, keeping the
other 9 nodes suspended. As a consequence, (all partitions of) the entire dataset
had to be allocated on the node’s disks. Power consumption, as plotted in Figure
6b, is initially low (about 45 Watts for the whole cluster). By calculating the
Joule integral over the differing courses of energy consumption in Figures 5b
and 6b, one can an impression of the absolute energy saving possible, which is
obviously substantial in this experiment.

With increasing utilization, WattDB dynamically wakes up nodes and assigns
database partitions to them. Hence, re-partitioning, as previously described,
needs to physically move records among nodes. Therefore, in parallel to the
query workload, the movement takes up additional system resources. While the
database is re-configuring, average query runtimes increase by 3 seconds for
OLTP workloads and up to 6 seconds for OLAP workloads because of the extra
work. Moving data among nodes takes approximately 30 to 120 seconds, depend-
ing on the amount of data to be moved. The spikes in Figure 6a visualize the
degraded performance while moving data partitions. Likewise, the energy con-
sumption per query increases for a short period of time. Still, no query is halted
completely, higher runtimes are a result of increased disk/CPU utilization and
wait times because of locked records.

This experiment demonstrates that WattDB is able to dynamically adjust its
configuration to varying needs. While minimizing the energy consumption at low
utilization, the master node re-actively switches on more nodes as the workload
rises. As a result, the energy efficiency of the dynamic cluster is better than the
static 10 node configuration, especially at low load levels. Query response times
are not as predictable as in a static cluster, because the dynamic reconfiguration
places an additional burden on the nodes. Still, the experiment shows that it is
possible to trade performance for energy savings.
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Fig. 7: BENCH3: Varying load on a dynamic cluster

Results of BENCH3: The previous experiments spawned and increasing num-
ber of DB clients to submit queries, providing a steadily increasing utilization
of the cluster. Thus, the workload was rising slightly over time. Realistic bench-
marks require more variance in load changes, in addition with quickly rising and
falling demands. Hence, the next experiment employs a more complex pattern
of utilization.

In Figure 7a, the x-axis exhibits the number of DB clients over time. This
experiment starts with a moderate utilization of 30 parallel clients, climbs up to
300, then quickly drops to idle. Afterwards, two more cycles are starting between
low and high utilization levels. This figure plots the performance for both OLTP
and OLAP queries, while the cluster is adjusting to the changing workloads. As
the graphs indicate, WattDB is heavily reconfiguring and, thus, query response
times vary a lot, especially when workloads are shifting.

Figure 7b illustrates the power consumption of the cluster characterized also
by high fluctuations as nodes come online and go offline again. WattDB is re-
acting to changes in the workloads based on its measurements of the nodes’ uti-
lization. Therefore, reconfiguration happens re-actively to the specific workload
changes. In this experiment with dynamic and extreme workload changes, the
reaction time of WattDB is too high to maintain proper query response times.
Consequently, energy consumption is also high, mainly due to the overhead of
cluster reconfiguration.

This experiment shows that WattDB is able to react to quickly changing
workloads, but with less satisfying results. As reconfiguration takes time and
consumes resources, a purely reactive adaptation to workloads is not sufficient.

Results of BENCH4: To overcome the limitations of a purely reactive da-
tabase cluster, WattDB should have some knowledge of the “future” in order
to appropriately pre-configure the cluster for upcoming workloads. To test this
hypothesis, we have run the same experiment as before (seeBENCH3), while
WattDB was continuously informed about the following three workloads, i. e.,
the number of DB clients in the next six minutes. This information can be used
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Fig. 8: BENCH4: Varying load on a dynamic cluster supported by forecasting

by the master node to proactively partition data to match the worst-case de-
mands of the current and the expected future workload. Figure 8a shows the
results for this experiment. The workload on the x-axis was unchanged, but the
query response times are more stable compared to those shown in Figure 7a.

On one hand, power and energy consumption, depicted in Figure 8b, are
higher under low utilization levels than on a purely reactive cluster (Figure
7b), because WattDB powers up nodes in advance. On the other hand, average
energy consumption per query is more predictable, as the query runtimes contain
less variance. Furthermore, energy consumption at high utilization levels and at
workload shifts is lower, compared to the cluster operated without forecasting
data.

5 Conclusion and Outlook

While we already explored opportunities for energy proportionality in the stor-
age layer in [12] and focused on energy-proportional query execution in [13],
we have substantially refined and combined both approaches in this research
work. In this contribution, we have demonstrated that it is possible to deploy
a database system on a dynamic cluster of wimpy nodes. We have exemplified
that we can trade energy consumption for query performance and vice versa
by controlling the amount of data distribution and number of nodes available
to process incoming queries. At the same time, we exhibited that a dynamic
cluster is more energy efficient than a statically configured one, where nodes are
underutilized—particularly at low load levels.

By keeping data in logical units, partitioned by primary key, WattDB is well
suited for OLTP queries, where records are typically accessed by key. The dy-
namic partitioning enables quick and coherent re-distribution of the data without
interrupting data access or putting high overhead on look-up structures. At the
same time, the massive parallelism of the cluster nodes running OLTP queries
does not interfere with concurrent OLAP queries, where typically large parts of
the dataset have to be scanned to calculate aggregates over groups of records.



Moving data among nodes is a time-consuming task and cannot be done
very frequently, i. e., on a per-second base. As our experiments indicate, it is
crucial for query response times to proactively adjust the cluster to the antici-
pated workload. Fortunately, workloads typically follow often an easy-to-predict
pattern, e.g., workdays are similar to each other, workloads in December keep
rising for e-commerce back-end DBMSs, and so on. Therefore, we will focus on
forecasting workloads in future experiments.
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