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Abstract. Big Data is considered proprietary asset of companies, orga-
nizations, and even nations. Turning big data into real treasure requires
the support of big data systems. A variety of commercial and open source
products have been unleashed for big data storage and processing. While
big data users are facing the choice of which system best suits their needs,
big data system developers are facing the question of how to evaluate
their systems with regard to general big data processing needs. System
benchmarking is the classic way of meeting the above demands. However,
existent big data benchmarks either fail to represent the variety of big
data processing requirements, or target only one specific platform, e.g.
Hadoop.
In this paper, with our industrial partners, we present BigOP , an end-
to-end system benchmarking framework, featuring the abstraction of
representative Operation sets, workload Patterns, and prescribed tests.
BigOP is part of an open-source big data benchmarking project, Big-

DataBench . BigOP’s abstraction model not only guides the develop-
ment of BigDataBench, but also enables automatic generation of tests
with comprehensive workloads.
We illustrate the feasibility of BigOP by implementing an automatic test
generation tool and benchmarking against three widely used big data
processing systems, i.e. Hadoop, Spark and MySQL Cluster. Three tests
targeting three different application scenarios are prescribed. The tests
involve relational data, text data and graph data, as well as all operations
and workload patterns. We report results following test specifications.

1 Introduction

Companies, organizations and countries are taking big data as their important
assets, as the era of big data has inevitably arrived. But drawing insights from
big data and turning big data into real treasure demand an in-depth extraction of
its values, which heavily relies upon and hence boosts the deployment of massive
big data systems.

Big data owners are facing the problem of how to choose the right system for
their big data processing requirements, while a variety of commercial and open
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source products, e.g., NoSQL databases [9], Hadoop MapReduce [5], Spark [28],
Impala [3], Hive [7] and Redshift [1], have been unleashed for big data storage
and processing. On the other hand, big data system developers are in need of
application-perspective evaluation methods for their systems. Benchmarking is
the classic way to direct the evaluation and the comparison of systems.

Though many well-established benchmarks exist, e.g. TPC series benchmarks
[13] and HPL benchmarks [8], no widely accepted benchmark exists for big data
systems. Some benchmarks targeting big data systems appear in recent years
[22,23,18,21], but they are either for a specific platform or covering limited work-
load patterns.

Together with our industrial partners, we present in this paper an end-to-end
system benchmarking framework BigOP, which enables automatic generation of
tests with comprehensive workloads for big data systems. We build BigOP for our
urgent need to benchmark big data systems. BigOP is part of a comprehensive
big data benchmarking suite BigDataBench [27], which is already used by our
collaborators in testing architecture, network and energy efficiency of big data
systems. The development of BigDataBench is guided by BigOP’s abstraction
model.

BigOP features an abstracted set of Operations and Patterns for big data
processing. We work out the abstraction after considering the powerful represen-
tativeness of the five primitive relational operators [17] and the 13 computation
patterns summarized in a report by a multidisciplinary group of well-known re-
searchers [14]. The operations are extended from the five primitive relational
operators, while the workload patterns are summarized based on general big
data computation characteristics.

Figure 1 demonstrates an overview of BigOP. In BigOP, a benchmarking
test is specified as a prescription for one application or a range of applications.
A prescription includes a subset of operations and processing patterns, a data
set, a workload generation method, and the metrics. The subset of operations
and processing patterns are selected from BigOP’s whole abstraction set. The
data set can be obtained from real applications or generated through widely-
obtainable tools. The workload generation method describes how operations are
issued from clients, e.g, the number of client threads, the load, etc. The metrics
can include the test duration, request latency metrics, and the throughput. With
BigOP, a prescribed test can be implemented over different systems for compar-
ison. System users can also prescribe a test targeting their specific applications.

BigOP leaves the choice of data set to users because the variety of big data
makes a predefined data set for benchmarking irrelevant. Besides, data sets are
usually related to the processing performance in big data scenarios, for example,
highly isolated webpages vs. highly linked webpages for PageRank computations.
The size of the chosen data set is required to be larger than the total memory
size of the system under test (SUT) so that the volume characteristic of big
data is covered. The velocity characteristic of big data can be represented in
the workload generation specification. That is, BigOP design takes the three
properties of Big Data into consideration.
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Fig. 1. Overview of BigOP.

After presenting the design of BigOP (Section 2), we give three test prescrip-
tions targeting three different application scenarios as an example. We bench-
mark against three widely used big data processing systems, i.e. MySQL cluster,
Hadoop[5]+HBase[6] and Spark [28], using BigOP (Section 3). The tests in-
volve relational data, text data and graph data, as well as all operations and
workload patterns. We discuss workload representativeness by comparing YCSB
[18], TPC-DS [26] and BigBench [22] to BigOP. We summarize related work
(Section 4) and conclude (Section 5) in the end.

2 BigOP Design

2.1 Overview

BigOP is an end-to-end system benchmarking framework with a big data pro-
cessing operation and pattern (OP) abstraction. Comprehensive workloads can
be specified and thus constructed based on the OP abstraction.

An adequate level of abstraction and the end-to-end execution model leaves
space for various system implementations and optimizations. Benchmarks with
these two properties enable comparisons among different kinds of systems servic-
ing the same goals. The success of TPC benchmarks [13] demonstrates this fact
[16]. Therefore, BigOP takes an end-to-end benchmarking model. Benchmarking
workloads are applied by clients issuing requests through interfaces. Requests are
sent through a network to the system under test (SUT). Metrics are measured
at the client side.

The success of TPC benchmarks also highlights the importance of bench-
marking systems with functions of abstraction and the functional workload
model [16]. Functions of abstraction are basic units of computation occurring fre-
quently in applications, while the functional workload model includes functions
of abstraction, the representative application load, and the data set. Functions
of abstraction is the core. To generalize functions of abstraction for BigOP, we
abstract a set of operations and patterns common to big data processing.

Furthermore, big data embodies great variety. So do big data applications.
Therefore, BigOP allows users to flexibly specify data sets and workloads in test
prescriptions. The test prescription allows for application-specific features, as
well as comparisons across systems.
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Table 1. Basic Operations

Categories Typical Operations

Element Operation put, get, delete; transform; filter

Single-Set Operation
project, order by
aggregation(min,max,sum,median,average)

Double-Set Operation union, difference, cross product

2.2 Operation and Pattern Abstraction for Big Data Processing

Before going into the details of BigOP’s operation and pattern abstraction, we
first review some facts about big data processing.

The concept of set in relational algebra [17] is still effective in big data
processing scenarios, e.g. the MapReduce [19] model, which plays an important
role in big data processing. In the model, a large piece of data is transformed
into a set of elements denoted by key-value pairs in the map stage. The reduce

stage does further processing over the mapped set. We thus adopt the general
concept of set in BigOP. Elements in a set can be uniquely identified.

Data accesses to memory and disk, as well as across network, must be con-
sidered in big data benchmarking. Memory size plays an important role as for
system performance. As technology improves, the starting data size of TPC-H
increases along with the obtainable amount of memory. Thus, benchmarks must
consider the whole system, including the system composition. Besides, big data
systems can consist of not only nodes, but also datacenters, due to the huge vol-
ume of big data. Thus, communication must also be considered in benchmarks.
Furthermore, the huge volume of big data and the resulting processing complex-
ity demand distribution and parallelization of computation tasks. Otherwise, the
time required for big data processing would be intolerably long. Hence, BigOP
requires the data set size to exceed the total memory size of the SUT, but a sin-
gle element in the data set must fit into a single node’s memory to be processed;
or, the element can at least be read serially and transformed into a set of smaller
elements for processing.

Operation Abstraction Considering the above facts, we first abstract big data
processing operations into three categories, i.e., element operation, single-set op-
eration and double-set operation. Element operation can be computed based on
an individual element, which might require only local memory access. Single-set
operations are computed based on elements of one set. Double-set operations
require input from two sets of data. We did not include multi-set operations,
which can be composed by combining multiple double-set operations. The more
sets are involved in a processing task, the more demands for data accesses involv-
ing memory, disk and network communication are there. Operations from the
three categories can be combined and permutated to meet complex processing
requirements. Table 1 illustrates the three categories of operations.

BigOP adopts the five primitive operators from relational algebra [17], which
also takes a set -based perspective. They are filter(select), project, cross product,
set union, and set difference. The five primitive operators are fundamental in
the sense that omitting any of them causes a loss of expressive power. Many
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Table 2. Workload Patterns

Patterns Example Workloads

Single-Operation Processing any abstracted operation

Multi-Operation Processing operation combinations, SQL queries

Iterative Processing graph traversal, finite state machines

other set operations can be defined in terms of these five. The filter operation is
an element operation because it can operate a set element on given conditions
with only element-local information. The project operation is in the single-set

operation category, requiring the set information. The union, difference, and
cross product fall in the double-set operation category.

The basic data access operations of put, get and delete are in the element
operation category. We also add a transform operation to this category because
it is common to turn a big element into a set of elements or another element,
as demonstrated by the Map usages of MapReduce. transform is user-defined.
Most big data are unstructured data, therefore transform is important to define
data-specific computations.

We also include the commonly used order by and aggregation operations
in the single-set operation category. order by is equal to sort, a fundamental
database operation noted by Jim Gray [14]. Quite a few benchmarks have been
built based on sort [11]. Aggregation is included because it is widely recognized
important operation to turn sets into numerals.

Pattern Abstraction The abstracted operations can be combined into more
complex processing tasks following some patterns. We summarize three pat-
terns as demonstrated with examples in Table 2. The three patterns are single-

operation,multi-operation and iterative processing patterns. The single-operation
pattern contains only a single operation in a processing task, while the multi-
operation and iterative patterns can have multiple operations in a task. The
inclusion of multiple operations allows the big data system to make a whole
optimization plan for all operations in the task. The difference between multi-
operation processing and iterative processing patterns is whether the exact num-
ber of operations to be executed is known beforehand. Iterative processing pat-
terns only provide stopping conditions (which can be specified as user-defined
functions), thus the exact number of operations can only be figured out in run-
ning time.

Different from SQL queries, the processing patterns in Table 2 can result in
more than one set. Furthermore, the element definition of a data set relies on
the transform operation, instead of schema. For example, a text document can
be transformed into a set with word elements or with sentence elements. While
element operation can be processed locally, global optimization techniques can be
employed for single-set and double-set operations, as well as for multi-operation
and iterative processing patterns.

The choice of the operations in Table 1 is in no way complete, but it is
representative enough to represent a broad range of processing workloads when
used with the patterns of Table 2. Besides, we think the efforts in benchmarking
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Table 3. Test Prescriptions without Workload Generation Method Specifications

Fast Log PageRank

Storage Monitoring Computation

Operations put, get, delete put, get, filter, get, transform, filter,
union aggregation order by

Patterns single-operation single- and multi-operation all patterns

Data Set randomly generated real server logs randomly generated
structured data directed graph

Metrics throughput request latency statistics test duration

should be incremental and evolving. That is, more basic operations can be added
to Table 1 in the future, as well as more patterns to Table 2.

2.3 Prescriptions and Prescribed Tests

Each benchmarking test is specified by a prescription. Thanks to the abstraction
of processing operations and patterns, a prescribed test can be implemented over
different systems for comparison. A prescription includes a subset of operations
and processing patterns, a data set, a workload generation method, and the mea-
sured metrics. The subset of operation and processing patterns is selected from
BigOP’s whole abstraction set. The data set can be taken from real applications
or generated through widely-obtainable tools. The size of the chosen data set is
required to be larger than the total memory size of the SUT, so that the volume
characteristic of big data is covered. The workload generation method describes
how operations are issued from clients. The velocity characteristic of big data can
be represented in the workload generation specification. The measured metrics
can be the duration of the test, request latency statistics, and the throughput.

We instantiate three prescribed test examples in Table 3, from the simplest
to the most complex. The first and the third examples1 are taken from Big-
DataBench, while the second example is constructed from a common application
scenario. The workload generation methods are not included in the prescription
for space consideration. Instead, we describe them respectively in the following,
together with an introduction to the application corresponding to each example.

Example 1. Fast Storage. Applications make frequent requests of data storage.
This is the most basic scenario of big data acquisition. The data set is gener-
ated using BDGS’ data generation tool [24]. The workload generation combines
YCSB’s workloads. The throughput of operations is the key metric.

Example 2. Log Monitoring. An application monitors its services by logs. Ap-
plications like user and server activity monitoring can be represented by this
prescription. The workload generation is specified as follows. put is applied to
some random log entries at a speed of 5000 operations per second (ops) till
the total data size exceeds twice of the total system memory. Simultaneously,
get+filter+aggregation is applied to the data set based on some random filtering
condition for a sum result continuously.

1 Referred as Cloud OLTP and PageRank workloads respectively in BigDataBench.
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Fig. 2. Testing process and functional components of BigOP.

Example 3. PageRank Computation. This is a core computation in the widely
deployed Internet service. It is also a representative computation of graph ap-
plications. In workload generation, get+filter+ transform is applied to the data
set iteratively till a given condition is met. The order by operation, a.k.a. sort,
is executed to get the final result.

In constructing test prescriptions, we can adjust factors in the prescription
according to our needs. For example, to test for data scalability, we can increase
the workload of put. Similarly, to test more complicated computations, we can
increase the number of combinations for multi-operation and iterative processing
patterns, as well as defining a sophisticated transform function.

3 Evaluation

Based on the BigOP framework, we implement an automatic test generator,
which can generate tests from prescriptions. Figure 2 demonstrates the testing
procedure of the evaluation.

We benchmark three widely used big data processing systems, i.e. MySQL
cluster (SUT1), Hadoop+HBase (SUT2) and HDFS+Spark (SUT3). All the
three SUTs are deployed over five physical nodes connected with 1Gbps net-
work. Each node has 32 GB memory and a processor with six 2.40GHz cores.
The operating system is Centos release 5.5 with Linux kernel 2.6.34. Among our
three examples, we only choose the second and the third for the evaluation, since
the first example has been extensively tested in other benchmarks.

Log Monitoring. Figure 3 demonstrates the resulting performances of SUT1
and SUT2. SUT2 excels under the frequent record insert task as expected. SUT1
performs much better in statistics computation tasks because of the long start-
ing time of jobs in SUT2. For complex multi-operation tasks, SUT1 is very likely
to excel the others as well. The reason is as follows. Even though MapReduce-
like systems including Hadoop, Shark and Hive support complex user defined
functions, they have not considered optimizations on multi-operation and itera-
tive processing patterns. On the contrary, traditional databases are strictly SQL
compliant and heavily optimized for relational queries, which usually contain
single-operation and multi-operation processing patterns.
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Fig. 3. System performances under log monitoring workloads. (The zero min latency
of SUT1 is due to the batch commit mode.)

Pagerank Computation. We generate 0.5 million pages and 3.7 million
links using an open-source tool [24], resulting in more than 250GB data (in-
cluding page contents), which is larger than the total system memory. The run-
ning time of the task over SUT2 is 363 seconds, while that over SUT3 is 96

seconds. We also run this test over SUT1 through a stored procedure, which
contains costly large-scale joins leading to intolerable test durations. The in-
dication here is twofold. First, distributed in-memory computation is effective
for the iterative computation pattern, while frequent disk accesses and network
communications can be costly. Second, there is still much optimization space
for distributed computation in relational database, especially when the iterative
pattern is involved.

We report a small fraction of evaluation results here due to the page limit.
Further benchmarking results can be found on the BigDataBench webpage2.

Discussion Existent big data benchmarks only cover part of BigOP’s abstrac-
tion of processing operations and patterns. We take YCSB [18], TPC-DS [26],
and BigBench [22] for example. YCSB is mainly for NoSQL database bench-
marking. Its workload consists of only put and get operations, though which can
be combined by the multi-operation pattern to form scan and read-modify-write

operations. TPC-DS covers all abstracted operations and the first two patterns,
except for the iterative pattern. It targets a single application domain, i.e., de-
cision support applications. The involved data is structured data. Thus, it is
not as flexible in suiting different benchmarking requirements as BigOP. Big-
Bench extends TPC-DS. It adds new data types of semi-structured data and
unstructured data, but it still does not include the iterative pattern.

4 Related Work

BigBench [22] is the recent effort towards designing a general big data bench-
mark. BigBench focuses on big data analytics, thus adopting TPC-DS as the
basis and adding atop new data types like semi-/un-structured data, as well
as non-relational workloads like sentiment queries. Although BigBench has a
complete coverage of data types, it targets only a specific big data application
scenario, not covering the variety of big data processing workloads.

2 http://prof.ict.ac.cn/BigDataBench/
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The AMPLab of UC Berkeley also proposes a big data benchmark [2] in recent
years. It is the systems of Spark [28] and Shark [20] that inspire the design of the
benchmark, which thus targets real-time analytic applications. The benchmark
not only has a limited coverage of workloads, but also covers only relational data.

Industrial players also try to develop their benchmark suites. Yahoo! release
their cloud benchmark specially for data storage systems, i.e. YCSB[18]. Having
its root in cloud computing, YCSB is mainly for scenarios like that in the Fast

Storage example. The characteristics of and the diverse application workloads
for big data are not considered in YCSB. CALDA[25] effort represents a micro
benchmark for Big Data analytics. It has compared Hadoop-based analytics to
a row-based RDBMS one and a column-based RDBMS one.

There exist also benchmarks targeting a specific platform, e.g. Hadoop [5]. Hi-
Bench [23] is a widely-known benchmark for Hadoop MapReduce. Hence, its four
categories of workloads are limited to MapReduce based processing. It exploits
stochastic methods to generate data for its workloads. However, its randomly
generated data misses various features of real big data. Besides, its choice of
workloads lacks of coverage, as well as solidly founded grounds. Gridmix [4] and
Pigmix [10] are also two benchmarks specially designed for Hadoop MapReduce.
They include a mix of workloads, including sort, grep and wordcount. They are
also suffering from incomplete coverage of data and workloads.

Across different research fields, there are multiple famous and well established
benchmarks. The TeraSort or GraySort Benchmark [11] considers the perfor-
mance and the cost involved in sorting a large number of 100-byte records. The
workload of this benchmark is too simple to cover the various needs of big data
processing. SPEC [12] works well over standalone servers with a homogeneous
architecture, but is not suitable for the emerging big data platforms with large-
scale distributed and heterogeneous components. TPC [13] series of benchmarks
are widely accepted for database testing, but only consider structured data.
PARSEC [15] is a well-known benchmark for shared-memory computers, thus
not suited for big data applications that mainly take a shared-nothing architec-
ture.

5 Conclusion

BigOP is targeted at big data systems that support part of or all of its process-
ing operation and pattern abstractions. Users of BigOP can flexibly construct
tests through prescriptions for their application-specific or general benchmark-
ing needs. Benchmarking tests can be constructed based on BigOP’s abstracted
operations and patterns. Big data systems that can implement the same pre-
scribed test are comparable. System users can prescribe tests targeting at their
specific application scenarios, while system developers can carry out general tests
with all abstracted operations and patterns mixed and randomly generated in
the workload. We design BigOP as a benchmarking framework in considering
the variety of big data and its applications, which we believe is a good trade-
off between benchmarking flexibility and conformity to real big data processing
requirements.
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