
Design Space Exploration of a Particle Filter

Using Higher-Order Functions

Rinse Wester and Jan Kuper

University of Twente, Drienerlolaan 5, Enschede, The Netherlands
{r.wester,j.kuper}@utwente.nl

Abstract. This paper presents a design space exploration methodol-
ogy based on higher-order functions to facilitate the tradeoff between
execution time and area usage on FPGAs. Higher-order function are
transformed, resulting in parameterized nodes where the amount of par-
allelism and thereby performance, can be controlled. For composition
and scheduling of operations, dataflow principles are used. To show the
validity of the approach, a particle filter has been transformed and syn-
thesized for FPGA. The resulting architecture is parameterizable and
achieves good performance.

Keywords: Higher-order functions, Tradeoff, Particle filter, FPGA.

1 Introduction

Particle filtering is a popular Monte Carlo based technique, to perform state
space estimation e.g. tracking [1]. Since particle filtering is computationally
intensive, a proper tradeoff between time and space is necessary for FPGA imple-
mentation. In this paper, we propose a novel design space exploration method-
ology that exploits the mathematical structure in particle filters, resulting in a
tradeoff between execution-time and FPGA area usage i.e. between time and
space. Higher-order functions, a key abstraction technique used in functional
programming, are translated into dataflow nodes using transformation rules that
perform a tradeoff between time and space.

The tradeoff is explored in a particle filter written in plain Haskell [2] consist-
ing only of normal and higher-order functions (functions that take a function as
argument). Using a set of transformation rules, these higher-order functions are
transformed into parameterizable CλaSH [3] hardware components. The CλaSH
language is a subset of Haskell that is translated to hardware (VHDL) by the
CλaSH compiler. To simplify simulation, the particle filter is implemented in
both Haskell and CλaSH. For composition of the resulting CλaSH hardware,
dataflow principles are used by adding logic that performs synchronization and
scheduling.

The rest of this paper is structured as follows. First, related work is presented
in Section 2. In Section 3.1, some background information is given on hardware
design using the functional language Haskell. Particle filtering is introduced in
Section 3.2. The design methodology is presented in Section 4 while simulation

D. Goehringer et al. (Eds.): ARC 2014, LNCS 8405, pp. 219–226, 2014.
c© Springer International Publishing Switzerland 2014



220 R. Wester and J. Kuper

and hardware results are given in Section 5. Finally, in Section 6, conclusions
are drawn and possible directions for future work are discussed.

2 Related Work

Particle filters have become a subject of intensive research since the publication
of [1]. Hardware implementations of particle filters using FPGAs for acceleration
is extensively covered in [4] and [5] while hardware design methodologies can be
found in [6] and [7]. In [6] a generic method is presented to implement different
particle filters using a single model. [7] incorporates dataflow principles (data
triggered execution) into a particle filtering architecture.

The main difference between the aforementioned papers and the methodology
presented in this paper is that the tradeoff is directly applied to the mathemat-
ical definition (in Haskell) of a particle filter instead of C source code. As was
shown in [8], there exists a one-to-one relation between higher-order functions
and the resulting structure of components on the FPGA. It is therefore interest-
ing to explore the transformations of higher-order functions involving a tradeoff
between time and space.

A lot of research exists on using functional languages for hardware design
[9], [10] including hardware design using higher-order functions [11]. However,
compared to a direct register transfer level (RTL) approach, the transformations
presented in this paper are applied on a higher abstraction level by exploiting
the regularity of higher-order functions i.e. the transformations produce RTL
style hardware.

3 Background

3.1 Hardware Design Using Haskell

All designs presented in this paper are written in Haskell or CλaSH. Haskell [2]
is a functional language supporting abstraction techniques like type derivation,
partial application and higher-order functions. Especially higher-order functions
(functions accepting a function as argument or returning a function as result)
is a very useful abstraction because it allows the designer to express the mathe-
matical regularity of the application very concisely and semantically clear [8].

To design real hardware we use the functional hardware description language
CλaSH [3], a subset of Haskell that is translated to VHDL by the CλaSH com-
piler. The language features that make Haskell very attractive for hardware
design, like higher-order functions, are also available in CλaSH. Among others,
the higher-order functions map, zipWith and foldl are supported by CλaSH,
allowing a direct implementation of the components resulting from the design
methodology. In CλaSH, all components are expressed in the form of a Mealy
machine (the output and new state are a function of the current state and input).
Listing 1.1 shows a small CλaSH code example of a circuit adding all elements
in a vector (a list with constant length).



Design Space Exploration of a Particle Filter Using Higher-Order Functions 221

Listing 1.1. CλaSH code example

sum ( State s ) xs = ( State s ’ , out )
where

s ’ = v f o l d l (+) 0 xs
out = s

As shown Listing 1.1, the function describing the Mealy machine of sum
accepts two arguments (the current state s and vector of values xs) and returns
a new state s′ and output out. Using the higher-order function vfoldl, the sum of
the vector xs is determined and assigned to s′. vfoldl accepts the binary addition
function (+), an initial value 0 and the vector of numbers xs to be summed.
vfoldl determines the sum incrementally adding elements from xs starting with
the initial value 0, thereby forming a chain of adders. In the last line, the value
of the internal state register s is assigned to the output out.

3.2 Particle Filtering

Particle filtering is a Bayesian filtering technique to estimate the state of a
system recursively using noisy measurements [1]. The state of the system is a set
of properties that should be tracked, examples are speed, position and angular
momentum. For each measurement (a radar image for example), the current
estimate of the real state vector is updated resulting in a more and more precise
estimate. Since measurements contain noise, the resulting state will be in the
form of a Probability Density Function (PDF). Analytically finding this PDF is
often mathematically intractable (the integrals can not be solved) which is why
approximation methods are used. Particle filters approximate this PDF by a set

of N particles x
(i)
k where i = 1 . . .N is the index of a particle and k the iteration

of the filter. A higher density of particles represents a higher probability in the
continuous state space (Figure 1). We focus on a commonly used type of particle
filter, the Sequential Importance Resampling Filter (SIRF) which consists of four
steps: prediction, update, normalization and resampling [1].

(a) (b)

Fig. 1. Continuous PDF and particle representation



222 R. Wester and J. Kuper

During prediction, the next state is derived from the current state using the
known dynamics of the system that is being observed. This is implemented by

evaluating the system dynamics function f for allN particles, x
(i)
k = f(x

(i)
k−1, uk).

f consist of a deterministic and non-deterministic part. For each particle, the

deterministic part depends only on the previous state x
(i)
k−1 while the non-

deterministic part uk requires a sample from a known distribution. For example,
a ship moves in a straight line (deterministic) while the position might fluctuate
a bit due to waves (non-deterministic).

In the update step, every particle x
(i)
k is assigned a weight ω

(i)
k , using the a like-

lihood function g, representing the importance of a particle given a measurement

zk. The function g returns a weight ω
(i)
k given a particle x

(i)
k , a measurement zk

and optionally noise vector vk.

ω
(i)
k = g(x

(i)
k , zk,vk), for i = 1 . . .N (1)

The remaining two steps in particle filtering are normalization and resampling.
During normalization the weights are scaled such that the sum is equal to one,
preparing them for resampling. To prevent degeneracy of weights the resampling
step replicates particles zero, one or more times depending on their normalized
weight ω̃(i), while keeping the total number of particles constant i.e. particles
with a high weight are replicated while particles with a low weight are discarded.
More information on resampling techniques can be found in [4].

4 Design Methodology

As already elaborated in [8], the whole Haskell description of the particle fil-
ter can be divided into two groups, higher-order functions and normal func-
tions. Higher-order functions are used to express structure and repetition with
other functions as argument. Normal functions (base type contains no function-
arguments) on the other hand are used as discrete components and correspond
to combinatorial circuits like an adder for example. The design space exploration
methodology consists of three phases: it starts out with 1. a definition of the par-
ticle filter in Haskell 2. applying transformation rules to higher-order functions,
and 3. composition using dataflow principles.

4.1 Particle Filter in Haskell

Throughout this paper, a simple example of a particle filter is used to evaluate the
design methodology. This filter performs tracking of a white square moving over
a dark background using 32 particles. Every frame is considered a measurement
that is used in a complete cycle of the particle filter. Based on the color of a
pixel in this frame pointed at by a particle, a weight is calculated. This simple
particle filter is first implemented in Haskell for simulation where each step
(prediction, update, normalization or resampling) consists of normal and higher-
order functions. Transformations are applied to these higher-order functions such
that a tradeoff between time and space is made.



Design Space Exploration of a Particle Filter Using Higher-Order Functions 223

4.2 Space/Time Tradeoff Rules

Figure 2 and 3 show the transformation of foldl. The list to be processed (xs) is
split into P sublists of size M such that M×P = N . Each sublist is processed in
a single cycle using foldls (space) while the whole list is processed sequentially
using foldlt (time). The amount of replication on hardware can now be controlled
by the parallelization factor M , a parameter introduced by the transformation
rule. A larger M results in larger sublists and therefore a higher throughput in
a single clock cycle at the cost of more hardware. Similarly, smaller M requires
more clock cycles but less hardware.

Fig. 2. Transformation of foldl

Figure 3 shows the transformation of foldl visually. As shown in Figure 3c,
the final architecture requires an additional register to store intermediate results
from a previous cycle. Again, the size of the sublists and the amount of paral-
lelism in controlled by M . Similar rules are applied to the other higher-order
functions (map, zipWith, foldl and scanl).

f f

x0 xM-1

f f

xM x2M-1

f f

x(P-1)M xN-1

a y

(a)

f f

x0 xM-1

a

f f

x(P-1)M xN-1

y

(b)

f f

x0 xM-1

a

r

(c)

Fig. 3. Transformation of higher-order function foldl

4.3 Composition Using Dataflow

When all higher-order functions are transformed, the resulting components are
wrapped into a dataflow node [12] for synchronization and scheduling. All these
nodes are then connected together using FIFO buffers for storage of intermediate
results. The data triggered behavior is implemented using a firing rule (start
execution when all required data is available). When a node fires, arguments are
removed from the input FIFOs while the result are written into an other FIFO.



224 R. Wester and J. Kuper

5 Results

Before the VHDL generated by CλaSH is synthesized, the design is thoroughly
simulated to verify its correctness. Since the CλaSH description of the dataflow
particle filter is a valid Haskell program, simulation can be performed by just
executing the code. A small framework has been built where a reference particle
filter in plain Haskell is compared with the implementation in CλaSH. This
framework produces a stream of grayscale images (256 × 256 pixels) for both
particle filters to track. The resulting tracks are displayed in Figure 4. Both
filters are able to track the square on the Lissajous path within a few pixels.
However, the CλaSH particle filter deviates sometimes a few pixels more from
the path due to the 18 bit fixed point implementation of arithmetic operations.

50 100 150 200

100

150

X(pixel)

y
(p
ix
el
)

CλaSH

Haskell

Real

Fig. 4. Tracking of a Lissajous curve

The throughput is determined by looking at activity of the write signal of
the FIFO between the replicator and the predictor. With parallelization factor
M=4, the resampled particles are sent in groups of 8 tokens to the predictor
where each token contains 4 particles. Averaging over the differences between
arrival times of each first token results in an average cycle time of 69 clock cycles.
This cycle time gives a throughput of 32/69 ≈ 0.46 particles per clock cycle.

After successfully simulating the particle filter, it has been translated to
VHDL by the CλaSH compiler and synthesized for a Virtex 6 XC6VLX240T
FPGA with parallelization factor M=2, 4 and 8 respectively. All instantiations
are able run at a clock frequency of approximately 25MHz (currently limited
reciprocal operation in the normalization step). Table 1 and Figure 5 show the
number of LUTs used for the dataflow based particle filter. The number of LUTs
required scales more or less linear with M . Similarly, M DSP48E1 multipliers
are required for each instantiation.

Compared to the architectures presented in [5] and [6], the performance of
the architecture presented in this paper is in the same order of magnitude. The
throughput is also very similar to performance of the fully parallel particle filter
in [8] but requires approximately a factor 6 fewer LUTs. Therefore, this design
space exploration methodology is adequate for particle filtering.



Design Space Exploration of a Particle Filter Using Higher-Order Functions 225

Table 1. Resource usage of dataflow based

M = 2 M = 4 M = 8

Component LUTs FFs LUTs FFs LUTs FFs

Noisegen 70 64 138 128 274 256
Predict 37 - 69 - 133 -
Update 44 28 44 50 61 94
Sum 81 22 116 21 187 20
Recipr 923 - 923 - 923 -
Norm 20 4 29 3 48 2
Ws2Rs 204 30 333 29 592 28
Replicate 70 42 126 76 214 142
FIFOs 5210 4021 4650 3707 4435 3538

Total: 6659 4211 6428 4014 6867 4080

2 4 8

0

500

1,000

37 69
133

70
138

274

44 44 6181 116
187

923 923 923

20 29 48

204

333

592

70
126

214

M

L
U

T
s

Predict
Noisegen
Update
Sum
Recipr
Norm
Ws2Rs
Replicate

Fig. 5. LUTs used by components of particle filter

6 Conclusions and Future Work

A design methodology based on transformation of higher-order functions has
been presented and applied to a particle filter application. The transformation
rules produce dataflow nodes with a parallelization parameter M . By choosing
a proper value for M , a tradeoff between execution time and FPGA area is
made. For composition of the resulting components, dataflow principles are used.
When applied to the particle filter example, the methodology produces scalable
hardware in terms of throughput and FPGA area consumption. Higher-order
functions are therefore an adequate abstraction to express dependencies.

All transformations and implementations of dataflow nodes have currently
been done by hand, the next step is to automate this. The idea is to develop
an embedded language to easily express designs using higher-order functions. A



226 R. Wester and J. Kuper

transformation algorithm then applies the transformation rules presented in this
paper after which the hardware can be generated using CλaSH.

Acknowledgements. This research is conducted as part of the Sensor Technol-
ogy Applied in Reconfigurable systems for sustainable Security (STARS) project
www.starsproject.nl.

References

1. Arulampalam, M., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters
for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on Signal
Processing 50(2), 174–188 (2002)

2. Jones, S.P. (ed.): Haskell 98 Language and Libraries. Journal of Functional Pro-
gramming, vol. 13 (2003)

3. Baaij, C.P.R., Kooijman, M., Kuper, J., Boeijink, W.A., Gerards, M.E.T.: CλaSH:
Structural descriptions of synchronous hardware using Haskell. In: Proceedings
of the 13th EUROMICRO Conference on Digital System Design: Architectures,
Methods and Tools, Lille, France, USA, pp. 714–721. IEEE Computer Society
(September 2010)

4. Bolić, M., Djurić, P.M., Hong, S.: Resampling algorithms for particle filters: a
computational complexity perspective. EURASIP J. Appl. Signal Process. 2004,
2267–2277 (2004)

5. Cho, J.U., Jin, S.H., Pham, X.D., Jeon, J.W., Byun, J.E., Kang, H.: A real-time
object tracking system using a particle filter. In: 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 2822–2827 (2006)

6. Saha, S., Bambha, N.K., Bhattacharyya, S.S.: Design and implementation of em-
bedded computer vision systems based on particle filters. Computer Vision and
Image Understanding 114(11), 1203–1214 (2010)

7. Hong, S., Liang, X., Djuric, P.: Reconfigurable particle filter design using dataflow
structure translation. In: IEEEWorkshop on Signal Processing Systems, SIPS 2004,
pp. 325–330 (2004)

8. Wester, R., Baaij, C.P.R., Kuper, J.: A two step hardware design method using
CλaSH. In: 22nd International Conference on Field Programmable Logic and Ap-
plications, FPL 2012, Oslo, Norway, USA, pp. 181–188. IEEE Computer Society
(August 2012)

9. Sheeran, M.: mufp, a language for vlsi design. In: Proceedings of the 1984 ACM
Symposium on LISP and Functional Programming, LFP 1984, pp. 104–112. ACM,
New York (1984)

10. Bjesse, P., Claessen, K., Sheeran, M., Singh, S.: Lava: hardware design in Haskell.
In: Proceedings of the Third ACM SIGPLAN International Conference on Func-
tional Programming, ICFP 1998, pp. 174–184. ACM, New York (1998)

11. Sheeran, M.: Designing regular array architectures using higher order functions.
In: Jouannaud, J.-P. (ed.) FPCA 1985. LNCS, vol. 201, pp. 220–237. Springer,
Heidelberg (1985)

12. Lee, E., Messerschmitt, D.: Synchronous data flow. Proceedings of the IEEE 75(9),
1235–1245 (1987)


	Design Space Exploration of a Particle FilterUsing Higher-Order Functions
	1 Introduction
	2 Related Work
	3 Background
	3.1 Hardware Design Using Haskell
	3.2 Particle Filtering

	4 Design Methodology
	4.1 Particle Filter in Haskell
	4.2 Space/Time Tradeoff Rules
	4.3 Composition Using Dataflow

	5 Results
	6 Conclusions and Future Work
	References




