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ABSTRACT. This paper presents a new semantics for inductive empirical knowledge. The
epistemic agent is represented concretely as a learner who processes new inputs through
time and who forms new beliefs from those inputs by means of a concrete, computable
learning program. The agent’s belief state is represented hyper-intensionally as a set
of time-indexed sentences. Knowledge is interpreted as avoidance of error in the limit
and as having converged to true belief from the present time onward. Familiar topics
are re-examined within the semantics, such as inductive skepticism, the logic of discov-
ery, Duhem’s problem, the articulation of theories by auxiliary hypotheses, the role of
serendipity in scientific knowledge, Fitch’s paradox, deductive closure of knowability,
whether one can know inductively that one knows inductively, whether one can know in-
ductively that one does not know inductively, and whether expert instruction can spread
common inductive knowledge—as opposed to mere, true belief—through a community
of gullible pupils.

Keywords: learning, inductive skepticism, deductive closure, knowability, epistemic
logic, serendipity, inference, truth conduciveness, bounded rationality, common knowl-
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1. INTRODUCTION

Science formulates general theories. Can such theories count as knowledge, or are they
doomed to the status of mere theories, as the anti-scientific fringe perennially urges? The
ancient argument for inductive skepticism urges the latter view: no finite sequence of
observations can rule out the possibility of future surprises, so universal laws and theories
are unknowable.

A familiar strategy for responding to skeptical arguments is to rule out skeptical possi-
bilities as “irrelevant” (Dretske 1981). One implementation of that strategy, motivated by
possible worlds semantics for subjunctive conditionals, is to ignore worlds “distant from”
or “dissimilar to” the actual world. If you are really looking at a cat on a mat under
normal circumstances, you wouldn’t be a brain in a vat hallucinating a non-existent cat
if it weren’t there, so your belief is sensitive to the truth (Nozick 1981, Roush 2007). Or
if you were to believe that there is a cat on the mat, most worlds in which your belief
is false are remote worlds involving systematic hallucinations, so your belief is safe (Sosa
1999, Pritchard 2007, Williamson 2000).

So much for “ultimate”, brain-in-a-vat skepticism applied to particular perceptual be-
liefs. But what about inductive skepticism concerning general scientific laws and theories?
Belief in such laws and theories does not seem “safe”. For example, if the true law were
not of the form Y = 06X + a, would science have noticed already? Are all worlds in

which the true law has form Y = ¢X? + bX + a safely bounded away from Y = bX +a
1
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worlds in terms of similarity—regardless how small ¢ is?! One can formally ignore small
values of ¢ by the ad hoc assumption that they are farther from the ¢ = 0 world than are
worlds in which c is arbitrarily close to 0. But the resulting discontinuity in similarity is
questionable and, in any event, the conditional “if there were a quadratic effect, it would
have been so large that we would have noticed it already” is implausible, however one
contrives to satisfy it. In fact, the history of science teaches that we have been wrong
on fundamental matters in the past, due to pivotal but small effects (e.g., the relativistic
corrections to classical mechanics), and that we cannot guard against more such surprises
in the future (Laudan 1981). So although subjunctive semantics appears to provide a
plausible response to ultimate, brain-in-a-vat skepticism concerning ordinary perceptual
knowledge, it is still overwhelmed by inductive skepticism, since, in that case, the nearby
possibilities are exactly the skeptical ones.

The best that one can expect of even ideally diligent, ongoing scientific inquiry is that
it detect and root out error eventually. So if there is inductive knowledge, it must allow
for a time lag between the onset of knowledge and the detection and elimination of error
in other possible worlds. There is a venerable tradition, expounded by Peirce (1878),
James (1898), Reichenbach (1949), Carnap (1945), Putnam (1963), and Gold (1967) and
subsequently developed by computer scientists and cognitive scientists into a body of work
known as computational learning theory (Jain et al. 1999), that models the epistemic
agent as a learner who processes information through time and who stabilizes, eventually,
to true, inductive beliefs.

Inductive learning is a matter of finding the truth eventually. It is natural to think of
inductive knowledge that ¢ as having learned that ¢. Having learned that ¢ implies that
one has actually stabilized to true belief that ¢ and that one would have converged to true
belief whether ¢ otherwise. The proposed semantics is more lenient—one has knowledge
that ¢ if and only if one has actually converged to true belief that ¢ (as in having learned)
and one would have avoided error whether ¢ otherwise—one might simply suspend belief
forever if the data are so unexpected that one no longer knows what is going on. Allowance
for suspension of belief agrees better with scientific practice. Moreover, it turns out to be
necessary if the consequences of known theories are to be knowable by the same standard.?

The semantics is not proposed as a true analysis of inductive knowledge in the tra-
ditional, exacting sense.> There may be no such thing, and it may not matter whether
there is, since what matters in philosophy is not so much how we do talk, but how we wll
talk, after shopping in the marketplace of ideas. In that spirit, the semantics is proposed
as a useful, unified, explanatory framework for framing prolems and conceptual issues at
the intersection of inductive knowledge, inductive learning, information, belief, and time.

!Nozick (1981) and Roush (2007) argue that we would have noticed the failure of known laws already
because, if a given uniformity weren’t true, some distinct uniformity would have been. But in the
polynomial example, all the regularities are law-like. Nor can one object that all linear laws are closer
to a linear law than any quadratic law is, since the knowledge claim in question is that the true law is
linear, so sensitivity forces one to move to non-linear laws. Vogel (1987) presents additional objections
to tracking as an adequate account of inductive knowledge.

2 Alternatively, one could simply stipulate that the deductive consequences of inductive knowledge are
known (Roush 2007), but then one would have no explanation why or how they are known, aside from
the stipulation.

3An long list of improvements is provided just prior to the conclusion.
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Such issues include: the relation of learnability to knowability, how deductive inference
produces new inductive knowledge from old, how inductive knowledge can thrive in a
morass of inconsistency, why scientific knowledge should allow for a certain kind of luck
or “serendipity”, how one can know that one knows, why one can’t know that one doesn’t
know, how to know your own Moore sentence, and how expert instruction can spread
common inductive knowledge through a population of passive pupils.

One common thread running through the the development that follows is epistemic
parasitism. Inference is not an argument or a mere, formal relation. It is the execution of
a procedure for generating new beliefs from old. If inference produces new knowledge from
old, it is because the inference procedure is guaranteed to produce new beliefs that satisfy
the truth conditions for knowledge from beliefs that already do. Therefore, the semantics
explains how, rather than merely assumes that, certain patterns of inference turn old
knowledge into new. The basic idea is that the new knowledge is parasitic on the old
because the inference pattern generates beliefs whose convergence tracks the convergence
of the given beliefs. A related theme is the hyper-intensionality of belief. It is not assumed
that the belief state of the agent is deductively closed or consistent, or that the learning
method of the agent follows some popular conception of idealized rationality. Rather,
rationality is something a computable agent can only approximate, and the desirability
of doing so should be explained, rather than presupposed, by the semantics of learning
and knowledge.

Inclusion of the entire learning process within models of epistemic logic is consonant
with the current trend in epistemic logic (van Benthem 2011) toward more dynamic and
potentially explanatory modeling of the agent. Recently, there have been explicit studies
of truth tracking and safety analyses of knowledge (Holliday 2013) and of inductive learn-
ing within a modal logical framework (Gierasimeszuk 2010). Earlier, Hendricks (2001)
proposed to develop learning models for inductive knowledge, itself, and a rather different
proposal was sketched, informally, in (Kelly 2001).* This paper places the latter approach
on a firm, formal basis. For decades, Johan van Benthem has strongly encouraged the
development of connections between learning theory and epistemic logic, both personally
and in print, so it is a particular pleasure to contribute this study to his festschrift.

2. SYNTAX

Let G = {1,..., N} be indices for a group of N individuals. Let Laiom = {p; : 7 € N}
be a countable collection of atomic sentences. Define the modal language Lgit (belief,
information, time) in the usual way, with the classical connectives, including L, and the
modal operators presented in the following table, where A is understood to be a finite
subset of Lgir. The unusually rich base language reflects Scott’s (1970) advice to seek
more interesting epistemic principles in interactions among operators. In the following
glosses, let t* be the time of the epistemic context at which “¢ knows that ¢” is assessed
and let t > t* be the time of evaluation, which may lie in the future, due to the evaluation
of a future tense operator. The aim is to analyze convergent belief that ¢ was true at
t*, so one must keep a “clean copy” of t* in the model in order to determine whether i

4The differences are described, in detail, below.
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believes at some later time ¢ > t* that ¢ was true at ¢* (Kamp 1971).
Time
@, ¢ At: it is true at t that ¢.
N¢ Now: It is true at ¢* that ¢.

(FY @ PFuture tense: it is true at t' > ¢ that ¢.

(FY® Future context tense: In epistemic context t** > ¢*) it is true
that ¢.
Information and Belief

[I]i¢ Information: information has been made available to i by ¢*
that ¢ is true at t*.

[D]; ¢ Determination: it is determined by information available to i
at t* and by the method of ¢ at t* that ¢ is true at t*.

[Bl; ¢ Virtual belief: the learning method of ¢ at ¢* directs i to believe
that ¢ is true at t*.
Methodology

(M), ¢ Methodological feasibility: it is feasible for i that ¢ is true.

Y (MD}»;a ¢ Conditional methodological feasibility: given that ¢ is true, it
is feasible for ¢ to ensure that ¢ is true without altering ¢’s
learning disposition concerning the truth of the premises in A.
S; A Inferential stability: if ¢ modifies her method in a way that
holds her learning disposition with respect to statements in A
fixed, then her future beliefs concerning the statements in A
also remain unaltered—because ¢ is insensitive to any changes
in her sensory inputs that might result when other agents notice
the changes to her method.
Let Lagit denote the set of all Lgt sentences that are prefixed by an operator @, for
some t € N. Extend Lgit with definitions as follows. For primitive operators [X], (Y),
introduce the dual operators:

(X) ¢ :==[X]=¢5 [Y]d:==(Y)=0.
A tilde above a box operator [X]; indicates the “whether” form of the operator, which is
defined as follows unless noted otherwise:

Xlo = [Xo Vv [X-¢.
Introduce the standard notation:
B; :=[B];; F:=(F); G:=[F];
and similarly for F, G. Clean up notation in the following way:
S;0 = Si{d};
Y (MDl=is ¢ == ¢ (MD}=; 5y ¢

5A1ternatively, one could introduce first-order quantifiers over temporal variables, but it is conceptually
vivid to treat tense as a modality freely permutable with other modalities.
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When I'; A are finite subsets of Lgit and X; is an arbitrary modal operator, let:

X' = /\ Xi;

~yel
A—=T = /\5—> /\7;
dEA ~erl

3. COMPUTATIONAL LEARNING MODELS

Let E denote the set of possible external worlds. In a Kantian spirit, learning semantics
imposes no structure or restrictions whatever on E. Let T" = N be interpreted as discrete
stages of inquiry. Let G = {1,..., N} be interpreted as a finite set of agents. Agent i € G
is assumed to have some overall, discrete, physical sensory state at ¢ that will be called the
agent’s current input at t. Think of S = N as code numbers for possible inputs. Inputs
are not assumed to have propositional meanings (they are never assigned truth values),
but their occurrence makes propositional information available. Let S* be the set of all
finite sequences of inputs, so each o € S* is a possible input history.

It is assumed that each agent’s belief state is maintained by a learning function L that
returns a verdict (1 for “believe” and 0 for “don’t believe”) for each sentence ¢ in LagiT
in light of the current input history o:

L:S*x L@BIT — {O, 1}

Let ¢.(z,y) be the binary partial recursive function computed by the Turing machine
with Godel index ¢.% Learning function L is computable if and only if there exists ¢ € N
such that:

Le(o,¢) = ¢c({o),"97)),
for all 0 € S* and ¢ € LagT, where (.) is an effective encoding of S* and .7 is an effective
Godel numbering of Lagit. Let C' denote the set of all ¢ € N such that ¢.((.),".7)) is a
learning function. Elements of C' are called learning methods.
Each learning method covers all future contingencies, but ¢’s learning method can
change from time to time, through maturation, education, or mishap. A joint method
trajectory is a function:

c:(GxT)—C,

that assigns a learning method ¢ € C' to each agent ¢ € G at each time t € T. A possible
world is an arbitrary pair w = (e, ¢,), such that e,, € E and each c,, is a joint method
trajectory. Let ¢; . = ¢yu(i,t). Let W denote the set of all possible worlds.

A preliminary computational learning model (PCLM) for agents G is a quadruple 9% =
(E,s,V,t*) such that F is a non-empty set, t* € T and:

s : (GxWxT)— S,
V' (Latom X T) — Pow (V).

The function V' is the usual valuation function, according to which V' (p,t) is the proposi-
tion expressed by atomic sentence p at arbitrary time ¢. The distinguished time ¢* is the

SLower-case ¢ is also standardly employed in logic as a sentential in logical axiom schemata. Context
readily disambiguates the two uses.
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time of the epistemic context under discussion (Kamp 1971). Think of s;.,: = s(i, w, )
as the input that w presents to ¢ at ¢ in w. Call s the input assignment function and s;
the input assignment function for agent ¢. Define the input stream of ¢ in w at t and the
input history of ¢ in w up to, but not including ¢ as follows:

Siw T (Si,w,0> ceey Siwgty - -)S

Siwlt = (Siw,0s--+» Siwt—1)-

One major aim of this study is to provide a precise semantics for learnability, knowa-
bility, and the feasibility of knowing some things given that you know other things. It
is assumed that changing the method of learner i does not cause changes to the external
world or to the methods of the other agents. Therefore, the nearest world to w in which ¢
uses method d at ¢ is just the world w[d/i, t] that results from substituting method d for
agent ¢’s method ¢; ¢+ in w at t.”

Counterfactual shifts of method open the door to the medieval problem of information
concerning future contingents, for since s(i, w, t) depends on w, which specifies i’s method
trajectory c;,,, a crystal ball can send signals to ¢ about the methods employed by 7 or
other agents in the future, so counterfactual changes of method in the future could cause
changes to past inputs. Learning semantics assumes that past inputs are preserved under
future method choices. A computational learning model (CLM) is, accordingly, a PCLM
that satisfies:

(1) Siwlt = Siwld/iglts
forallie G, de C,weW,andt €T.

4. INFORMATION, BELIEF, AND DETERMINATION

The input history s; .|t of 7 in w has no truth value—it is a temporal sequence of sensory
states—but it makes available to i in w at t the following, propositional information:®

I(va7t> = {wl eW: S’i,w’t = Si:w/|t}'

In Kripke semantics for modal epistemic logic, available information is represented in
terms of the accessibility relation “w’ is possible in light of all the information available
to ¢ in w at t”:

Rij(w,w') & w € Iy,

For fixed ¢ and t, (W, R;;, V) is a standard Kripke model. Since R;; is an equivalence
relation, the corresponding modal operator S5, as is often assumed (e.g., van Benthem
2010). Making propositional information available via physical signals is not the same
thing as inserting that information directly into ¢’s beliefs—it is still up to ’s learning

Me.:
d Wil =i At =t
c(i',t') otherwise.

(ew, Cuw[d/i,1]).

(cld/i, ) (@, t") = {

wld/i, 1]

8Cf. (Lewis 1996) for a similar proposal.
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function L, , to interpret the signals, to recover the information they afford, and to
incorporate it smoothly into ¢’s belief system.

Possibilities of error that are incompatible with the information currently available will
be deemed irrelevant to learning and knowledge. Furthermore, it does not seem that
1 needs to have been informed of her own learning method—the method merely has to
determine success in light of available information. Accordingly, define the determination
assignment function:®

D(Z,U),t) = {w’ - Ii,w,t : Ci,w,t* = Ci,w’,t*}-

Then D, .+ = D(i,w,t) is the strongest proposition determined at ¢ by the information
and by the learning strategy possessed by i in w at t*. The binary relation D;;(w, w’) is
again an equivalence relation that refines 7, ;(w, w’).

Belief is handled very differently, as the concrete, hyper-intensional outcome of learning.
None of the usual consistency, closure, or rationality assumptions is imposed, because they
are all false. The actual belief state of 7 in w at t is produced by i’s actual learning method
at t:

Bact(i,w,t) = {¢ € Lagit € LagiT : Le; ,,, (Si,0[t; @) = 1}

In the long run, we are all dead and then we don’t believe anything. An alternative
account, in the spirit of (Nozick 1981), is that agent ¢ would converge to true belief if she
were to continue to use her current method forever:

Bctr(i7 w, t) - {¢ € L@BIT : Lci,w,t* (Si,'w[cuw,t*/i,t”ta ¢) = 1}

However, that would make it impossible for ¢ to know inductively that all humans are
mortal, since ¢ would be immortal if she were literally to retain her current learning
dispositions forever. Alternatively, one can focus on what ¢’s current learning method
directs © to believe in the future, just as one can speak of the outputs of an algorithm
on inputs larger than any concrete machine running the algorithm will ever receive or
of linguistic competence concerning sentences that will never be uttered due to resource
limitations:

B(i,w,t) = {¢ € Lapir: Le,, - (Siwlt;9) =1 A ¢ € Lpir}.

Refer to B; .+ = B(i,w,t) as the virtual belief state of i in w at t.

5. LEARNING SEMANTICS

Let 9 = (E,s,V,t*) be a cLM. Define the proposition [|¢|[5y, , expressed by ¢ in 90
inductively as follows. In the base case:

Pl = V(p1).

9This idea is also sketched in (Lewis 1996). The idea trivializes knowledge of one’s own learning
method. See the discussion in section 17.4 below for a potential, contextualist remedy. Also, it fails to
rule out brain-in-a-vat worlds. See section 17.1 for a discussion of making determination safe or sensitive.
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The connectives and | have their standard, classical interpretations. For the temporal
operators, define:

1F) éllon,. = | oIl

>t

I(F) Sllom,. = U 10, ;

t'>t

NG, = llollm,.;
!

1@y Pllow,. = llllom,. -

Operator F = (F) is a future tense operator that includes the present time. Its dual is the
“henceforth” operator G. Operator F= (F) is similar, except that it moves the epistemic
context forward. Operator N resets the time ¢ of evaluation to the time t* of the epistemic
context. Operator @y resets the time of evaluation to the specified time ¢'.

Information and determination are defined propositionally, in the standard way, and
both are S5 operators, for reasons already discussed.

I[1: Bllan,. = {weW: L, C ol }:
I[D)i ¢llm,, = {weW:Diws Cllolli,.}-

Virtual belief, on the other hand, is entirely hyper-intensional, as it should be. Note
that the time at which ¢ is believed to be true is always referred back to t*, via the @«
operator.

I[B]i dlls,. = {we€W : @€ By}

Methodological feasibility says that there is some method that ¢ might have adopted
that would achieve ¢ at t* in w. It is used to express theses concerning learnability and
knowability.

KM); Slla,. = {weW: (3ceC)wl/i,t'] € [|¢lm,. }-

Methodological feasibility does not say that i can guarantee or see to it that ¢ is true.
That stronger modality is expressed by (M), [D];.

The remaining two operators are more subtle and work together as a team. To motivate
conditional feasibility, consider the familiar logical thesis that the knowledge of 7 is closed
under known consequence:

(Kio A Ki(¢p = 9)) = K.

Granted, modus ponens is an easy inference to perform, but nothing like that thesis is even
remotely true. Perhaps it is intended as a regulative ideal or as an obligation, but ideals
are approachable and ought implies can, so the more proximate and concrete question
is whether satisfaction of the thesis is feasible, in the sense that there is an inference
procedure i could adopt that would guarantee that ¢ knows that ¢ given that she knows
both ¢ and ¢ — .

From the viewpoint of learning, effectively performing inferences amounts to an effec-
tive modification h(c) of one’s learning program c. Think of A C Lagt as a finite set
of premises. One examines the verdicts of ¢ for sentences in A (including, perhaps, past
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verdicts), and then one reverses the verdicts of ¢ concerning some sentences (i.e., conclu-
sions) outside of A. In that way, i can effectively modify her learning program ¢ without
having access either to c¢, itself, or to its raw, sub-cognitive, sensory inputs. Inference,
therefore, makes sense as an evolutionary strategy—given some reptilian learning wet-
ware that is hard to modify genetically without lethal effects, tack on some higher-level
cognitive wet-ware that can intercept and modify its verdicts. That learning-theoretic
conception of inference is made precise as follows. First, the verdict of learning method ¢
concerning 6 € Lag)T in response to o is the ordered pair:

ve(0,8) = (Lq(0, @, 8), La(0, @ye=5)).

Define ¢ =a d to hold if and only if learning programs ¢, d have identical verdicts for each
0 € A and 0 € S*. Define ¢ =a, d to hold if and only if learning programs c,d have
identical verdicts for each § € A and for each initial segment 7 of input history o. Let h
be a total recursive function that assumes values in C'. Say that h preserves premises in
A if and only if h(c) =a ¢, for all ¢ € C. Say that h depends only on premises in A if and
only if:

c=pod = Upe)(0,0) = vp@ (o, @).

for all ¢,d € C, 0 € §*, and ¢ € Lagr- Then h is an inference procedure with premises
in A if and only if & is a total recursive function with range included in C' that preserves
premises in A and that depends only on premises in A.

Conditional feasibility expresses the existence of an inference procedure that guarantees
the situation in the consequent, given the situation described in the antecedent. Accord-
ingly, let w € [|t) (MD]=;a @|l5,. if and only if there exists inference procedure h with
premises in A such that, for all u € I; ,, 4=

u€ ¢l = ulhlciue)/it] € |9,

The notation ¢ (MD}=; A ¢ is mnemonic—existence of h is like (M),, the guarantee is like
[D];, and the assumption that the antecedent holds is like a conditional.

Inference—even deductive inference—can be subtly treacherous in learning semantics.
Suppose that ¢ contemplates changing her learning strategy c to d, which generates exactly
the same verdict on 0 that ¢ does, in every possible input situation. Assumption (1)
guarantees that d results in the same belief whether § that ¢ does given the same inputs,
but the change from ¢ to d could modify or even shut off the flow of future inputs to @
because other agents detect the change in ¢ (think of a poorly blinded social psychology
experiment). Furthermore, the change from ¢ to d could make § false if the truth of ¢
depends on what some or all of the agents believe (e.g., i is a major player in the market).
Either way, ¢’s election to adopt inferential strategy d could be empirically or semantically
self-defeating, in the sense that premise 0 of the intended inference becomes untestable
or false as a consequence of the inference being performed. Happily, good experimental
design can prevent one’s valid inferences from being self defeating, so it is useful to have
vocabulary expressing that such preventive measures have successfully been carried out
for some intended set of premises A. It is too strong to say that the inputs to ¢ would be
exactly the same whether 7 uses ¢ or d, because ¢ would presumably receive at least some
information concerning her own beliefs. It suffices that neither the truth of the premises
in A nor the verdicts of i concerning them is affected by the change. Define w € ||S; A||fmt*
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to hold if and only if for all d € C such that ¢, =a d and for all w € D; 4+, t > t,
and 0 € A, if we set v’ = u[d/i,t*] and ¢ = ¢; 44+ (= Ciws+), then:
u€ [0y, & u € bl
Ve(Siwlt,0) = wva(siwlt,0).
That concludes the truth conditions for Lgjt. Let I' C Lgt. Define validity in a model
and logical validity as follows:
t*

My o = W=|0lm,;
Eo < My | o, for each cLM DMy

Note that validity in a model initializes time to the model’s current epistemic context
time ¢*. Finally, logical entailment and equivalence are defined as follows:°

PEY & (=)
P=9¢ & E(0e1)

6. EXAMPLE: OUTCOMES OF A REPEATED EXPERIMENT

CLMs accommodate a boggling range of learning situations, but a collection of very
elementary models suffices to illustrate many of the results that follow. Assume that each
agent ¢ passively observes the successive values of a repeated experiment whose outcomes
are effectively coded as natural numbers. In the spirit of empiricism, identify possible
external worlds with infinite outcome sequences € : N — N. Let Ej denote the set of all
such sequences. Define, for £ € N:

so(i,w,t) = eu(t);
Vo(pr,t) = {e € Ey:e(t) =k} x V.
mt* = (Eo,So,%,t*).

Temporal operators allow for compact expression of a range of increasingly complex state-
ments:

pr : the current outcome is k;
Gpr : the outcome will be k;
Fpr : the outcome is k from now on;
FGpr : the outcome will stabilize to value k;

GF pr : the outcome is k infinitely often.

A hypothesis ¢ is objective for i just in case i has the information available that ¢ cannot
alter the truth value of ¢ by changing her learning method. Objectivity simpliciter is
objectivity for every agent.

O;¢ = [l]i(¢ « [M];9);
Oc¢ = /\oid).

1€G

ION b. substitution of equivalents for equivalents under temporal operators does not preserve validity
(Kamp 1971). For example, = G(¢ <> ¢) and ¢ = N ¢, but = G(¢ <> N ¢).
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A special feature of model ;- is that objectivity implies inferential stability:
(2) N = Oid— Sig,

since inputs do not depend on methods at all, and neither does the truth of an objective
statement.

7. EXAMPLE: AGENCY, GAMES, AND EXPERIMENTATION

The agents in model 91+ are isolated natural scientists who passively receive inputs from
a fixed experiment. But even a solipsistic scientist can choose how to interact with nature,
and communication among scientists can produce cascades of interactive, doxastic effects.
Although Lgjt has no vocabulary describing acts other than belief, CLMs can represent
arbitrarily complex social interactions involving such acts. The trick is to locate agents’
diachronic strategies for non-doxastic actions within the “external world” e € E. Then,
all of the valid theses of learning semantics are valid for game-theoretic applications.

Here is one way to do it. Let X C N be a set of potential actions. Assuming that the
actions are observable by all of the agents, let S = X*~. Then S* contains all possible
finite play histories. Let A denote the set of all a € N such that ¢, is a unary total
recursive function with range included in X. The disposition to act computed by a looks
at the current input history and chooses how to act:

Au(o) = ¢a({0)).
Since belief depends on inputs, one special way for actions to depend on inputs is for
them to depend on beliefs.

Dispositions to act can change through time just as dispositions to believe can. A joint
disposition trajectory a: (G x T) — A assigns a profile of dispositions to the agents at
each time. In purely social applications, the “external world” e can be identified with a,
so possible worlds are pairs w = (a, c). In experimental science, one agent can represent
nature and the rest of the agents can be used to model socially distributed scientific
inquiry. Each agent i receives as input the actions of every agent (including herself). Let
o x s denote the concatenation of signal s € S to finite sequence o € S*. The joint input
assignment is then definable in stages as follows:

5i,(a,c)|0 - ()7

Si,(a,c)‘(t -+ 1) = Si,(a,c)‘t * (Aai,t+1<si,(a,0)|t) < N)
In the long run, all the players of an infinite game are dead, as are the dispositional
properties of societies, economies, and terrestrial organisms. Hence, it is often more

natural to think of the agents as wvirtually studying one another’s and nature’s current
reactive dispositions, just as was done for belief:!!

Si,(a,c) |t* = 5i,(a,c) |t*;
S@(a’c)|(t* +t+ 1) = Si’(a,c)|t * (Aam* (Si,(a,c)‘(t* + t)) 1 < N)
Either way, requirement (1) is satisfied.

In extensive form games, each agent receives some utility in each world at each time,
as a result of what all the agents do. The utilities may also shift through time, if we

HThe base case assumes that information gathered by means of earlier dispositions remains available.
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interpret the agents as playing different games from time to time. Evolving utilities may
be absorbed into the external world. The games described assume perfect information.
Of course, s can easily be made to censor some actions.

8. CORRECTNESS AND ERROR
Define “i is in error that ¢” as follows:
Eio = B;¢p N N—o.
Error whether ¢ is defined according to the general definition presented in section 2 above.
¢ = Ei¢ vV E¢.

It follows that ¢« cannot be in error whether ¢ unless i believes that ¢ or believes that
—¢. That definition is straightforward if belief is deductively closed, but it is very weak
for hyper-intensional belief—e.g., belief that ¢ does not count as an error whether —¢.
However, in order to interpret successful learning whether ¢, all that is required is some
unambiguous convention for ¢ “getting ¢ wrong”, and the proposed convention suffices in
a minimal way. Stronger, but finite, demands on deductive acumen would not alter the
results that follow, except to complicate their proofs. In a similar spirit, correctness that
¢ is absence of error whether ¢ together with belief that ¢ and correctness whether ¢ is
defined as absence of error whether ¢ together with verdict for ¢:

Ci¢ = —Ei¢ A B;o;
Cio = -Eo¢ A Bio.
Correctness whether ¢ could have been defined in the usual way as correctness that ¢

or correctness that —¢, but that concept depends on whether i believes that ——¢. The
proposed definition depends only on i’s belief whether ¢.!2

9. INDUCTIVE LEARNING

In computational learning theory, inductive learning whether ¢ is understood as guar-
anteed convergence of ¢’s current learning method to correct belief whether ¢. That is
elegantly formalizable in Lg;t as follows:

L;¢ = [DJ;FGC;o.

The truth conditions for L; ¢ can be expressed entirely in terms of the proposition 1614,.
and the verdicts of i’s learning method: w € ||L; ¢|[gy,. if and only if for all u € D;,,

(3) w€ o, = (im Le, . (siult, Q) =1 A
—00 "
lim Le, , . (Siult, @ —0) = 0);
t—00 o

(4) u ol = (Hm L, . (sialt, @ =¢) =1 A
lim L, . (sialt, @ ¢) = 0).

12Thanks to Ted Shear for this point.
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That is essentially equivalent to saying, in computational learning theory, that i’s current
method ¢; 4+ decides ¢ in the limit (Kelly 1996), except that learning semantics allows
that the data depend on the learning method.

10. INDUCTIVE LEARNABILITY

Just as the theory of computability concerns what can be computed, rather than how we
actually compute, computational learning theory focuses on learnability—the feasibility
of learning—rather than on the actual psychology of learning. Learning semantics affords
at least four grades of feasibility:

(5) (M),[Dli¢ = [DLM); ¢ F (Mo = (M),D)¢.

In the case of learnability, those concepts collapse to (M) lL ¢—the last entails the first,

since L; begins with [D];, which is an S5 operator:

(6) (M),DliLio = [DMLio = MLo = (M),D)Le¢

Concretely, w € [|(M),L; ¢ll5,. if and only if there exists d € C' such that (3) and (4) hold

with d substituted for ¢; 4+ in u, for all u € I; ya/is+¢- If ¢ satisfies O; ¢ in M+, one can

also substitute ;¢ for I ,fa/i,, in which case the truth conditions for learnability are

essentially the same as the conditions for decidability in the limit (Kelly 1996)."3
Universal truths and existential truths about the future are inductively learnable in the

empirical model 91«—just believe the universal hypothesis until it is refuted and believe
its negation thereafter, and follow the dual strategy in the existential case:

(7) MW = (M)LGp

(8) pLe= }: <M>i|—iF Pk

But not every empirical hypothesis is inductively learnable. Kant (1782/1787) observed
that hypotheses like the finite or infinite divisibity of matter or the existence of a first
moment in time “outpace all possible experience”. In terms of learnablity, he was right.
Suppose that the laboratory returns a 1 whenever an allegedly fundamental particle is
split and returns a 0 when an attempted split fails. Then finite divisibility of matter
can be expressed as FGpy and infinite divisibility of matter can be expressed as GF p;.

Both hypotheses are evidently only remotely connected with current experience. In fact,
neither is inductively learnable in 9;:

(9) Ny | -LFGpy;
(10) pLe= ): _‘i:iGFpk:~

It suffices to show, via a standard, learning theoretic diagonal argument, that no c satisfies
convergence conditions (3) and (4).*

Learning semantics is a flexible framework for inductive learning and learnability that
allows one, for the first time, to rigorously iterate the learning operator, in order to analyze
precisely such statements as that it is learnable whether someone else is learning whether
¢. But in order to provide the sharpest possible contrast between learning semantics and

13The differences concern mere conventions for coding the acceptance, rejection, or suspension of belief
of ¢ with respect to ¢.
1proofs of selected theses are presented in the appendix.
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traditional possible worlds semantics for epistemic logic, the focus of this study is on the
semantics of inductive knowledge, to which we now turn.

11. INDUCTIVE KNOWLEDGE

Agent i has learned whether [that] ¢ if and only if i is learning whether ¢ and, hence-
forth, i correctly (virtually) believes whether [that] ¢:

Led; ¢ = GCio A L; o
Led; ¢ = GCid A Lo = Led;d A ¢

Having learned inductively whether ¢ may sound odd, since the culmination of inductive
inquiry depends on what i’s current learning method would do in the future. But such
locutions are actually quite common: e.g., “I have quit smoking for good”.

It is natural to suppose that inductive knowledge is having learned, but there is a pow-
erful argument to the contrary: learnability is not preserved under logical consequence;
for recall (7), (9), and (10) and note that G ¢ entails both GF ¢ and FG ¢. Since having
learned entails learnability, it follows that knowability is not closed under logical conse-
quence. And the examples sound bad: we would know that the laws of quantum mechanics
apply invariably, but it would be unknowable that they apply infinitely often or all but
finitely often. It sounds better to say that we know that a prethe latter two statements
because we know the first.

Pursuing that idea, suppose that i’s only reason for believing that GF ¢ is that she
believes G ¢ and suppose that her reason for believing G ¢ is that it has stood up to severe
testing so far (a single counterexample would refute G ¢). It is a traditional theme in the
philosophy of science that general theories are not testable until they are articulated with
auxiliary assumptions (Duhem 1914). Semantically speaking, “articulation” amounts to
the substitution of a logically stronger, testable hypothesis for the untestable hypothesis,
itself. Thus, one may think of G¢ as a testable articulation of GF ¢, since it posits a
particularly simple way in which GF ¢ might be true. Then ¢ stabilizes to true belief that
GF ¢ as soon as i stabilizes to true belief that G ¢, so the actual convergence requirement
is met also for GF ¢. But what if G¢ were to be refuted, say at time t?7 Maybe ¢ has
plausible ideas about how to re-articulate GF ¢ (e.g., as @, 1G ¢). In order to learn by such
a strategy, ¢« would require a full contingency plan for re-articulating GF ¢ that somehow
hits upon a true articulation eventually in every possible world in which GF ¢ is true. But
it has already been shown that no such contingency plan exists for GF ¢, since GF ¢ is not
learnable.

Another venerable theme in the philosophy of science is that there is “no logic of dis-
covery” (Hempel 1945, Popper 1935), which means, roughly, that science need not have
an explicit contingency plan for what to propose when old hypotheses are refuted, so far
as scientific knowledge is concerned. The standard arguments for that conclusion are ana-
logical and historical.'® The argument from analogy is that a theorem is still a theorem
no matter how one came to conjecture it, so scientific knowledge likewise does not depend
on how one came to think up the hypothesis. The historical argument is that major sci-
entific findings have been hit upon by luck. For a celebrated example, the chemist Kekulé

15A notable exception is (Putnam 1963).
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claimed to discover the carbon ring structure of benzine by dreaming of a snake biting
its tail (Hempel 1945, Benfey 1958). It does not seem to count against Kekulé’s subse-
quent knowledge of that hypothesis that he possessed no systematic contingency plan for
dreaming up alternative molecular structures, had the ring hypothesis failed. Scientists
refer to luck that does not undermine scientific knowledge as serendipity. Kekule’s dream
was serendipitous in that sense, as is all luck in hitting upon a true hypothesis. Since
untestable hypotheses like GF ¢ cannot be learned, they can be known only with serendip-
ity. So allowance for serendipity, the practice of testing testable articulations of untestable
hypotheses, and the slogan that there is “no logic of discovery” are all grounded in the clo-
sure of inductive knowability under logical consequence, a fundamental, epistemological
consideration.

Suppose that i is commanded by her thesis advisor to investigate GF ¢ by severely
testing G¢. We know that ¢ lacks a full logic of discovery for GF ¢, since GF ¢ is not
learnable. Suppose, plausibly, that she has far less—if G ¢ is ever refuted, she has no idea
what is going on, suspends belief forever whether GF ¢, and switches to a more lucrative
career in finance. Ifher advisor was right (serendipity), then she has already converged to
true belief that GF ¢ and, since her belief that GF ¢ is based solely on her belief that G ¢,
she is also guaranteed to eliminate error with respect to GF ¢ eventually. Her (actual)
convergence to true belief that the untestable hypothesis is true is serendipitous, but her
eventual avoidance of error is not lucky at all—it is guaranteed by her commitment to
suspend belief forever if GF ¢ is refuted.

In light of the preceding considerations, it is proposed that inductive knowledge that ¢
is actual convergence to true belief that ¢ along with guaranteed, eventual avoidance of
error whether ¢:16

Ki¢ = GCi¢ A [DLFG-E; ¢;
Ki¢p = GC;¢ A [DLFG-E; ¢ = K A 6.
Thus, having learned whether ¢ is sufficient, but not necessary, for knowing whether ¢:

(11) = Lédﬂ? - K; ®;
(12) = Led; ¢ — K; ¢.

16Hendricks (2001) presents several concepts of empirical knowledge, the closest of which to the fol-
lowing proposal is “realistic reliable true belief” or RRT knowledge. Hendricks’ informal gloss of RRT
knowledge (p. 181) amounts to the following proposal in the present notation: Krrt;¢ := G¢ A [iqﬁ
(the operator [D]; is dropped from the L, ¢ condition in the accompanying formal statement—presumably
unintentionally). RRT knowledge is very different from inductive knowledge as defined here. First of all,
RRT knowledge requires that G ¢, which would make it impossible for i to know, for example, that she
believes that ¢, if that belief state is transient. Learning semantics sidesteps that difficulty by evaluating
the proposition believed at the “now” of utterance. Second, RRT knowledge does not require GB; ¢, so
RRT knowledge does not even imply belief that ¢, much less stable belief that ¢—it may be years until
the learning process succeeds. Finally, RRT knowledge does imply learning whether ¢, which implies that
RRT knowability cannot be closed under deductive consequence, as has just been explained. Hendricks’
claim that RRT knowledge validates the axioms of modal system S4 (proposition 12.3, p. 208) is therefore
false. The discrepancy is explained by the fact that, just prior to the proof of proposition 12.3, Hendricks
inadvertently modifies the concept of RRT knowledge a second time (p. 194) to G ¢ conjoined with the
existence of a future time ¢’ such that it is determined now that i believes that ¢ forever after t’—whether
or not ¢ is true.
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In fact, learning is equivalent to guaranteed, eventual arrival at knowledge—a nice example

of a plausible validity expressible in Lgt but not in the traditional, pure K; fragment.”

(13) Lo = [DLFK;o.

In terms of concrete learning methods, the first conjunct of K ¢ is true in w at ¢ if and
only if:

(14) we oy, = ((Vt>t) L, , . (siwlt, Q- 0) =1 A
(Vt > t%) Le; o (Siwl|t, Qp =) = 0);
(15) w0l = (V>t) L, , . (siwlt, @ 0) =0 A
(Vt > ") ch‘,w,t* (Siwlt, Qpemg) = 1);

and the second conjunct is true in w at ¢ if and only if for all u € 1; 4

(16) u € ||0lltn,. = Hm L, . (siult, @ 29) = 0;
(17) u & ||¢||;L);Tz* = hm L. Ciw,t* L(siult, Q) = 0.

Note that (16) and (17) weaken the corresponding conditions (3) and (4) for having
learned.

12. INDUCTIVE KNOWABILITY

Learning semantics again affords the following notions of inductive knowability, in de-
scending strength:

(18)  (M);[DliKi¢ = [DLEMKieo E (MKo E (M);(D)K:o.

The four conditions of knowability are all logically distinct. The first version requires
correct belief immediately. implies a sweeping inductive skepticism, in the sense that ¢ is
inductively knowable by ¢ only if the information is available to ¢ that ¢ can make ¢ true:

(19) = (M),[DliK; ¢ = [1]:(M), ¢.

The trouble is that the But the remaining versions do allow for inductive knowability. For
example:

(20) = [DJ:(M),;KiGp.

The i
That leaves the weakest option, which requires only that it be feasible for ¢ to make it
possible that she knows now—an idea consonant with serendipity:

(21) (MD>1¢ = <M>Z<D>ZR1¢
(22) = (M),(D),(GC;¢ A [D;FG-E; ¢)
(23) = (M),((D),GC;¢ A [D];FG-E; ¢);

T hesis (13) is invalid with F in place of F. It is crucial that the doxastic future under consideration
is virtual rather than actual.
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where the last equivalence is again due to [D]; being S5. Condition (23) expands to the
existence of d € C' such that for some u € I; ,,

(24) uld/i,t] € [|Pllm,. = (V¢ =1") La(sualt, Q- ¢) =1 A
(Vt > 1%) La(su,ilt, @ —p) = 0);

(25) uld/i,t] & ||dllom,. = ((Vt>¢") La(sult, Q- ¢) =0 A
(Vt = ¢%) La(suslt, @ =¢) = 1);

and for all w € I; 4

(26) uldfi,f) € 8l = Jim Lasiult, @ ) =0

(27) uld/i ) & 6k, = lm Ly(si,lt. @ 6) =0.

Conditions (24) and (25) are trivially satisfiable by dogmatically believing that ¢ and
conditions (26) and (27) are trivially satisfiable by skeptically suspending belief whether
¢. But the conditions are not jointly trivial—the possibility of having converged to the
truth risks the possibility of error infinitely often, unless one has an appropriate plan
in place for when to suspend judgment, as Popper (1935) insisted. For example, weak
knowability can fail when even the total input stream does not determine the truth of ¢
in any world. In that case, say that ¢ is globally underdetermined—venerable candidates
include “the Absolute is lazy” and Poincare’s (1904) perfect trade-off between shrinking
forces and geometry. The logical positivists attempted to rule out globally underdeter-
mined hypotheses by deeming them meaningless, on empiricist grounds, but that leaves
open the question whether freedom from global underdetermination guarantees knowabil-
ity. Learning semantics validates something close to that in the empiricist model 91+, as
long as the input stream is computable. Recall the strategy, discussed above, of guessing a
testable articulation ¢ of ¢, believing ¢ until ¢ is refuted, and suspending judgment there-
after. It witnesses the following, liberal knowability condition for objective hypotheses in
e :

Proposition 1. Suppose that w € ||Og ¢|y,. and there exists u € I 4+
computable input stream s;,. Then w € ||(MD),

with

Ny

As a corollary, we have the following knowability result, in contrast to the non-learnability
results (9) and (10) above:'®

The restriction to 9% and to ObJeCtIVG gb rules out global underdetermination. The
assumption that s;,, is computable is also crucial. For example, take the setting to be
M+ restricted to worlds that present binary data. Add a new atomic sentence q with
the valuation V(q) = {w € W : s;, = ¢}, where ¢ is a fixed, total, non-computable,
binary-valued function. Call the resulting model %t*. Then we have:!”

(29) w & [|(MD);

18 Just let u satisfy s;.4.+ = S;ws for t <t* and s; . =k for t > t*.

The restriction to binary sequences in (29) matters. If the range of inputs at each stage might be
infinite, then one can add an atomic sentence to 9+ that is knowable but true only in worlds that are
empirically infinitely uncomputable (cf. Kelly 1996, 7.19).
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This short introduction to the logic of inductive knowability illustrates that the pro-
posed semantics focuses attention precisely where it should—on concrete, methodological
considerations like computability and global underdetermination. Furthermore, it is of
interest that allowance for serendipitous knowledge allows not only for deductive closure
of knowability, but also for a considerable broadening of the scope of inductive knowability
beyond that of learnability.?

13. FircH’S PARADOX

It has just been shown that, in learning semantics, the question of inductive knowability
raises concrete, familiar, methodological issues. Since traditional epistemic logic makes
no contact with learning, either in its syntax or in its models, it focuses on the more
exotic problem of unknowability due to epistemic self-reference. Although self-referential
paradoxes are remote from the concrete business of science, questions of genuine episte-
mological interest, such as whether it is possible for science to know inductively that it
does not know inductively, open the logical floodgates to self-referential curiosities. Alas,
one cannot simply ignore them. At the very least, one must construct a firewall against
them that does not trivialize the principles of interest.

Consider, for example, the Moore sentence for ¢, defined as follows:

M0i¢ = ¢ VAN _|K1¢

The Moore sentence is not knowable in standard epistemic logic, for suppose that ¢ knows
that Mo; ¢. Then, since knowledge is true, Mo; ¢ is also be true, so =K, ¢ is true. But
since Mo; ¢ is known, so is conjunct ¢ of Mo; ¢, so K; ¢ is true. Contradiction. The
proof requires only (i) that the conjuncts of a known conjunction are known and (ii) that
knowledge is true, both of which are valid in standard, possible world semantics.

That is hardly surprising in itself, but it leads directly?! to Fitch’s paradoz, the state-
ment that any agent for whom every truth ¢ is knowable is already omniscient.??

(30) (Vo) (¢ = 0iKi¢) = (Vo) (¢ = Ki9).

For suppose that the consequent of (30) is false. Then (3¢) Mo; ¢ is true. But Mo; ¢ is
not knowable. So Mo; ¢ is a counterexample to the antecedent of (30).

Fitch’s paradox is not really paradoxical after the “gotcha” moment when one realizes
that denying the consequent yields a true Moore sentence. If “every truth” is restricted
to “every scientifically interesting, objective truth”, the paradox evaporates. Nonetheless,
there is a specialist literature devoted to refuting Fitch’s paradox, some authors going so
far as to blame proof by contraposition (Williamson 1993). Therefore, it may be of interest
to revisit the question whether the Moore sentence is knowable in learning semantics. The
standard argument that Mo; ¢ is not knowable assumes that ¢ knows the conjuncts of any
conjunction ¢ knows. That step evidently fails in learning semantics, because even belief
is not closed under deductive consequence. But inferring ¢, ¢ from ¢ A 1) is the easiest of

20Cf. sub-section 14.1 below for a formal discussion of deductive closure of inductive knowledge.

21The ingenious step was taken by Alonzo Church (2009) in an anonymous referee report on Fitch’s
manuscript.

2214, suffices that ¢; be the dual of an alethic necessity operator satisfying the rule of necessitation.
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inferences—one need only erase the A. It would, therefore, be more sporting to show that
Mo; ¢ is knowable by an agent whose beliefs are conjunctively cogent in the sense that:

Cocoi(¢, 1) = [li(Bi(¢ A ¥) < (Bid A Biv)).
Learning semantics yields a startling, positive verdict:*

(31) N E (0,0 AN =[Dl;¢ A (MD)K; ) —

Of course, some sort of aphasia is required to know one’s own Moore sentence, but the
aphasia now plausibly concerns learning, rather than a trivial, deductive inference.?* Sup-
pose that i is irrecoverably dogmatic that ¢. When an acquaintance accuses i of not know-
ing that ¢, even though ¢ is true (the evidence for ¢ is abundant), i takes a detached
interest in the accusation. Since ¢’s admitted dogmatism precludes her from knowing that
¢, the knowability of Mo; ¢ reduces, for 7, to that of ¢, so i can know Mo; ¢ by basing her
belief whether Mo; ¢ on the evidence concerning ¢. Since ¢ is knowable, Mo; ¢ is knowable
by i—because i is dogmatic with respect to ¢. Furthermore, due to i’'s dogmatism, ¢ is
conjunctively cogent with respect to the conjuncts of Mo; . We may not envy ¢’s strange
knowledge, but the story is plausible enough and standard possible world semantics for K;
and for (MD), cannot accommodate it, much less help one to discover it. A general moral
for modal epistemic semantics is that abstraction from the details of inquiry provides no
guarantee against philosophical error.

The preceding discussion notwithstanding, learning models still permit one to construct
self-referential monstrosities by “brute force”, using the valuation function: e.g., an atomic
sentence can be interpreted to say “i does not believe that she knows me”. Such models
trivially invalidate the thesis that it is feasible to know that one knows what one knows.
The real purpose of the doxastic stability operator S; is to protect otherwise plausible
theses of epistemic logic from that self-referential onslaught. Under the hypothesis that
S; ¢ obtains, knowledge, learning and having learned are preserved under counterfactual
changes of method that do not modify the agent’s current learning disposition with respect
to ¢.2°

Proposition 2. Suppose that u € ||S; A g;}t* and d =a ¢y and ¢ € A. Then:

+*

(32) w€ [IKidllan,. = uld/i,t"] € [K; Sllay,.: -

and similarly for K;, L;, Led; and Led;.

23Note that there is no temporal equivocation here between the time at which Mo; ¢ is known and the
time at which ¢ is not known, as there is in solutions proposed in temporal dynamic epistemic logic (e.g.,
Yap and Hoshi 2009).

24 Alternative learning strategies within the same agent are a familiar theme in the epistemology
literature—e.g., (Nozick 1981).

25 the author’s opinion, finding a semantics for S; such that S; ¢ is both plausible and yet strong
enough to yield the following invariance property proved to be the crux of the entire subject.
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14. ErisTEMIC LoGic REDUX

The idea in traditional epistemic logic is to mine intuitions for principles stated entirely
in terms of K; and then to solve backwards for conditions on the accessibility relation that
validate them. Modal semantics then serves as a silent bookkeeper that faithfully manages
the iteration of K;, subject to those assumptions.?® Here is a standard menu of potential
principles to impose:

Ki ¢, if }: ;

Ki(p = ¢) = (K¢ — K; ¥);

Kig — ¢;

D9 — Ki—Ki—g;

4 Ko = KK ¢;

0.2 : -K;=K; ¢ — Ki=K;—¢;

0.3 : Ki(Kio = Kiy) VKi(Kiyp = K; ¢)
04 : ¢— (—K=Kip = —K; ¢);

5 o =Ko — K=K, o.

W3 =X Z

For a happy example, principle T says that knowledge is true. In conventional possible
worlds semantics, that corresponds to the imposition of reflexivity on the model’s ac-
cessibility relation. Learning semantics also validates T in its standard form, with an
explanation—knowledge entails that one has converged to correct belief:

(33) T: EK¢— o

The rest of the principles on the menu are plainly wrong for cognitively realistic agents.
The standard response is to re-interpret K; vaguely in terms of abilities, obligations, or
ideals, but that changes the subject from knowledge to je ne sais quoi. It is proposed,
instead, to replace material implication — with conditional feasibility (MD}-; 5. Then,
thesis 4 says, plausibly, that there exists a computable inferential procedure that turns
knowledge that ¢ into knowledge that one knows that ¢. The question addressed in this
section is which, if any, of the traditional candidate axioms is valid under that inter-
pretation, and under what restrictions, when K; is interpreted, without equivocation, as
inductive knowledge.

14.1. Deductive Cogency. Let A be a finite set of premises and let I' be a finite set of
conclusions. Suppose that A implies I, in light of 7’s information. Maybe 7 knows neither.
But is there any concrete, inferential disposition ¢ could set up in herself to guarantee that
if she knows the premises in A then she knows the conclusions in I" as well? Yes, if the
premises are inferentially stable, for learning semantics validates the following principle,
for finite, disjoint A, I' C Lg;t and for arbitrary, finite superset A’ of A that is disjoint
from I

26T the preceding section, it was shown that this timid, non-explanatory strategy is still subject to
error.
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When A = @ and I' = {¢}, thesis (34) collapses to a feasible version of the rule N of
necessitation:

When A = {¢, ¢ — ¢} and I' = {¢}, thesis (34) collapses to a feasible version of the

standard axiom K:

One may not infer rashly from FN and FK, as one may from the corresponding, traditional
axioms N and K, that the knowledge of 7 is closed under logical consequence, or even that
it might be someday. The extension of knowledge by deductive inference must proceed, as
it does in the real world, by dint of concrete, cognitive exertion. An inference method that
witnesses thesis (34) is pure deductive inference—inferring elements of I from premises
A, and for no other reason. Then convergence to correct belief that A in the actual
world results in convergence to true belief that I" in the actual world and guaranteed,
eventual avoidance of error regarding the premises in A results in guaranteed, eventual
avoidance of error regarding the conclusions in I'. In that sense, pure deductive inference
makes knowledge that I' epistemically parasitic on knowledge that A. If the parasitic
relationship is disrupted, because ¢ has independent reasons for believing some conclusion
v € I', then ¢ might be disposed to fall into error with respect to v infinitely often in
some possible worlds compatible with current information. The validity of (34) is closely
bound to allowance for serendipity. It has already been shown in terms of G p, and GF p
that (34) fails for learning:

(37) Thesis (34) is invalid with [,, Led;, Led; in place of K;.

Serendipity raises a cautionary moral about the role of deduction in natural science.
The world of science is a “dappled” pastiche of mutually incompatible models and theories
and missed connections (Cartwright 1999). Heisenberg and Schrédinger even battled over
logically equivalent hypotheses, each of which was rigorously tested over distinct domains
of phenomena.?” When contradictions are found, scientists steer around them until some
other experts resolve them, as long as the claims in question remain individually testable.
When new logical connections are found between formerly disparate research programs,
caution is exercised regarding the drawing of inferences from one program to the other until
they are cross-checked by new data. Learning semantics explains that logical conservatism.
For suppose that there are two independent research programs studying hypotheses ¢ and
1, respectively, on the basis of disparate sets of phenomena and then it is discovered by
a mathematician that v is a deductive consequence of ¢. What to do? Inferring ¢ from
¢ would generate new knowledge that ¢ from knowledge that ¢ if inquiry whether ¢ has
culminated. But if inquiry whether ¢) has culminated in knowledge that =1, then inferring
¥ from ¢ would destroy knowledge that —1). The contrapositive inference from —1) to —¢
is fraught with a similar risk of destroying knowledge that ¢. Hyper-intensional refusal to
fire either inference is guaranteed to preserve knowledge of whichever hypothesis is known

2TFor a version of the history, cf. (van der Werden 1973). Learning semantics allows for the possibility
that each scientist knew his own formulation of quantum mechanics at the same time he disputed the
competing formulation. Even neighborhood semantics (Scott 1970), which models belief as a set of
propositions, cannot model that situation.
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and leaves the door open to future empirical evidence to resolve the conflict. So far as
inquiry after the truth is concerned, deductive consistency may be a hob-goblin, indeed.

14.2. Reflection. Suppose that ¢ knows that ¢. Evidently, she may fail to know that
she knows that ¢—she may not even conceive of the question whether she knows that
¢ unless she is challenged. Or ¢ may say “¢ does not believe that she knows me”. But
inattention and self-referential tricks aside, is ¢ even capable of knowing that she knows,
even though no bell rings (James 1896) when inductive inquiry succeeds? The prospects
look grim:

...|Learning in the limit] does not entail that [the learner| knows he knows
the answer, since [the learner] may lack any reason to believe that his hy-
potheses have begun to converge. (Martin and Osherson 1998).

True, ¢ cannot know infallibly that she knows some general truth infallibly, because she
cannot even know the general truth infallibly. But there is an easy and natural inferential
strategy ¢ can adopt to know inductively that she knows inductively that ¢, and so on, to
arbitrary iterations. Define iterated knowledge by recursion:

Kz‘oﬁb = ¢;
Kz‘k+1¢ = KiKz‘k¢-

Define the sets of sentences:
¢) = {K¥¢:k <k}
Kf(0) = | K@)

keN

Then for each finite A containing ¢ and disjoint from K¥(¢), we have:*®

(38) F4*: F (SiA A Kig) (MDl=;a K (9).

As a consequence, we have the following, feasible version of the standard (infeasible)
reflection principle 4, for each k:

(39) F4: | (S;A A Kig) (MDA K5 o

A simple inferential strategy that witnesses (39) is for i to believe at ¢ that she knew that
¢ at t* if she never stopped believing that ¢ from ¢* until ¢ and to believe that she did not
know that ¢ if the alternative case obtains. That inference is intuitive: if ¢ remembers
that she retracted ¢ between t* and the current time ¢, then the retraction shakes her
confidence that she knew that ¢ already at t*. Otherwise, from ¢’s viewpoint, she had
persuasive evidence for ¢ at t* and nothing in particular has dissuaded her since then, so
of course she thinks she knew that ¢ at t*.

In contrast to the situation for deductive closure, learning that one is learning is easy—
learning implies that it is determined that one is learning and whatever is determined
can be learned by believing it no matter what and never believing its negation. Having

288trictly speaking, one must restrict K @ (¢) to some finite K¥(¢) for the statement to be well-formed,
but the proof of validity works for the unrestricted version.
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learned whether one has learned whether and having learned that one has learned that
are both valid by the same inferential strategy invoked to validate (39). So we have:

(40) Thesis (39) remains valid with K;,L;, Led;, Led; in place of K;.

14.3. The Unknowable Unknown. For Plato (1949), the least flattering epistemic
condition is hubris—failure to know that one does not know. The first step is on the
path of inquiry is to eliminate hubris. Thereafter, one comes to know and to know that
one knows. But is the fateful, first step feasible? Learning semantics delivers a negative
verdict for inductive knowledge, even in the empiricist model .

The convergence required for knowing that one knows parasitically tracks the convergence
of knowledge itself. But failure to know inductively may be witnessed only by ugly
surprises in the distant future, and the requirement to have converged already to true
belief that one will not be surprised in the future occasions the problem of induction,
with which we began. For example, suppose that ¢ has seen enough evidence to convince
her that Gpg until such time as some non-k input is received, at which time she would
drop her belief that G pg. Call i’s learning method ¢. Method ¢ yields inductive knowledge
that G py in the constantly k£ world w in which G p;, is true. Now, suppose that i possesses
some magical inferential technique A that guarantees i knowledge now that she does not
know that Gp, if she does not know that Gp; and that the inferential technique does
not alter i’s beliefs whether Gpg. Then learning method h(c) must be guaranteed to
yield knowledge immediately that ¢ does not produce knowledge that Gp,. Let w,, be
the “grue-like” world in which i receives input k& until stage m and k + 1 thereafter.
Statement G py, is false in w,,, so h(c) stabilizes to belief that —K;G py immediately in w,,,
for every m. So h(c) converges to =K;G py in world w, since w,, agrees empirically with
w until m. But, ironically, i knows that Gp, in w because G py is objective in 9+ and h
holds i’s beliefs whether ¢ fixed. So h(c) fails to avoid error in the limit whether =K;G py.

In fact, slight variants of the preceding argument suffice to invalidate the feasible ver-
sions of all of the proposed axioms between .4 and 5, so among the standard axioms, only
T, FD, and F4 are valid in learning semantics:

FB: N £ (Sigp A —¢) (MDl=;s  Ki=K;¢;

F.2: - I;A (Sl o A -K;—K; —|(]§) <MD]—>¢’¢ K;—K; ¢;

F.3: Dy [ ((Si¢ AN Siv A Ki-Ki  ¢) (MDl»4, KioKi¢) V
Vo ((Si¢ A Sip A KimK; ) (MDl2igy KinK;o);

Fd: Dy [ Si¢ N —d A -K; —¢) (MD}=;s  K;=K;o.

It suffices to let ¢ = Gpy and ¢ = G py, for distinct &, &’
The same examples refute the corresponding versions of (41-42) for knowing whether,
having learned whether, and having learned that:

(42) Theses (41-42) remain invalid with K;, Led;, Led; in place of K.

However, it is trivially feasible for ¢ to be learning whether i is not learning whether
¢ when 7 is not learning whether ¢—it suffices for ¢ to believe that she is not learning
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whether ¢ no matter what, since learning begins with operator [D];:

(43) F5L: = (Si¢ A —Li¢) (MD}=, 4 LimL; .

15. JOINT INDUCTIVE KNOWLEDGE

Plato’s original question in the Meno (1949) was not what knowledge is, but whether
virtue can be taught. Plato assumed that knowledge can be taught, but when knowledge is
inductive, that assumption raises an epistemological question. Evidently, a knowledgable
expert can exhibit her inductive knowledge to her pupils, and on a good day, she might
even induce true belief in them, but can she really transfer her inductive knowledge to
them? In a cooperative epistemic enterprise like education, it is natural to assume that
knowledge supervenes jointly on the learning strategies of the pupils and of the instructor.
In that spirit, this section presents an alternative, joint version of learning semantics that
is friendlier to cooperative epistemic efforts. In the following section, it is shown how it
is jointly feasible for the expert and a room full of pupils to acquire common knowledge
of the expert’s inductive knowledge.

Let w € W, ¢yt = (Cwtds---Cony) and d € CN. Then let u[d/t] denote the result
of substituting d for c,,; in w at t. A joint CLM satisfies the following, joint invariance
postulate, for eachi € G, weW,d e CV, andt € T:

(44) Siwlt = Siwawlt.
Joint information and determination are defined as follows:
IG,w,t = U Ii,w,t;
icG
Dawr = {u€lguws: Cut = Cupl;

with corresponding operators:

e éllm,. = {weW:Iguwe S ll9ll,. }:
IlDle ¢lly,. = {weW:Dguwe C lI6ll,. }-

Joint information is weaker than individual information, but joint determination compen-
sates, somewhat, by holding everyone’s method fixed. Joint information and determina-
tion are no longer guaranteed to be S5 operators, but they can be—e.g., everyone gets the
same information— so it is useful to have a concise notation for expressing that special
case in the object language:

|||S5G g;t* = {U) € W . (Vu € IG,w,t*) IG,u,t* = IG,u,t*}-

Define joint inductive knowledge for 7 as before, but with joint determination in place of
personal determination:

Kai¢ = GCi¢ A [D]gFG-E; 6.

Joint methodological feasibility expresses the existence of a methodological coordination
among the agents that brings about ¢:

M) dllam,. = {w € W : (3d € CY) wld/t"] € [|¢]lm,. }-
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To define joint conditional feasibility, let h = (hq,...,hy) be an N-sequence of total
recursive functions taking values in C, let h(c) = (hi(c1),...,hn(cy)), and let A be an
N-sequence of finite subsets of Lgit. Say that h preserves premises in A if and only if
h; preserves premises in A;, for each ¢ € G and, similarly, say that h depends only on
premises in A if and only if h; depends only on premises in A;, for each ¢ € G. Then h is
a joint inference procedure if and only if h is an N-sequence of total recursive functions
taking values in C' that preserves premises in A and that depends only on premises in A.
Finally, as before, let ||ty (MDJ=¢ a ¢4, denote the set of all w € W for which there
exists joint inference procedure h such that for all u € I 4

w€ [[Ylm,. = ub/t'] €[,

It remains only to define a joint version of inferential stability. Define ¢ =a d to hold if
and only if ¢; =4, d;, for all i € G. Let w € ||SqAllfy,. hold if and only if for all d € CV
such that ¢, 4+ =a d and for all w € Dg .+, t > t*, and 6 € A, if we set v/ = u[d/t*]
and ¢; = ¢; (= € p+) then:

m. & U € [0,

t,0) = g (siwl|t,9).

Crucially, a joint version of proposition 2 holds:

u € ||o

Ve, (Si,u

Proposition 3. Suppose that ¢ € A; and v € ||Sg;A
d =a cyy. Then:

(45) u € HKG,i ¢

. and let d € CN satisfy

t*
Qﬁt* N

m. = uld/t'] € [Kaio

16. CoMMON INDUCTIVE KNOWLEDGE

Given the joint perspective outlined in the preceding section and some basic assump-
tions about how the expert and pupils interact, it is jointly feasible for the expert and
her pupils to jointly possess the expert’s inductive knowledge that ¢. It suffices that the
pupils believe that ¢ if the expert does and suspend belief that ¢ otherwise. Each pupil
is then an epistemic parasite of the expert, just as the expert is an epistemic parasite
of herself when she infers deductive consequences of what she knows.?? Educated pupils
and news media science reporters can serve, in turn, as experts, resulting in a cascade of
joint scientific knowledge through the population—as long as, at the core, some expert
has direct inductive knowledge based on experience.

It is a further question whether the pupils and the expert can jointly know that they
know, know that they know that they know, etc, all the way to joint, common inductive
knowledge that ¢. Define joint, mutual, inductive knowledge to level n as follows:

Ke"o = ¢;
K" o =\ KaiKd" o,
icG

2ndeed, the pupils can know consequences of what the expert knows by deriving them directly from
what the expert believes, by the same sort of argument.

30More generally, the core expertise is grounded in a research group, but the story with respect to the
rest of the population is the same.
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Define common inductive knowledge that ¢ as the set of sentences:
Ki(@) = {Ko*o:k e N,

It is plausible that a completely trusted, infallible, public announcement that ¢ can gen-
erate common knowledge that ¢. It is less obvious that common inductive knowledge
is feasible in a room full of computationally bounded pupils who trust their instructor.
Learning semantics yields a positive verdict, based on epistemic parasitism and serendip-
ity, in close analogy to the validity argument for F4.

The expert must communicate with the pupils in some way in order to instruct them.
It suffices that the pupils receive information sufficient to correctly believe whether the
expert believes that ¢. Let e € G be the teacher and let G_ = G\ {e} be the set of pupils.
Define the operator “e teaches the pupils in G_ whether ¢” as follows:

Teed = /\ [1]cGCB.¢.

jeG_

Now it is possible to state the joint feasibility of common inductive knowledge thesis,
which is valid if A, contains ¢ and A, is disjoint from K&(¢), for all i € G:

(46) FC: |: (lSSG VAN TG,e¢ VAN SG',eA A KG’,e ¢) <MD]—)G7A Kg(QS)

Although the FC principle concerns common inductive knowledge generated and promul-
gated by a single expert, it sets the stage for a series of similar results that involve common
inductive knowledge generated through the cooperation of a team of experts—a topic of
current interest in social epistemology (e.g., Mayo-Wilson 2011).

In dynamic epistemic logic, there are models in which public announcements generate
common knowledge of what has been announced (van Benthem 2010). But how do public
announcements result in anything more than common knowledge of the fact that the
announcement was made? Plausibly, common knowledge of what has been announced is
common inductive knowledge grounded in the community’s joint strategy to disbelieve
sources caught in inconsistencies or lies. One potential extension of FC is to validate the
possibility of common inductive knowledge of what is reported in a public announcement
in models that allow for false announcements.

A familiar assumption in game theory is that the agents have common knowledge
of rationality (Aumann 1995). But how is such knowledge possible and where does it
come from? Standard possible worlds semantics has nothing to say, short of a veridical
public announcement that all players are rational, but learning semantics provides a
plausible, explanatory story. Recall the game-theoretic model described in section 7
above. Violation of the kth level of mutual rationality is detectable by horizontal play
in a centipede game of corresponding length. If all of the agents have the disposition to
continue playing down at the first move in ever longer centipede games, learning semantics
provides a determinate, explanatory, account of how common knowledge of rationality is
jointly feasible in such a group. And if every agent is disposed to cooperate by playing
sideways for a while, the group can just as easily develop inductive common knowledge
of partial cooperation!®!

31T his application is due to Jennifer Jhun, personal communication.
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17. CONCLUSION AND FUTURE DIRECTIONS

Learning semantics provides a rich, consistent, and workable conceptual framework
for modeling interactions between, and iterations of, belief, information, and time, and
inductive versions of learning, learnability, having learned, knowing, knowability, and
common knowledge. The key feature of the semantics is an assignment of concrete,
computational learning methods to each agent at each time. That makes it possible
to define inductive learning and knowledge in terms of convergence to the truth and to
avoidance of error, on the basis of increasing information through time.

Learning semantics has three important advantages over traditional possible worlds
models, for applications involving inductive knowledge and learning. (1) It sidesteps in-
ductive skepticism. (2) It imposes no logical or rational idealizations on the agent’s belief
states or learning procedures. (3) Its semantic arguments provide concrete, methodologi-
cal explanations why some principles should be valid and others invalid.

It has been shown that learning semantics validates a cognitively plausible version of
the familiar modal system S4 and plausibly refutes all of the standard axioms that have
been proposed for epistemic logic beyond S4, when material implication is replaced with
conditional feasibility. So the logical sky does not fall, after all, when belief and learning
are modeled in a cognitively plausible way. The valid versions of the S4 axioms are
explained by epistemic parasitism—the fact that an inferred statement can inherit the
convergence conditions essential for knowledge from the convergence conditions possessed
by known premises. The invalidity of the remaining axioms is explained by the fact that no
inferential procedure can detect immediately that convergence might fail in the future, due
to unforeseen surprises. Epistemic parasitism also explains how a knowledgable teacher
can convey her inductive knowledge to her pupils, as opposed to merely instilling true
belief in them, and how inductive common knowledge can spread through a community
of passive scientific consumers. Generalization of that idea to inductive learning from
the behavior of other learners provides a new understanding of the feasibility of common
knowledge of rationality (or of irrational cooperation) in games. Learning semantics
explains the scope of learnability in terms of concrete, non-learnability arguments of the
sort that are familiar in computational learning theory. It also explains how allowance
for serendipity in inductive knowledge both broadens the scope of knowability beyond
that of learnability and guarantees that knowability (as opposed to knowledge, itself) is
closed under logical consequence. Finally, learning semantics provides a surprising, but
plausible, explanation of how one can know one’s own Moore sentence ¢ A —K; ¢ without
ever failing to derive its conjuncts, and without equivocating on the times at which they
come to be known. Traditional possible worlds semantics is irrevocably committed to the
contrary conclusion, so aloofness from the details of inquiry provides no safe haven from
philosophical error.

The explanatory advantages of learning semantics come with a familiar, scientific cost—
any formal model of a complex process must abstract, to some extent, from some poten-
tially relevant details. But that is never an argument for giving up on explanation entirely.
Instead, one checks whether improvements in the fidelity of one’s model result in greater
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explanatory scope. In that spirit, the paper closes with a tentative discussion of some po-
tential refinements and extensions to the framework developed above. A repeated theme
is the importance of greater attention to the epistemic context.

17.1. Sensitivity and Safety. Learning semantics was designed to deal with inductive
skepticism. It does nothing to avert brain-in-a-vat skepticism—the entire input stream
could be the same, whether or not ¢ is true. Relevant alternatives semantics was designed
to deal with brain-in-a-vat skepticism, but cannot handle inductive skepticism. Therefore,
relevant alternatives semantics and learning semantics are not so much competitors as
mutually essential partners: the former tosses out virulent but distant possibilities of
error that would preclude even convergence to the truth, and the latter eventually weeds
out the arbitrarily nearby possibilities of error we couldn’t have noticed yet. Learning
semantics would accommodate the full advantages of both approaches if the key modality
D, were re-interpreted in terms of sensitivity or safety. The change is not entirely trivial,
since the “fact” that D; is an S5 operator is appealed to repeatedly in the preceding
development, and each such appeal must be re-examined.

17.2. Inductive Statistical Knowledge. Most scientific hypotheses are probabilistic—
even the variables of deterministic equations are measured with random error. Such
hypotheses can be tested, but a statistical test provides a guaranteed bound on chance
of error only when the hypothesis is rejected. So if general statistical hypotheses are
knowable, they are knowable only inductively.

A plausible semantics for inductive knowledge of statistical hypothesis ¢ is that i be-
lieves that ¢ with high chance that remains high in the actual world and the chance that ¢
believes that ¢ goes to zero if ¢ is false. More ambitiously, one might require, in addition,
that the chance that ¢ believes that ¢ converges monotonically to 1 in the actual world.
The interpretation of error probabilities requires some temporal gymnastics, as it does in
statistical reasoning, itself. Chance is a kind of disposition that governs future events. The
fairness of a coin determines chances for sequences of future flips. But the coin might be
bent later, after which different chances govern sequences of future events—the situation
is much the same as it was for learning dispositions. For the chance disposition opera-
tive at t, every outcome prior to ¢ has chance 0 or 1, depending on whether it actually
occurred. Therefore, the chance that a belief at t* based on a sample already taken by t*
is 0 or 1 according to the chances operative at t*. So non-trivial error probabilities must
pertain to chances operative at some reference time t** prior to sampling—e.g., when the
experimental design was originally put into motion. Then the truth of ¢ should also be
assessed with respect to the chances operative at t** rather than those operative at t*.

Since epistemic parasitism pertains to convergence in probability as well as to deter-
ministic convergence, it is anticipated that all of the preceding arguments that depend
on epistemic parasitism should generalize to the statistical setting. Also, assuming that
successive samples are independent and identically distributed (i.i.d.), successive samples
probably provide a better approximation to the fixed, underlying sampling distribution,
so the positive results concerning learnability and knowability are also expected to carry
over. However, if the sampling distribution may change from time to time, as in time series
analysis, extra assumptions are required for convergence in probability to the truth—e.g.,
that the process under study is periodic, or is driven by hidden states that recur infinitely
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often (Wei 1989). Analyzing the connection between such assumptions and statistical,
inductive knowability is a scientifically relevant, new direction for modal epistemic logic,
since statisticians tend to speak of inductive knowledge only informally, if at all.

Aside from its intrinsic interest, the extension of learning semantics to probabilistic
theories addresses a puzzle concerning the inductive knowability of future, random out-
comes. It is plausible that stochastic theories and models can be known inductively, if
inductive knowledge is possible at all. It is far less plausible that random outcomes like
coin tosses can be known in advance, even inductively. But the non-statistical version of
learning semantics underwrites such knowledge—just make a lucky guess at the outcome
(serendipity) and believe the guess until the flip is observed and drop it if it happens to be
wrong (Hendricks 2001). The good news is that future coin flips are no longer knowable
in statistical learning semantics—the chance of correct belief in the proposition ¢ that the
toss will come up heads at future time ¢ is the joint probability p(B; ¢ N ¢) < p(¢) = 1/2.
What about highly probable future events, such as that your ticket will lose the lottery?
They are knowable inductively if their chances of occurring meet the standard for being
“high” in the actual convergence condition, but no probabilistic outcome with chance less
than one is knowable on the stricter version of the semantics that requires convergence to
chance 1 of belief in the actual world.

17.3. Questions and Coherence. In light of the aim to model belief more realistically,
the logical consistency requirements necessary for knowledge whether ¢ were pared down
to the bare minimum required to recover an unambiguous verdict on ¢ for each agent.
However, that goes too far. Recall that scientist ¢ can know that the true input sequence is
¢ by guessing that it is € until € is refuted. Suppose that scientist ¢ simultaneously believes
every hypothesis of the form “the input stream is exactly primitive recursive sequence €”,
and is disposed to drop each such hypothesis when it disagrees with the data. Suppose,
by serendipity, that the true input stream e is primitive recursive, so the hypothesis
corresponding to ¢ is true. Then ¢ knows that the future will conform to e, even though
1 also believes every possible primitive recursive input stream compatible with current
information. That makes inductive knowledge too easy. Furthermore, for someone as
aphasic as i, the very concept of belief is called into question. What would ¢ predict to
happen at the next stage? Certainly not what she “knows” will happen, since she cannot
pick her known theory out of the heap of her alternative, incompatible beliefs. Science
may be incoherent overall, but each of its insular paradigms is coherent enough to generate
consensus concerning determinate predictions. So normal science within a paradigm is not
trivial in the sense under discussion, even though science may remain globally incoherent
across paradigms forever. That idea could be modeled in learning semantics by adding a
question under discussion (q.u.d.) to the epistemic context. The proposal is supported by
the current trend in linguistics toward explaining diverse discourse phenomena in terms
of such a question (Roberts 2012).

Knowledge of an answer to the q.u.d. requires that the beliefs of the scientist pick
out a unique answer, which rules out the easy knowledge just described. The advantages
of hyper-intensionality are retained. Inconsistency across question contexts is permitted
and even contradictions within a context that do not result in ambiguity concerning the
answer selected are still permitted. The correct answer may even be rejected under some



30 KEVIN T. KELLY

logically equivalent formulation, as long as no formulation of any alternative answer is
accepted.

17.4. Feasibility Contextualism. Epistemic contextualists (e.g., Lewis 1995) hold that
the standards for knowledge vary from one context to another—e.g., raising a skeptical
doubt shifts the epistemic context to one in which the doubt becomes epistemically rel-
evant, so one no longer knows what one knew before the doubt was raised. The idea is
appealing, because it does justice both to the plausibility of ordinary knowledge claims
and to the apparent force of skeptical doubts. It also addresses a puzzle concerning the
psychology of learning. According to learning semantics, it is trivial to know one’s own
method because the modality D; holds it fixed and, in the joint version of learning se-
mantics, it is trivial to know what everyone else’s method is, because D¢ ; holds them
all fixed. But when the statement known concerns those very methods, possible worlds
involving alternative methods become relevant.

Another plausible, but distinct way in which epistemic standards plausibly depend
on context is the intrinsic feasibility of answering the question under discussion. For
if “knowledge” is a social encomium whose function is to motivate the overall truth-
conduciveness of socially distributed inquiry, then that encomium provides maximum
guidance over the full range of epistemic contexts if it it is bestowed only when the agent
achieves the best standard of truth-conduciveness achievable with respect to the ques-
tion in context. Call that natural idea feasibility contextualism. For example, concrete,
cat-on-the-mat beliefs that can be decided by observation should be, so such knowledge
must be safe or sensitive. General laws cannot be known safely or sensitively, but they
are learnable, so knowledge should require that they have been learned. More general,
untestable theories are unlearnable, but can be known with serendipity, so knowledge with
serendipity suffices in that case.

Feasibility contextualism explains why scientists concerned with an inductive question
ignore general, philosophical arguments for inductive skepticism, even though they remain
fastidious concerning measurement and data analysis. When general theories are at issue,
epistemic standards adjust to accommodate knowledge of them, so safety and sensitivity
in the short run are no longer required, but error-detection in the limit can still be opti-
mized by catching the errors as soon as possible. Feasibility contextualism also explains
why scientists sometimes brand a hypothesis as “metaphysical” if it is difficult to find a
plausible, testable articulation of it. In such cases, we simply run out of applicable senses
of truth-conduciveness, so skepticism is back on the table.

Feasibility contextualism also helps to resolve a residual puzzle about prediction. It may
seem that inductive knowledge, even of future, deterministic outcomes is too easy—just
guess the outcome and wait to see what happens. But it seems fine—exemplary, even—
to deduce the same prediction from an inductively known, universal law. There is a
temptation to reach for dark, metaphysical explanations—the law endows the prediction
with some ontological “oomph” that a bare prediction lacks. Here is a more concrete,
linguistic explanation. When one infers a prediction from a law, the law remains in context
along with the prediction, and when both the law and the prediction are in context, the
operative standard for knowledge is naturally understood to be the strongest standard
applicable to both. Thus, when the prediction is not inferred from a law, the standard of
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waiting for sensitivity or safety holds sway, but in light of inferring the prediction from
a law, the operative standard is inductive. The idea also explains why the same jarring
of intuitions does not accompany the inference of “infinitely often” from “always”, for in
that case the weaker standard already applies to the conclusion.

17.5. Justification and Truth-conduciveness. Scientists prefer unified, cross-testable,
explanatory theories over dis-unified, untestable, ad hoc theories, a preference popularly
known as Ockham’s razor. Learning semantics, as developed above, does not explain
that preference, because a serendipitous guess at a complex law can count as knowledge
just as much as a serendipitous guess at a simple one. But the addition of feasibility
contextualism suggests such an explanation.’?

Suppose that the question under discussion is “what is the true form of the polynomial
law connecting X and Y'?” More precisely, assuming that there exists finite set S C N such
that the true law has form Y = fo(X) = >, 46, X", with o; # 0 for each ¢ € S, what is S?
Assume that the data are arbitrarily small open rectangles in the XY plane guaranteed
to intersect the curve Y = fp(X).3® Then there is an important structural relationship
between the question and the potential information received by i: any information true
of a simpler answer is also compatible with the truth of every more complex answer,
whereas some information received if a complex answer is true rules out all simpler and
incomparable answers. Instead of viewing those properties as merely symptomatic of
the simplicity order, take them as definitive, relative to the question in context.?* The
resulting concept of empirical simplicity assumes alternative guises, depending on the
question in context and on the space of possible, future, information states. If one is
empirically hunting for new particles or other objects, extra particles make the theory more
complex. If one is selecting among theories with free parameters and the parametrization
is well-behaved, additional parameters add extra complexity. If one compares theories that
entail different symmetry groups, breaking symmetry adds complexity. If one compares
theories with more or fewer causes, extra causes add complexity. And so on. It follows
from the general definition of empirical simplicity that every learning method capable
of inductively learning the true answer to the question can be forced to believe in each
successively more complex answer before ultimately converging to the true one. That is
an unavoidable, structural feature of the question’s semantics, relative to the space of
possible information states.

Truth conduciveness is efficient pursuit of the truth. Efficient pursuit entails that one
close with the quarry as directly as possible—a random walk or gratuitous aerobatic loops
or U-turns during the approach stretch the very concept of pursuit. In the epistemic case,
gratuitous loops and U-turns correspond to needless retractions of former beliefs. Thus,
retraction minimization is not a mere, pragmatic afterthought—it is constitutive of the

32For the details, cf. (Kelly 2010).

33In the statistical setting sketched above, the data can be understood, more realistically, as data
points sampled independently from the joint distribution generated by the model Y = f(X) + e, where
e is a normally distributed random variable independent from X and Y that has mean 0 that represents
all stray sources of inaccuracy in measurement. Running up the sample size corresponds to narrowing
the rectangles in the non-statistical semantics.

34That is an over-simplification, but it points in the right direction. Cf. (Kelly 2010) for a better
proposal.
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very concept of truth-conduciveness. Therefore, feasibility contextualism implies that
retractions prior to convergence should be minimized, relative to the current question
context. Thus, parties to the question context should forgive methods that change their
minds from simpler to more complex theories, since every learning method for the ques-
tion can be forced to retract that much prior to convergence—but they should forgive no
more retractions than those. It can also be shown that the only learning methods for the
question that minimize worst-case retractions are those that follow Ockham’s razor, by se-
lecting the uniquely simplest theory compatible with available information. So Ockham’s
razor is explained by feasibility contextualism.

The preceding explanation assumes that a fairly rich question is in context, but what
if only the known law is in context? Think of the belief Y = fg(X) as posing the default,
binary question “yes or no” unless a more refined question is in context. There is a
learning strategy that retracts at most once when the answer is Y = fo(X) (no, yes)
and at most twice when the contrary answer is true (yes, no, yes). No tighter bounds
are feasible, so that performance is also optimally truth-conducive. The only optimal
methods are methods that wait for law forms simpler than Y = f¢(X) to be refuted before
yielding a positive verdict for Y = fo(X). Thus, feasibility contextualism still entails that
Y = fo(X) cannot be known unless it is believed in accordance with Ockham’s razor.
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20. PROOFS OF PROPOSITIONS

Proof of proposition 1. Just let Ly(o, 1) return 1 if ¢ = Q4+ ¢ and o is an initial segment
of s;,,. and return 0 otherwise. O

Proof of proposition 2. Abbreviate:

Ciut*s

x = uld/i,t"].
Assume that ¢ € A and that:
(47) d=a ¢
(48) u € [[SiAllay,.;
(49) we 1Kol
From (49) we have:
(50) u € |GCi¢ gtt*;
(51) y € |IFGE; ||y, for all y € Dj e
It suffices to show that:
(52) v e [GC el
(53) y € |[FGE; |l for all y € Di e
From (47-48), we have that:
(54) ue ¢, & =€ llm,.;
(55) u € [|GB); ¢llm,. &« € |G[Bidlly,.
(56) u€ [|G(B); dllm,. & x € [G(B); ¢,

So requirement (52) follows from (50).

For requirement (53), let y € D; 5. Then s;,[t* = 5, ,[t* = 5 ua/i|t*. S0 siy|t" =
Siu|t*, by (1). Let z = ylc/i,t*]. So s;.|t* = s;,|t", again by (1) and, hence, z € D; 4.
So it follows from (51) that:

(57) 2 € |FG=Eigly,.;

and from (47-48) that:

(58) y € lélm,. < z€ldlm,.;

(59) y € [FG[Bi ¢llam,. < =€ [FG[B: ¢lam,.:
(60) y € [FG(B); dlly,. < =€ [FG(B);ollm,.-

Requirement (53) follows directly from (57-60). O
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Proof of proposition 3. Let d € C and let v € WW. Abbreviate:

c Ciut;
x = uld/t"].
Assume that ¢ € A; and that:
(61) di =4 ci;
(62) u € [SciAllan,.;
(63) u € K ¢,

Proceed as in the preceding proof, with D¢ 4+, Dg g in place of D;yy, D;z4+. The
argument for requirement (52) is the same as before. For requirement (53), let y € D¢ 4 4+
So y € D44, for some i € G. Then s;,[t* = 5;,[t" = 5 ypa/|t". S0 siy|t* = s;4[t", by
(44). Let z = y[c/t*]. So s;.|t* = s;.|t*, again by (44) and, hence, z € D; 1+ C Dy
Continue as in the preceding proof. 0

21. PROOFS OF SELECTED STATEMENTS

Proof of (7) and (8). Let w € W be given. To witness the first claim, define learning
method c¢ so that:

1 if ¢ =QuGpg and (Vt:t* <t <lh(0)) o(t) =k;
L.(o,¢) = 1 if ¢ =Qu—=Gpygand (Ft: t* <t <Ih(o)) o(t) # k;
0 otherwise.

The method that witnesses the second claim is similar, except that = and # are moved
from the second clause to the first. O

Proof of (9) and (10). The proof of the second statement is similar to that of the first.
For the first statement, suppose for contradiction that ¢ satisfies (3) and (4). It suffices
to construct ¢ € Ey such that (*) both (3) and (4) are false in arbitrary world w such
that e, = €. A purely learning theoretic argument suffices. Construct ¢ by adding chunks
in successive stages as follows, where ¢ = h(cy ;). At stage 0, present o. Let n > 0.
At stage 2n, present k until L, returns 1 for Q;+FG p,. Learning function L. must return
1 for @QuFG py eventually, because if L. never takes the bait, you continue to present k
and L, fails to converge to belief that @.«FG p, even though it is true, contradicting the
hypothesis. At that point, proceed to stage 2n + 1. At stage 2n + 1, the demon presents
k + 1 until L. returns 0 for @;«FGpg. Learning function L. must return 0 for @,FG pg
eventually, because if L. never takes the bait, you continue to present k + 1 and L, fails
to converge to belief that @;.—G p, even though it is true, contradicting the hypothesis.
At that point, proceed to stage 2n + 2. You pass through each stage, producing e that
satisfies (*). O

Proof of (29). The proof follows (Kelly 1996, proposition 7.15). Suppose the contrary.
Then we can use the witnessing L, and u € I; , 4+ to compute g(t), for ¢t > t* (for t < t*,
use a lookup table). Say that finite input sequence o of length ¢ is -dead if and only if
Ly(o',@Qu @) = 0, for each extension o’ of o of length . By (24), g|(t+1) is never t'-dead,
but by Koénig’s lemma and (27), there exists ¢’ > ¢ + 1 such that every o of length ¢ + 1
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that is distinct from g|¢ is t’-dead. Then g|(¢t + 1) is the unique sequence o that is not
t'-dead. Return the last entry of that sequence. 0

Proof of (32). By hypothesis, ¢ is knowable in w at t*. Since ¢ is knowable, let L. and
world u € I, ,, 4+ witness that fact. Let Ly believe that ¢ in all circumstances and believe,
deny, or suspend belief for both —K; ¢ and Mo; ¢ whenever L. does the same for ¢. Since
¢ is assumed to be false in some world compatible with information, ¢+ does not know that
¢. Recall that in 9, (i) the inputs to ¢ do not depend on ¢’s learning method and (ii)
the truth value of ¢ does not depend on 4’s learning method. Due to Ly’s dogmatic belief
that ¢, the case hypothesis, and (i) and (ii), there is no world in I; ,;+ in which K;¢ is
true, so we have that [1];(Mo; ¢ <> ¢) is true in w. So by (i) and (ii), agent i knows that
Mo; ¢. By construction, ¢ is conjunctively cogent with respect to Mo; ¢. 0

Proof of (34). Let A, T' be finite and mutually disjoint subsets of Lg;r. Let A C A’ and
A'NT = @. Define total recursive g such that:

glc, (o) ,T¢)) =< 0 if g =Qpu—-y AN yeTy
L.(o,¢) otherwise.

The following lemma is a familiar consequence of the s-m-n theorem of recursive function
theory:

(64) (Vtr. f)(3tr. h)(Ve,z,y €N) ¢opey(z,y) = fle,z,y).

Apply (64) to obtain total recursive h such that Ly (o,¢) = g(c,(0),"¢"). By the
definition of A and the fact that A’ is disjoint from I', we have that:

(65) ¢ =a hlc),
for each ¢ € C, and that for all z € W, t €T and v € I':

(66) Loy (si2|t, @p=K;"v) = 0;
(67) Lh(c)(si,z|t; @t* sz ’y) =1 & (\V/(S S A) Lh(c)(si,z|t,7 @t* 5) =1.
Suppose that v € I; ,, 4+ satisfies:
(68) u € [IS:A |
(69) w e [[1(A = 1),
(70) u € |KA tsmt
Abbreviate:
Ci,u,t*;

x = ulh(c)/i,t"].
So from (65),(68) and (70), obtain via proposition 2 that for each § € A:
(71) v € [Kidllam,.-
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So for each § € A:

(72) r € [GC;dllop,.;

(73) y € |IFG=E; ||y, for all y € Dj e
It suffices to show the following requirements, for each v € I':
(74) z € |GGy,

(75) y € [IFG=E;v||4y,.. for all y € D; 4 -

Let v € I'. For requirement (74), we have by (1) that = € I; 4, so (69) and (72) yield
that:

(76) z €|y

ft);tt* ‘

So (72) and (76), together with properties (66-67), yield requirement (74). For requirement
(75), suppose that y € D; ;4. So by (1), y € L4+ So (*) together with (69) and (73)
yield requirement (75). O
Proof of statement (39). Define total recursive f as follows:

7

1 if (3k) ¢ = Qp-KFo A
(V' <t <)Y = QuKFp A Lo(o|t', ¢) = 1);
0 if (3k) ¢ = QKo A
(3t <t <) = QKo A Le(o|t', ) = 0);
fle.(o) g() = 0 if (k) ¥ = @K ) A
(V' <t <)Y = QuKFp A Lo(o|t', ¢) = 1);
1 if (3k) ¢ = Qp.—KF o A
(3t <t <) = QuKFp A Le(o|t', ¢) = 0);
| Le(o,¢) otherwise.

Apply (64) to obtain h such that Ly (o,v) = f(c, (o) ,"¢"), for all ¢ € N. Suppose that
A includes ¢ and is disjoint from K{’(¢). By the definition of h, we have that for all
ceC:

(77) c =a h(c);

so h preserves A. Moreover, by construction, h depends only on A. Furthermore, for all
zeW,teT,and k € N:

(78) Liy(siz|t, @uKF ) =1 & (V' t" <t <) Ly (six]t, Qp @) = 1;
(79) L (8izlt, @=KF @) =1 & (3t 1 t* <t/ <t) Ly (si.|t', Qe ¢) = 0.
Suppose that v € I; ,,+ satisfies:

(80) u € [ISiAll,.;

(81) u € |Kiglly,.-
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Abbreviate:

Ci,u,t*;
x = ulh(c)/i,t"].
From (77), (80) and (81), obtain via proposition 2 that = € ||K; ¢4

My —
Therefore, z € [[¢lfy,. = 1K & tm,.- So we have the base case z € ||K'(¢)

t*
Dﬁt* *

Ki' ¢
t*

gﬁt* N

Next, assume for induction that x € ||K**(¢)||gy .. So:
(82) v € [KiK" ¢llm,.;
and, therefore:
(83) z € |GCK" llky,.;
(84) y € |IFG-EK{" ¢|liy,.. for all y € D;4y- .

For z € ||[K*"2(¢)

in turn, to show:
(85) r € |GCKK" ol :
(86) r € ||[FG-EK;K/" ¢

.. it suffices to show that: = € KKK o

i For that, it suffices,
t

g;t*, forally € D; 44+ .

Requirement (85) expands to the requirements:

(87) z € [KiKi" ¢l

(88) r € |GBKK" ¢lliy,.;
(89) v € [|G(B),KiK" .
Requirement (87) is just (82). Hence, (83) yields:

(90) z € |GBLK" ¢llm,.;
(91) v € [|G(B)K" glly

Requirements (88-89) follow from (90-91) and properties (78-79) of h.
For requirement (86), suppose that y € D, , 4. It suffices to show that for all y € D; , 4+

(92) y € |GF[Bli=KiK* olltm,. = u & [IKiK" dllan,.;
(93) y € ||GF[BliKK" ¢llin,. = v € [IKiK" ¢lliy,.-
(94)

For requirement (92), suppose that:
(95) y € |GF[B]~K/K/" ¢
Then by property (79) of h, there exists ¢ > ¢* such that y & ||B; ¢|lgy,., so by property

(78), we have that y & |B;K;" ¢[|&;,.. Soy & [[KK" ¢
For requirement (93), suppose that:

(96) y € |IGFBLKK" ¢l

t*
M+

t*
mt* :
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For the consequent y € HK-K’“ (bem , it sufﬁces, as usual, to show the requirements:

(97) y € ||GCK”

(98) z € ||FGﬁEK/f¢||%, for all z € D; 4 .

Requirement (98) is just (84), since D; 4+ = D,-ut*. Requirement (97) expands to:
(99) y € Ko

(100) y € |G[BJiK; </5 zt;tt*;

(101) y € lG(B);

For requirement (99), we have from (96) and property (78) of h that y € ||GF[B];K,"
So y € |K; kngHfmt*, by (84). For requirement (100), note that (96), along with property
(78) of h implies that y € ||G[B]; ¢ which implies requirement (100) in light of
property (78) and requirement (101) in hght of property (79). O

Proof of statement (40). For the Led; case, follow the proof of (39) with Led; in place of
K; and C; in place of E;. For the L; case, make corresponding substitutions and ignore
the actual convergence requirements. For the Led; case, add cases for actual convergence
to true belief that —¢. For the K; case, do the same, but retain C; in place of E;. 0

Proof of statement (41). Let w = (g, c) be a world in D«. Let total recursive h preserve
belief whether ¢ = Gpy. Let ¢* be as in the proof of statement (7). Let ¢ € CV and let
we = (¢/,c[c*/i]y+), for arbitrary €’ € Ey. Let 7(t) = e(t) for t < ¢t* and let 7(t) = k for
t > t*. Let (t') = 7(t') for ¢’ > t and let 7,(¥') = k+ 1 for ¢’ > t. It is easy to verify that
for all ¢t > t*:

(102) w, € [KiGpgllfy,.;

(103) w, €
Since the truth of Gp, does not depend on methods in 91+, we have for all t > t* that:
(104) Wr, € Ly,

So it suffices to show that w.,[h(c*)/i,t*] € ||K;—K;G pkat*. For that it suffices to show
that at least one of the following statements holds:

(105) wr [h(c?) /1, 1] € [[GCi—K; ¢l
(106) wr, [R(¢") /i, "] & ||[D}:FG-E;
Case 1: wy,[h(c*)/i,t*] & |GB;=K;G p|ly,., for some ¢ > t*. So (105) holds, in light of
(103).
Case 2: wy,[h(c*)/i,t*] € ||GB;=K;Gpy||& ., for all ¢ > ¢*. Then since 7|t = 7|t, for

each t > t*, we have that w,[h(c*)/i]>¢ € ||GBZ~—|KiG Pllfy,.. Note that w, € I, i by
construction and (1). So (106) holds, in light of (102). O

t*
t* Y

Proof of statements (42-42). One merely has to check that the respective antecedents of
the various conditionals are satisfied by each world w;, in the proof of (41). For (42),
observe that —¢ is true in w,,, by construction. For (42), observe that ¢* suspends belief
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concerning —K;—¢. For (42), observe both that ¢* suspends belief concerning —¢ and that
—¢ is true in w,,. For (42), let w € W and let total recursive h preserve both ¢ and .
To refute the second disjunct of (42) in w, let ¢** follow the strategy of ¢* with respect
to ¢, except that ¢** believes that —K; 1) no matter what. Then, due to ¢**’s suspension
of belief whether 1 at t*, we have that ¢** witnesses the truth of K;—=K; ¢ in every world,
so the argument for (41) establishes the falsehood of the second disjunct of (42) in w.
Reversing the roles of ¢ and 1 establishes that the first disjunct of (42) is also false in
w. 0

Proof of statement (46). Define total recursive f. just as in the proof of (39), except that
Ki*¢ is replaced with KgF¢. For j € G_, define total recursive fj just like f,, but with
the condition L.(c|t’,B; ¢) = 1) in place of condition L.(co|t’,¢) = 1). Apply (64) to each
fi to obtain respective, total recursive function h;. Let h = (hq,..., hy).

Suppose that ¢ € A, and that A; N K = (), for each ¢ € G. By the definition of h, we
have that for all ¢ € CV:

(107) c =a h(c);

so h preserves A. By construction, A depends only on A. Furthermore, for all 1 € G,
zeW,teT,and k € N:

(108) Liy(silt,Qpu=Ke" ¢) =1 & Ly (si.|t, @-Ke" ¢) = 0;.
Suppose that v € I; ,,+ satisfies:
(109) u € [[1S5¢]l4n,. ;
(110) u € [[Teedlm,.;
(111) u € [SceAll,.;
(112) u € [Kaedlls,..
Abbreviate:
= Cjut*;

r = ulh(c)/i,t"].
From (107), (111) and (112), obtain via proposition 3 that:
(113) r € ||Kgeo
Note that for 7 € G_ and z € W we have by the definition of h that:
(114) Ly (o) (802t QK" @) =1 & (V0" <t/ < 1) Ly (o) (812]t, Qe ¢) = 1
(115) L ;) (80|t @K @) = 1 & (Wt 0 t* <t <t) Lpy (o) (802t QB 9) = 1;

Let y € Dgap C Igae. S0y € Igy by (44). Then by (110), we have for all j € G_
that y € [|GC;B. ¢|lfy,.. Hence, by (114-115), we have for all i € G, y € Dgqy-, and
ke N:

(116) Lhi(ci)(si,y‘ta (@ KGk (;5) =1 & (Vt/ <t < t) th(ce)(si7y‘t/, Qy (b) =1;

t*
mt* *
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By (113), (108), and (116), we have that z € ||Kg; (bH}fm , for allj E G_, so again by
(113) we have = € ||Kg* Ol
the base case || K&(¢)llgy,.

Next, assume for induction that = € ||K&™(¢)|4;,. and show that = € [[K&(9) Ik
By the induction hypothesis, we have, for each i € @ that:

. Thus, we have

(117) z € |[[Ke,

and, therefore:

(118) z € |

(119) y € HFGﬁEKG ¢Hmt*, for all y € Dg yv

For x € HKE”((ﬁ)Hg;t*, it suffices to show, for each ¢ € G, that: x € [|Kg.Ka,
For that, it suffices, in turn, to show:

(120) z € ||GCiKe,

(121) v € |FG-EKq K" ¢ gn for all y € Dg s+ -
Requirement (120) expands to the requirements:

(122) S ||KG,iKGk¢||gtt*§

(123) v € |IGB ]‘KGiKGk(bHS;I ;

(124) z € |[G(B)Kg,

Requirement (122) is just (117). Hence, (118) yields:

(125) v € |G[B;

(126) z € [G(B)Ks" ¢lly

Requirements (123-124) follow from (125-126) and properties (108) and (116) of h.

For reuirement (121), suppose that y € Dg .. It suffices to show that for all y €
DG,x,t*:
(127) y € |GF[Bli~KeiKe" dllm,. = v ¢ K.
(128) y € |GF[BliKKe" dllm,. = v € K

t*

For requirement (127), suppose that y € ||GF[B];=Ka.:Ks" ¢4,
(116) and (108) of h, we have that y & ||G[B];
For requirement (128), suppose that:

(129) y € [GF[BlK,

Then by properties
. So Yy g ||KG i

For the consequent y € ||Kg,; tzm ., it suffices, as usual, to show the requirements:

(130) y €
(131) : € HFGﬂEiKG Ik

fmt*, for all z € Dg y - .
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Requirement (131) is just (119), since Dg e+ = Dgup by (109).%* Requirement (130)
expands to:

(132) y € K" ollam,.;
(133) y € |IG[BliK:" llim,.
(134) y € [IG(B)Ke" ¢llam,.-

For requirement (132), we have from (129) and property (116) of h that y € ||GF[B];Kg" ¢ .
Soy € ||Kg" ¢llém,..» by (119). For requirement (133), note that (129), along with property
(116) of h implies that y € [|G[B]; ¢||4,., Which again, in light of property (116) implies
requirement (133). Requirement (134) is then immediate by property (108) of h. O

35This is the proof’s only appeal to the S5 property for information.



