
Chapter 30
Logic and Complexity in Cognitive Science

Alistair M. C. Isaac, Jakub Szymanik and Rineke Verbrugge

Abstract This chapter surveys the use of logic and computational complexity theory
in cognitive science. We emphasize in particular the role played by logic in bridging
the gaps between Marr’s three levels: representation theorems for non-monotonic
logics resolve algorithmic/implementation debates, while complexity theory probes
the relationship between computational task analysis and algorithms. We argue that
the computational perspective allows feedback from empirical results to guide the
development of increasingly subtle computational models. We defend this perspec-
tive via a survey of the role of logic in several classic problems in cognitive science
(the Wason selection task, the frame problem, the connectionism/symbolic systems
debate) before looking in more detail at case studies involving quantifier processing
and social cognition. In these examples, models developed by Johan van Benthem
have been supplemented with complexity analysis to drive successful programs of
empirical research.

30.1 Introduction

How can logic help us to understand cognition? One answer is provided by the
computational perspective, which treats cognition as information flow in a computa-
tional system. This perspective draws an analogy between intelligent behavior as we
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observe it in human beings and the complex behavior of human-made computational
devices, such as the digital computer. If we accept this analogy, then the behavior of
cognitive systems in general can be investigated formally through logical analysis.
From this perspective, logical methods can analyze:

1. the boundary between possible and impossible tasks;
2. the efficiency with which any possible task can be solved; and
3. the low-level information flow which implements a solution.

This chapter will survey some examples of the application of logical techniques in
each of these areas.

In general, we will see a back-and-forth between logical analysis and empirical
findings. This back-and-forth helps to bridge the gap between the normative and
descriptive roles of logic. For example, one may believe that people should perform
a certain way on a given task because that is the “logical” or “rational” thing to do.
We observe that they do not, in fact, perform as predicted. This does not change
our assessment that human behavior can be described in terms of logical operations,
but it changes our analysis of which task exactly humans perform in response to a
particular experimental setup. The Wason selection task provides an example of this
sort (Sect. 30.2.1).

Likewise, suppose we analyze the complexity of a task and determine that it has
no efficient solution. If we observe humans apparently solving this task, we use this
analysis as evidence that they are in fact solving a different, simpler problem. More
generally, complexity analysis can make predictions about the relationship between,
for example, input size and solution speed for particular tasks. These predictions can
be compared with empirical evidence to determine when subjects switch from one
algorithm to another, as in the counting of objects in the visual field or quantifier
processing (Sect. 30.5.3).

Given the ubiquity of logic and its flexibility as a tool for analyzing complex
systems, we do not presume to cover all possible roles of logic in cognitive science.1

However, focusing on the computational perspective highlights two properties of
logical analysis essential for cognitive science: it can clarify conceptual debates
by making them precise, and it can drive empirical research by providing specific
predictions. After some additional background on the computational perspective
and Marr’s levels of analysis, we conclude this section with a brief discussion of the
influence of Johan van Benthem and an outline of the remainder of the chapter.

1 For more references on the interface between logic and cognition, see also the 2007 special
issue of Topoi on “Logic and Cognition”, ed. J. van Benthem, H. Hodges, and W. Hodges; the
2008 special issue of Journal of Logic, Language and Information on “Formal Models for Real
People”, ed. M. Counihan; the 2008 special issue of Studia Logica on “Psychologism in Logic?”, ed.
H. Leitgeb, including [8]; and the 2013 special issue of Journal of Logic, Language and Information
on “Logic and Cognition” ed. J. Szymanik and R. Verbrugge.
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30.1.1 The Computational Perspective

The Church-Turing Thesis states that all computation, in the intuitive sense of a
mechanical procedure for solving problems, is formally equivalent to computation
by a Turing machine. This is a conceptual claim which cannot be formally proved.
However, all attempts so far to explicate intuitive computability, many of them inde-
pendently motivated, have turned out to define exactly the same class of problems.
For instance, definitions via abstract machines (random access machines, quantum
computers, cellular automata, genetic algorithms), formal systems (the lambda calcu-
lus, Post rewriting systems), and particular classes of function (recursive functions)
are all formally equivalent to the definition of Turing machine computability. These
results provide compelling support for the claim that all computation is equivalent
to Turing computation (see, for example, [27]).

If we accept that the human mind is a physical system, and we accept the Church-
Turing Thesis, then we should also accept its psychological counterpart:

The human mind can only solve computable problems.

In other words, cognitive tasks comprise computable functions. From an abstract
perspective, a cognitive task is an information-processing task:

Given some input (e.g. a visual stimulus, a state of the world, a sensation of pain), produce
an appropriate output (e.g. perform an action, draw a conclusion, utter a response).

Generally, then, cognitive tasks can be understood as functions from inputs to out-
puts, and the psychological version of the Church-Turing Thesis states that the only
realistic candidates for information-processing tasks performed by the human mind
are computable functions.

Not everyone accepts the psychological version of the Church-Turing Thesis. In
particular, some critics have argued that cognitive systems can do more than Turing
machines. For example, learning understood as identifiability in the limit [59] is not
computable (see [72] for an extensive discussion). Another strand of argumentation
is motivated by Gödel’s theorems. The claim is that Gödel’s incompleteness results
somehow demonstrate that the human mind cannot have an algorithmic nature. For
example, Lucas [78] claimed: “Gödel’s theorem seems to me to prove that Mechanism
is false, that is, that minds cannot be explained as machines”. He gives the following
argument: A computer behaves according to a program, hence we can view it as a
formal system. Applying Gödel’s theorem to this system we get a true sentence which
is unprovable in the system. Thus, the machine does not know that the sentence is true
while we can see that it is true. Hence, we cannot be a machine. Lucas’ argument was
revived by Penrose [93] who supplemented it with the claim that quantum properties
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of the brain allow it to solve uncomputable problems. Lucas’ argument has been
strongly criticized by logicians and philosophers (e.g. [6, 96]), as has Penrose’s
(e.g. [39]).

If identifiability in the limit is the correct analysis of learning, or if the arguments
from Gödel’s theorems are correct, then we must accept the possibility of “hyper-” or
“super-Turing” computation, i.e. the physical realization of machines strictly more
powerful than the Turing machine. Examples of such powerful machines have been
explored theoretically, for instance Zeno machines (accelerated Turing machines),
which allow a countably infinite number of algorithmic steps to be performed in finite
time (see [119] for a survey), or analog neural networks, which allow computation
over arbitrarily precise real values (e.g. [108, 109]). However, no plausible account of
how such devices could be physically realized has been offered so far. Both Penrose’s
appeal to quantum properties of the brain and Siegelmann’s arbitrarily precise neural
networks fail to take into account the noise inherent in any real-world analog system. 2

In general, any physical system, including the brain, is susceptible to thermal noise,
which defeats the possibility of the arbitrarily precise information transfer required
for hyper-computation.

However, there are two more interesting reasons to endorse the psychological
version of the Church-Turing Thesis than simple physical plausibility. The first is its
fruitfulness as a theoretical assumption. If we assume that neural computability is
equivalent to Turing computability, we can generate precise hypotheses about which
tasks the human mind can and cannot perform. The second is the close concordance
between the computational perspective and psychological practice. Experimental
psychology is naturally task oriented, because subjects are typically studied in the
context of specific experimental tasks. Furthermore, the dominant approach in cog-
nitive psychology is to view human cognition as a form of information processing
(see e.g. [118]). The natural extension of this information processing perspective
is the attempt to reproduce human behavior using computational models. Although
much of this work employs Bayesian or stochastic methods3 (rather than logic-based
formalisms), it is predicated on the assumption of the psychological version of the
Church-Turing Thesis.

2 Siegelmann repeatedly appeals to a result in Siegelmann and Sontag [107] when arguing in
later papers that analog neural networks do not require arbitrary precision (and are thus physically
realizable). In particular, their Lemma 4.1 shows that for every neural network which computes over
real numbers, there exists a neural network which computes over truncated reals (i.e. reals precise
only to a finite number of digits). However, the length of truncation required is a function of the
length of the computation—longer computations require longer truncated strings. Consequently, if
length of computation is allowed to grow arbitrarily, so must the length of the strings of digits over
which the computation is performed in a truncated network. Thus, one still must allow computation
over arbitrarily precise reals if one is considering the computational properties of analog neural
networks in general, i.e. over arbitrarily long computation times.
3 For an overview, see the 2006 special issue of Trends in Cognitive Sciences (vol. 10, no. 7) on
probabilistic models of cognition, or [129].
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30.1.2 Marr’s Levels

If we assume the psychological version of the Church-Turing Thesis, what does it
tell us about how to analyze cognition? Marr [79] proposed a general framework for
explanation in cognitive science based on the computational perspective. He argued
that any particular task computed by a cognitive system must ultimately be analyzed
at three levels (in order of decreasing abstraction):

1. the computational level (the problem solved or function computed);
2. the algorithmic level (the algorithm used to achieve a solution); and
3. the implementation level (how the algorithm is actually implemented in neural

activity).

Considerations at each of these levels may constrain answers at the others, although
Marr argues that analysis at the computational level is the most critical for achieving
progress in cognitive science. Combining Marr’s arguments with those of Newell
[90], Anderson [1] defends the Principle of Rationality, which asserts that the most
powerful explanation of human cognition is to be found via analysis at the compu-
tational level under the assumption that task performance has been optimized on an
evolutionary timescale, and not via analysis of underlying mechanisms.

However, Marr’s three-level system can only be applied relative to a particu-
lar computational question. For instance, a particular pattern of neural wiring may
implement an algorithm which performs the computational function of detecting
edges at a particular orientation. But of each neuron in that pattern, we can ask what
is its computational function (usually, to integrate over inputs from other neurons)
and how is this function implemented (electrochemical changes in the cell). Like-
wise, we may take a detected edge as an informational primitive when analyzing a
more high-level visual function, such as object identification. Nevertheless, the most
obvious examples of computational-level analysis concern human performance on
behavioral tasks, and the obvious target for implementation-level analysis is neural
wiring. Algorithmic analysis via complexity theory can then play the crucial role of
bridging the gap between these two domains.

30.1.3 The Contributions of Johan van Benthem

Johan van Benthem’s research intersects with cognitive science at many places,
several of which are discussed elsewhere in this volume. The present chapter focuses
on two specific contributions of Johan van Benthem’s which, when supplemented
with complexity analysis, have generated fruitful programs of empirical research:
his analysis of quantifiers as automata (Sect. 30.5.2) and his models of interactive
social reasoning (Sects. 30.6.1, 30.6.2).

The remainder of this chapter surveys applications of logic in cognitive science
which are not directly connected to the specifics of Johan van Benthem’s research.
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Nevertheless, our aim in crafting this survey has been to illustrate a theme which can
be found throughout Johan van Benthem oeuvre, namely an ecumenical approach to
formal systems, emphasizing commonality and fine structure rather than conflict and
divergence. Where some would seek to defend the advantages of one system over
others, Johan van Benthem’s seeks to find ways in which apparent competitors are
at essence the same (commonality) or, if they do differ, exactly how they differ, and
whether or not intermediary systems might lie in between (fine structure). The theme
of commonality emerges in our discussions of the Wason selection task (Sect. 30.2.1)
and the symbolic/connectionist debate (Sect. 30.3.2). We emphasize the fine structure
approach in our discussions of non-monotonic logics and hierarchies of complexity.

Our discussion is organized around Marr’s three levels. After arguing for the
importance of logic at the computational level through the famous examples of the
Wason selection task and the frame problem (Sect. 30.2), we survey the role logic
can play in bridging the gap between the algorithmic and implementation levels
(Sect. 30.3). We then pause to introduce the basics of computational complexity
theory and the P-Cognition Thesis (Sect. 30.4), before investigating the role that
complexity analysis can play in bridging the gap between the computational and
algorithmic levels through the examples of quantifier processing (Sect. 30.5) and
social reasoning (Sect. 30.6).

30.2 The Computational Level: Human Behavior

A number of results from experimental psychology seem to indicate that humans
do not behave in accordance with the recommendations of classical logic. Yet logic
forms the foundation for norms of ideal rationality. Even fallacies of probabilistic
or decision-theoretic reasoning often rest on violations of basic logical principles.
Consider, for example, the conjunction fallacy: after reading a short passage about
Linda which describes her as a social activist in college, 85 % of subjects rated the
proposition that “Linda is a bank teller and is active in the feminist movement” as
more probable than the proposition that “Linda is a bank teller” [133]. This is a fallacy
because the axioms of probability ensure that P(A&B) ≤ P(A) for all A and B,
where this constraint itself follows from the basic axiom A∧ B → A of propositional
logic. Do results such as these demonstrate that humans are fundamentally irrational?

We argue that the apparent irrationality of human behavior does not undermine
the use of logic in cognitive science, rather it provides evidence for the correct com-
putational analysis of the task being performed. We examine the example of the
Wason selection task, where apparently irrational behavior drove the development
of increasingly sophisticated computational models. After discussing this specific
example, we’ll look at the frame problem, a more general challenge to the computa-
tional perspective. This problem motivated the development of non-monotonic logic
as a means of providing a formal analysis of human reasoning. This tool will also
prove useful when we examine the relationship between algorithm and implementa-
tion in Sect. 30.3.
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30.2.1 Is Human Behavior Logical?

The Wason selection task [137, 138] is very simple. Subjects are shown four cards
and told that all cards have a number on one side and a letter on the other. The
faces visible to the subject read D, K , 3, and 7. The subject is then told “Every card
which has a D on one side has a 3 on the other” and asked which cards they need
to turn over to verify this rule. From a classical standpoint, the claim has the basic
structure of the material conditional “D is on one side → 3 is on the other side”,
and the correct answer is to turn over cards D and 7. However, the most common
answers (in order of decreasing frequency) are (1) D and 3; (2) D; (3) D, 3, and 7;
and (4) D and 7. The classically correct answer ranks fourth, while the first-ranking
answer includes an instance of the logical fallacy of affirming the consequent: judging
that 3 is relevant for determining whether the conditional is true. Wason’s robust and
frequently reproduced result seems to show that most people are poor at modus tollens
and engage in fallacious reasoning on even very simple tasks. Are we really this bad
at logic? Even worse, Cheng and colleagues [20] suggest people may continue to
do poorly at the task even when they have taken an introductory logic class! Does
this imply that human behavior does not decompose into logical steps? Or that our
neural wiring is somehow qualitatively different from the logical structure that can
be found in typical computational devices?

As it turns out, there are complexities in the data. The original selection task
involved an abstract domain of numbers and letters. When the problem is rephrased in
terms of certain types of domain with which subjects are familiar, reasoning suddenly
improves. For example, Griggs and Cox [60] demonstrate that if cards have ages on
one side and types of drink on the other, subjects perform nearly perfectly when the
task is to determine which cards to turn over to ensure that the rule “if a person is
drinking beer, then that person is over 19 years old” is satisfied. This study builds
upon earlier work by Johnson-Laird et al. [70], demonstrating a similar phenomenon
when the task involves postal regulations.

What exactly is different between Wason’s original setup and those involving
underage drinking and postal regulations, and how should this difference affect our
computational model? Johnson-Laird et al. [70] and Griggs and Cox [60] concluded
that humans are better at logical reasoning in domains with which they are familiar:
since the original Wason task involves an abstract domain of letters and numbers,
subjects are confused and fail to reason correctly. Cosmides [28] and Cosmides and
Tooby [29] argue that the results tell us something about cognitive architecture. In
particular, they conjecture that questions about postal regulations and drinking laws
trigger a “cheater detection module.” The proposed module is said to be hard-wired
to reason effectively in contexts where free-riders might undermine social structure,
but provides no logical support for domain-general reasoning.

Stenning and van Lambalgen [117] propose an illuminating new logical analysis
of the Wason selection task. They point out that Wason’s assertion that there is
only one correct answer is too quick, as it assumes a single interpretation of an
ambiguous task. Subjects who interpret the described rule as stating some other kind
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of dependency between D’s and 3’s than that captured by the material conditional
are not necessarily making an error. The key here is in figuring out the relevant
difference between versions of the task on which subjects perform in accordance
with classical rules and versions (such as the original) on which they do not. Is
it because the latter are abstract and the former concrete? Because the latter are
unfamiliar and the former familiar? Because the latter are domain-general while the
former involve cheater detection? Stenning and van Lambalgen’s novel suggestion
here is that the crucial difference is in whether the subject interprets the task as merely
checking satisfaction of instances or as actually determining the truth of a rule. In
the case of familiar deontic rules, their truth is not at issue, only whether or not they
are being satisfied. The deontic nature of these rules means that turning cards over
cannot falsify the rules: underage drinking is still wrong, even if one discovers that
it occurs. This strictly limits interpretation of the task to checking whether the rule
has been satisfied. In contrast, the original version of the task may be interpreted as
involving either a descriptive or a prescriptive rule, greatly increasing the cognitive
burden on the subject.

None of these analyses of the Wason selection task abandons logic. Johnson
Laird et al. [70] and Griggs and Cox [60] shift logical reasoning from innate abil-
ity to learned behavior in familiar domains. Cosmides and Tooby [29] locate logical
reasoning within the hard wiring of domain-specific modules. Stenning and van Lam-
balgen [117] identify logical structure with neural structure and argue that apparent
violations of logical principles are a side effect of task ambiguity.

30.2.2 The Frame Problem and Non-monotonic Logics

The Wason selection task was designed to probe classical deductive reasoning, but
deduction does not exhaust logical inference. In a complex and changing world,
cognitive agents must draw conclusions about their circumstances on the basis of
incomplete evidence. Crucially, this evidence is defeasible, which means that con-
clusions drawn from it may be defeated by later evidence. For example, suppose I
wake up in a strange place and hear voices around me speaking in Chinese; I might
conclude that I am in a Chinese restaurant. When I feel the surface on which I lie
gently undulating, however, I might revise my conclusion, deciding instead that I
have been shanghaied and am currently a passenger on a Chinese junk. Although
my evidence has increased, my conclusions have changed. Modeling this type of
reasoning requires a non-monotonic framework.

Typically, a non-monotonic logic supplements an underlying classical logic with
a new, non-monotonic connective and a set of inference rules which govern it. The
rules describe a logic of defeasible inference, inferences which are usually safe, but
which may be defeated by additional information. For example, from the fact that
this is a bird, I can usually conclude that this can fly. This inference can be defeated,
however, if I learn that this is a penguin. Symbolically, we want our system to ensure
that Bird(x) ⇒ Fly(x), but Bird(x) ∧ Penguin(x) �⇒ Fly(x). Concepts which formalize
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this defeasibility include circumscription [80], negation as failure [24], and default
reasoning [98].

The original motivation for non-monotonic logic came from consideration of a
particular type of defeasible reasoning, namely reasoning about a changing world.
When an event occurs, humans are able to reason swiftly and effectively about both
those features of the world which change and those which do not. The problem of how
to keep track of those features of the world which do not change is called the “frame
problem” [81]. The frame problem comes in both a narrow and a broad version (see
the discussion in [33]). The broad version concerns the potential relevance of any
piece of information in memory for effective inference, and has troubled philosophers
of cognitive science since at least [42]. The original, narrow problem, however, has
been effectively solved by non-monotonic logic (see [105] for a complete history
and detailed treatment).

The basic idea is easy to see. If we allow ourselves default assumptions about the
state of the world, we can easily reason about how it changes. For example, we might
assume as a default that facts about the world do not change unless they are explicitly
addressed by incoming evidence. Learning that you ate eggs for breakfast does not
change my belief that my tie is blue. Without the basic assumption that features of
the world not mentioned by my incoming evidence do not change, I would waste
all my computational resources checking irrelevant facts about the world whenever
I received new information (such as checking the color of my tie after learning what
you had for breakfast). This consideration inspired McCarthy’s assertion that, not
only do “humans use …‘non-monotonic’ reasoning,” but also “it is required for
intelligent behavior” [80].

A more sophisticated form of default reasoning is found in systems which employ
“negation as failure”. Such a system may derive ¬A provided it cannot derive A.
Negation as failure is frequently implemented in systems using Horn clauses, such as
logic programming. Horn clauses state conditional relations such that the antecedent
is a (possibly empty) conjunction of positive literals and the consequent is a single
positive literal or falsum. In general, the semantics for systems involving negation as
failure involve fixed points, e.g. finding the minimal model which satisfies all clauses
(for a survey, see [40]).

Kraus et al. [71] provide a unified approach to a hierarchy of non-monotonic logics
of varying strengths. Their insight was to generalize the semantics of [106], which
used a preference (“plausibility”) ordering over worlds as a model for non-monotonic
inference. Kraus et al. [71] realized that increasingly strict constraints on this seman-
tic ordering correspond to increasingly powerful sets of syntactic rules, and used this
insight to define the systems C ⊆ CL ⊆ P ⊆ M, where C (“cumulative reason-
ing”) is the weakest non-monotonic system they consider and M (“monotonic”) is
equivalent to standard propositional logic. Intermediary systems are characterized
semantically by added constraints on the plausibility ordering over worlds and syn-
tactically by the addition of stronger inference rules. For example, models for C are
sets of worlds ordered by a relation ≺ which is asymmetric and well-founded. C is
strengthened to the system CL by adding the inference rule Loop:
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α0 ⇒ α1, α1 ⇒ α2, . . . , αk−1 ⇒ αk, αk ⇒ α0

α0 ⇒ αk
(Loop)

Semantically, models for CL add the constraint that ≺ be transitive, i.e. form a strict
partial order. Kraus et al. [71] show that systems which use Horn clauses collapse
the distinction between CL and P.

In solving the frame problem, non-monotonic logics have proved their power for
modeling defeasible inference at the computational level. As we shall see in the next
section, they are also powerful tools for analyzing the structure of the implementation
level.

30.3 Between Algorithm and Implementation

How are computations performed in the brain? The answer which has dominated
neuroscience since the late nineteenth century is the neuron hypothesis of Ramón
y Cajal. He was the first to observe and report the division of brain tissue into
distinct cells: neurons. More importantly, he posited a flow of information from axon
to dendrite through this web of neural connections, which he denoted by drawing
arrows on his illustrations of neural tissue. From the computational perspective, it is
natural to identify this flow of information from neuron to neuron as the locus of the
computation for solving cognitive tasks.

It is worth noting that this is not the only game in town. A plausible alternative to
the neuron hypothesis comes from the dynamical systems perspective, which asserts
that the behavior of a family of neurons cannot be reduced to signals communicated
between them. Instead, this perspective asserts that computations should be modeled
in terms of a dynamical system seeking basins of attraction. Neuroscientists such
as Freeman [44, 45] find support for this view in observed neural dynamics, while
philosophers such as van Gelder [51, 52] have argued that the dynamical systems
perspective constitutes a substantive alternative to the computational perspective of
Sect. 30.1.1. With the recent interest in embodied and extended theories of mind, the
dynamical systems perspective has become ubiquitous (e.g. Gärdenfors, this volume;
see [23] for a survey). In the context of the present discussion, however, we treat it
not as an alternative to computationalism, but as a substantive hypothesis within the
computational paradigm.

Logic provides an abstract symbolic perspective on neural computation. As such,
it can never be the whole story of the implementation level (which by definition
involves the physical instantiation of an algorithm). Nevertheless, logic can help
bridge the gap between the implementation and algorithmic levels by analyzing
structural similarities across different proposed instantiations. For example, if we
subscribe to the neuron hypothesis, it is natural to look for logic gates in the wiring
between neurons. But we may also look for logic gates in the wiring between fami-
lies of neurons, or equivalent structure in the relations between basins of attraction
in a dynamical system. Logical analysis can distinguish the commonalities across
implementation-level hypotheses from their true disagreements.



30 Logic and Complexity in Cognitive Science 797

30.3.1 Logical Neurons

The classic work of McCullogh and Pitts [82] proved the first representation theo-
rem for a logic in an artificial neural network. In general, a representation theorem
demonstrates that for every model of a theory, there exists an equivalent model within
a distinguished subset. In this case, the “theory” is just a time-stamped set of propo-
sitional formulas representing a logical derivation, and the distinguished subset in
question is the set of neural networks satisfying a particular set of assumptions, for
example, neural firing is “all or none”, the only delay is synaptic delay, and the
network does not change over time. McCulloch and Pitts show the opposite direc-
tion as well: the behavior of any network of the specified type can be represented
by a sequence of time-stamped propositional formulas. The propositions need to be
time-stamped to represent the evolution of the network through time: the activations
of neurons at time t are interpreted as a logical consequence of the activations of
neurons at time t − 1.

McCulloch and Pitts had shown how neurons could be interpreted as performing
logical calculations, and thus, how their behavior could be described and analyzed by
logical tools. Furthermore, their approach was modular, as they demonstrated how
different patterns of neural wiring could be interpreted as logic gates: signal junctions
which compute the truth value of the conjunction, disjunction, or negation of incom-
ing signals. The applications of this result are limited by its idealizing assumptions,
however. As neurophysiology has enriched our understanding of neural behavior, the
hypothesis of synchronized computations cascading through a structurally unchang-
ing network has become too distant from neural plausibility to resolve debates about
implementation in the brain.

Nevertheless, logical methods continue to provide insight into the structure of
neural computation. In the face of an increasingly complex theory of neurophysiol-
ogy, two obvious research projects present themselves. The first focuses on realistic
models of individual neurons. Sandler and Tsitolovsky [103], for example, begin with
a detailed examination of the biological structure of the neuron, then develop a model
of its behavior using fuzzy logic. A second project focuses on artificial neural net-
works designed to mimic brain dynamics as closely as possible. For example, Vogels
and Abbott [136] ran a number of simulations on large networks of integrate-and-fire
neurons. These artificial neurons include many realistic features, such as a resting
potential and a reset time after each action potential is generated. After randomly
generating such networks, Vogels and Abbott [136] investigated their behavior to see
if patterns of neurons exhibited the characteristics of logic gates. They successfully
identified patterns of activation corresponding to NOT, XOR, and other types of logic
gate within their networks.

The idealizing assumptions of these models continue to temper the conclusions
which can be drawn from them. Nevertheless, there is a trend of increasing fit between
mathematical models of neural behavior and the richness of neurophysiology, and
logic continues to guide our understanding of neurons as computational units. But
from the standpoint of cognitive science, an explanatory question remains: are these
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computational units the right primitives for analyzing cognition? More generally, is
there some in principle difference between an analysis offered in terms of neural
networks and one offered in terms of logical rules?

30.3.2 The Symbolic Versus Connectionist Debate

In an influential paper, Fodor and Pylyshyn [43] argued that (i) mental representations
exhibit systematicity; (ii) representations in neural networks do not exhibit system-
aticity; therefore (iii) the appropriate formalism for modeling cognition is symbolic
(not connectionist). Systematicity here is just the claim that changes in the meaning
of a representation correspond systematically to changes in its internal structure (e.g.
from my ability to represent “John loves Mary,” it follows that I can also represent
“Mary loves John”). Fodor and Pylyshyn claim that the only case in which represen-
tations in a neural network do exhibit systematicity is when the network is a “mere”
implementation of a symbolic system.4

It is important to notice what is at stake here: if cognitive tasks manipulate repre-
sentations, then the appropriate analysis of a cognitive task must respect the properties
of those representations. The claim that explanations in cognitive science must be
in terms of symbolic systems does not, however, restrict attention to the computa-
tional level. Paradigmatic examples of the symbolic approach in cognitive science
such as [21] investigate the role of particular algorithms for solving information
processing tasks (such as extracting syntactic structure from a string of words).
Nevertheless, the claim is that somewhere between abstract task specification and
physical implementation, explanatory power breaks down, and neural networks fall
on the implementation side of this barrier.

The response from connectionist modelers was violent and univocal: Fodor and
Pylyshyn [43] had simply misunderstood the representational properties of neural
networks. Responses elucidated how representations in neural networks are “distrib-
uted” or “subsymbolic.” Smolensky [113, 114], van Gelder [49, 50], Clark [22], and
many others all emphasized the importance of acknowledging the distinctive prop-
erties of distributed representations in understanding the difference between neural
networks and symbolic systems. Yet it is difficult to put one’s finger on just what
the essential feature of a distributed representation is which makes it qualitatively
different from a symbolic representation. Since the late 1990s, the supposed distinc-
tion has largely been ignored as hybrid models have risen to prominence, such as
the ACT-R architecture of Anderson and Lebiere [2], or the analysis of concepts
in Gärdenfors [47]. These hybrid models combine neural networks (for learning)
and symbolic manipulation (for high-level problem solving). Although pragmati-

4 However, they do not indicate how such implementational networks avoid their general critique,
see [18].
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Fig. 30.1 Neural network
for non-monotonic reasoning
about birds
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cally satisfying, the hybrid approach avoids rather than resolves questions about the
essential difference between symbolic and distributed representations.

Is there some in principle difference between subsymbolic computation by neural
networks over distributed representations and symbolic computation by Turing (or
equivalent) machines? The representation theorem of McCullogh and Pitts [82] dis-
cussed above suggests differently, namely that logical theories and neural networks
are essentially the same, i.e. their computational and representational properties are
equivalent. Can this result be extended to a larger class of neural networks? The trick,
it turns out, is to treat neural computation as non-monotonic.

It should be easy to see that some particular non-monotonic theories may be
represented by neural networks. Consider the system discussed above for reasoning
about birds: two input nodes (one for Bird(x) and one for Penguin(x)) and an output
node (for Fly(x)) are all we need to model this system with a simple neural network
(Fig. 30.1). So long as there is an excitatory connection from Bird(x) to Fly(x) and
at least as strong an inhibitory connection from Penguin(x) to Fly(x), this network
will produce the same conclusions from the same premises as our non-monotonic
theory. But this is just a specific case; a representation theorem for non-monotonic
logics in neural networks would show us that for every non-monotonic theory, there
is some neural network which computes the same conclusions. Such a theorem would
demonstrate a deep computational equivalence between non-monotonic logics and
neural networks.

As it turns out, representation theorems of this form have been given by several
logicians coming from a variety of backgrounds and motivations. Balkenius and
Gärdenfors [5] consider the inferential relationship between a fixed input to a neural
network and its “resonant state,” i.e. the stable activation state it reaches given that
input. Partitioning the state space of these networks into schemata, informational
components closed under conjunction, disjunction, and complementation, they show
that the relation between input schemata and the corresponding resonant state satisfies
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the axioms of a non-monotonic logic. Hölldobler and collaborators [64, 65] prove a
representation theorem for logic programs, demonstrating that for any logic program
P , a three-layer, feed-forward network can be found which computes P . Pinkas
[94] provides similar results for a wider class of neural networks and penalty logic.
Penalty logic is a non-monotonic logic which weights conditionals with integers
representing the “penalty” if that conditional is violated. Reasoning in penalty logic
involves identifying the set of propositions which minimizes the overall penalty for a
set of these weighted conditionals. Blutner [14] generalizes the work of Balkenius and
Gärdenfors [5] using a strategy similar to that of Pinkas. He proves a representation
theorem for weight-annotated Poole systems, which differ from penalty logic in that
they weight consistent sets of sentences with a positive value, the number of possible
“hypotheses” (sentences) which agree with them minus the number which disagree.

These results shed some light on the formal relationship between neural networks
and symbolic systems, but they also serve a practical purpose. In practical applica-
tions, an algorithm for constructing a neural network from a set of non-monotonic
inference rules has computational value because it can efficiently find the fixed point
which maximizes satisfaction of those rules. Unfortunately, this computational effi-
ciency can only be achieved on a case by case basis (we discuss this point in more
detail in Sect. 30.4.2). Furthermore, the practical motivations behind this research
directed attention towards networks with very simple nodes and favored proofs by
construction, which identify individual nodes with atomic propositions. As a reso-
lution to the connectionism / symbolic systems debate, then, these results need to
be supplemented in two ways: first, by extension to more realistic neural networks;
second, by extension to the case of truly distributed representations. We conclude
this section by discussing results which address these two worries.

Stenning and van Lambalgen [117] see themselves as following the tradition
of Hölldobler, but focusing on neural networks which plausibly represent actual
structure in the brain. They identify the work of d’Avila-Garcez and colleagues [30] as
a crucial step in this direction, extending results of the kind discussed in the previous
paragraphs to networks made of nodes with sigmoid activation functions, which more
realistically model the behavior of actual neurons. Building on this work, and with
the goal of providing a neurally plausible algorithm for their analysis of the Wason
selection task, Stenning and van Lambalgen prove a representation theorem for three-
valued logic programs in coupled neural networks. Three-valued logic programs can
assign three distinct truth values to proposition letters: true, false, or “undecided.”
Here, undecided plays a role similar to negation as failure, though using three truth
values allows for greater flexibility than two. Coupled neural networks are sheets of
linked isomorphic networks, such that each node in the first network has a link to a
corresponding node in the second network.

Theorem 30.1 ([117]). If P is a 3-valued logic program and CN(P) is the associated
coupled neural network, then the least fixed-point model of P corresponds to the
activation of the output layer of CN(P).

Stenning and van Lambalgen’s [117] goal is neural plausibility, and they motivate
their coupled neural networks by appealing to the extensive evidence for isomorphic
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mappings between layers of neurons in many parts of the human brain. Nevertheless,
it is not clear that any of these mappings exhibit the logical structure postulated by
Stenning and van Lambalgen, nor whether this is the appropriate level of neural detail
at which to model behavior on the Wason selection task.

Leitgeb identifies himself with the tradition originating with Balkenius and Gär-
denfors [5], yet aims to establish a broader class of results. The theorems discussed so
far typically address the relationship between a particular non-monotonic logic and
a particular type of neural network. In contrast, Leitgeb [73, 74] proves a sequence
of representation theorems for each system introduced by Kraus et al. [71] in dis-
tinguished classes of neural networks. These results involve inhibition nets with
different constraints on internal structure, where an inhibition net is a spreading acti-
vation neural network with binary (i.e. firing or non-firing) nodes and both excitatory
and inhibitory connections. Leitgeb [75] extends these results, proving representation
theorems for the same logics into interpreted dynamical systems.

At the most abstract level, a dynamical system is a set of states with a transition
function defined over them. An interpretation I of a dynamical system is a mapping
from formulas in a propositional language to regions of its state space. Leitgeb
gets closure under logical connectives via the same strategy as [5], by assuming an
ordering ≤ over informational states. If SI is an interpreted dynamical system, then
SI |= φ ⇒ ψ iff s is the resonant state of SI on fixed input I(φ) and I(ψ) ≤ s.
Call the set of all such conditionals T SI, then

Theorem 30.2 ([75]). If SI is an interpreted dynamical system, then the theory T SI

is closed under the rules of the [71] system C.

Theorem 30.3 ([75]). If T⇒ is a consistent theory closed under the rules of C, then
there exists an interpreted dynamical system SI such that T SI = T⇒.

Unlike the other results discussed here, Leitgeb takes pains to ensure that his rep-
resentation theorems subsume the distributed case. In particular, the interpretation
function may map a propositional formula to a set of nodes, i.e. distributing its repre-
sentation throughout the network. From a philosophical standpoint, this result should
raise questions for the debate between symbolic and connectionist approaches. Leit-
geb has shown that any dynamical system performing calculations over distributed
representations may be interpreted as a symbolic system performing non-monotonic
inference. This result appears to show that there is no substantive difference in the
representational power of symbolic systems and that of neural networks. If there is
such a difference, the key to articulating it may be embedded somewhere in Leit-
geb’s assumptions. The key step here is the ordering over informational states of
the network; it is an open question whether the states of actual networks to which
connectionists attribute representational properties satisfy such an ordering. Conse-
quently, there is work yet to be done in providing a full resolution to the symbolic
systems / connectionism debate.

Even if there is no substantive difference between the representational capacities
of symbolic systems and those of neural networks, there may be other principled
differences between their computational powers, for instance their computational
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efficiency. We turn next to this question, and to other applications of complexity
analysis in cognitive science.

30.4 Computational Complexity and the Tractable Cognition
Thesis

The Church-Turing Thesis provides a distinction between those problems which are
computable and those which are not. Complexity theory supplements the compu-
tational perspective with more fine-grained distinctions, analyzing the efficiency of
algorithms and distinguishing those problems which have efficient solutions from
those which do not. Efficiency considerations can help bridge the gap between com-
putational and algorithmic levels of analysis by turning computational hypotheses
into quantitative empirical predictions. Before looking at some specific examples
in Sects. 30.5 and 30.6, we first introduce the basic complexity classes and defend
the Tractable Cognition Thesis, which grounds the use of complexity analysis in
cognitive science.

30.4.1 Tractable Problems

Some problems, although computable, nevertheless require too much time or memory
to be feasibly solved by a realistic computational device. Computational complexity
theory investigates the resources (time, memory, etc.) required for the execution of
algorithms and the inherent difficulty of computational problems [3, 92]. Its particular
strength is that it can identify features which hold for all possible solutions to a query,
thereby precisely distinguishing those problems which have efficient solutions from
those which do not.

This method for analyzing queries allows us to sort them into complexity classes.
The class of problems that can be computed relatively quickly, namely in polynomial
time with respect to the size of the input, is called PTIME (P for short). A problem is
shown to belong to this class if one can show that it can be computed by a deterministic
Turing machine in polynomial time. NPTIME (NP) is the class of problems that can
be computed by nondeterministic Turing machines in polynomial time. NP-hard
problems are problems that are at least as difficult as any problem belonging to NP.
Finally, NP-complete problems are NP-hard problems that belong to NP, hence they
are the most difficult NPTIME problems.

Of course, this categorization is helpful only under the assumption that the com-
plexity classes defined in the theory are essentially different. These inequalities are
usually extremely difficult to prove. In fact, the question whether P �= NP is con-
sidered one of the seven most important open mathematical problems by the Clay
Institute of Mathematics, who have offered a $1,000,000 prize for its solution. If we
could show for any NP-complete problem that it is PTIME-computable, we would



30 Logic and Complexity in Cognitive Science 803

have demonstrated that P = NP. Computer science generally, and computational
complexity theory in particular, operate under the assumption that these two classes
are different, an assumption that has proved enormously fruitful in practice.

Intuitively, a problem is NP-hard if there is no efficient algorithm for solving it.5

The only way to deal with it is by using brute-force methods: searching through all
possible combinations of elements over a universe. Importantly, contrary to common
suggestions in the cognitive science literature (e.g. [19]), computational complexity
theory has shown that many NP-hard functions cannot be efficiently approximated
[4]. In other words, NP-hard problems generally lead to combinatorial explosion.

If we identify efficiency with tractability, computational complexity theory pro-
vides a principled method for distinguishing those problems which can reasonably be
solved from those which cannot. The following thesis was formulated independently
by Cobham [25] and Edmonds [35]:

The class of practically computable problems is identical to the PTIME class, that is, the
class of problems which can be computed by a deterministic Turing machine in a number of
steps bounded by a polynomial function of the length of a query.

This thesis is accepted by most computer scientists. For example, Garey and Johnson
[48] identify discovery of a PTIME algorithm with producing a real solution to a
problem:

Most exponential time algorithms are merely variations on exhaustive search, whereas poly-
nomial time algorithms generally are made possible only through the gain of some deeper
insight into the nature of the problem. There is wide agreement that a problem has not been
“well-solved” until a polynomial time algorithm is known for it. Hence, we shall refer to a
problem as intractable, if it is so hard that no polynomial time algorithm can possibly solve it.

The common belief in the Cobham-Edmonds Thesis stems from the practice of
programmers. NP-hard problems often lead to algorithms which are not practically
implementable even for inputs of not very large size. Assuming the Church-Turing
Thesis and P �= NP, we come to the conclusion that this has to be due to intrinsic
features of these problems and not to the details of current computing technology.

The substantive content of the Cobham-Edmonds thesis will become more clear if
we consider some examples. Many natural problems are computable in polynomial
time in terms of the length of the input, for instance calculating the greatest common
divisor of two numbers or looking something up in a dictionary. However, the task
of deciding whether a given classical propositional formula is satisfiable (SAT) is
NP-complete [26].

Thus, even very simple logics can give rise to extremely difficult computational
problems. Descriptive complexity theory deals with the relationship between logical

5 The intuitive connection between efficiency and PTIME-computability depends crucially on
considering efficiency over arbitrarily large input size n. For example, an algorithm bounded by

n
1
5 log log n could be used practically even though it is not polynomial (since n

1
5 log log n > n2 only

when n > ee10
, [61]). Conversely, an algorithm bounded by n98466506514687 is PTIME-computable,

but even for small n it is not practical to implement. We return to these considerations in the
following sections.
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definability and computational complexity. The main idea is to treat classes of finite
models over a fixed vocabulary as computational problems: what strength of logical
language is needed to define a given class of models? The seminal result in descrip-
tive complexity theory is Fagin’s theorem, establishing a correspondence between
existential second-order logic and NP:

Theorem 30.4 ([37]). �1
1 captures NP.

This means that for every property ϕ, it is definable in the existential fragment of
second-order logic, �1

1 , if and only if it can be recognized in polynomial time by a
non-deterministic Turing machine [68].

What do we know about the computational complexity of reasoning with non-
monotonic logics? It turns out that typically the computational complexity of non-
monotonic inferences is higher than the complexity of the underlying monotonic
logic. As an example, restricting the expressiveness of the language to Horn clauses
allows for polynomial inference as far as classical propositional logic is concerned.
However, this inference task becomes NP-hard when propositional default logic or
circumscription is employed. This increase in complexity comes from the fixed-point
constructions needed to provide the semantics for negation as failure and other non-
monotonic reasoning rules. In general, determining minimality is NP-hard (see [16],
for a survey).

But now we face a puzzle. We were attracted to non-monotonic logics because
they appeared to bridge the gap between neurally plausible computational devices and
formal languages. Yet the Cobham-Edmonds thesis appears to show that computing
properties defined in a non-monotonic language is an intractable task. In order to
resolve this puzzle, we will need to examine the relationship between complexity
considerations and computational devices.

30.4.2 The Invariance Thesis

The most common model of computation used in complexity analysis is the Turing
machine, yet Turing machines have a radically different structure from that of modern
digital computers, and even more so from that of neural networks. In order to justify
the application of results from complexity theory (e.g. that a particular problem is
intractable) in cognitive science, we need to demonstrate that they hold independent
of any particular implementation.

The Invariance Thesis (see e.g. [36]) states that:

Given a “reasonable encoding” of the input and two “reasonable machines,” the complexity
of the computation performed by these machines on that input will differ by at most a
polynomial amount.

Here, “reasonable machine” means any computing device that may be realistically
implemented in the physical world. The situation here is very similar to that of the
Church-Turing Thesis: although we cannot prove the Invariance Thesis, the fact that
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it holds for all known physically implementable computational devices provides
powerful support for it. Of course, there are well-known machines which are ruled
out by the physical realizability criterion; for example, non-deterministic Turing
machines and arbitrarily precise analog neural networks are not realistic in this sense.
Assuming the Invariance Thesis, a task is difficult if and only if it corresponds to a
function of high computational complexity, independent of the computational device
under consideration, at least as long as it is reasonable.

It is worth discussing in a little more detail why neural networks fall within the
scope of the Invariance Thesis. Neural networks can provide a speed-up over tra-
ditional computers because they can perform computations in parallel. However,
from the standpoint of complexity theory, the difference between serial and parallel
computation is irrelevant for tractability considerations. The essential point is this:
any realistic parallel computing device only has a finite number of parallel channels
for simultaneous computation. This will only provide a polynomial speed-up over a
similar serial device. In particular, if the parallel device has n channels, then it should
speed up computation by a factor of n (providing it can use its parallel channels with
maximum efficiency). As the size of the input grows significantly larger than the
number of parallel channels, the advantage in computational power for the parallel
machine becomes less and less significant. In particular, the polynomial speed-up of
parallel computation provides a vanishingly small advantage on NP-hard problems
where the solution time grows exponentially. Therefore, the difference between sym-
bolic and connectionist computations is negligible from the tractability perspective
(see [102], particularly Sect. 6.6, for extended discussion).

These considerations should clarify and mitigate the significance of the repre-
sentation theorems discussed in Sect. 30.3.2. How can we reconcile these results
with the observation in Sect. 30.4.1 that fixed-point constructions are NP-hard? We
provide a possible answer to this in the next section when discussing, for instance,
the Fixed Parameter Tractability Thesis. Simply put, it may be the case that even
though the general problem of reasoning with non-monotonic logics is intractable,
in our everyday experience we only deal with a specific instance of that problem
which, due to properties such as bounds on input size or statistical properties of the
environment, yields tractable reasoning. Approaches such as those discussed in the
next section allow us to rigorously describe properties of intractable problems that
can reduce their general complexity. Then we may study whether the instances of
the general problem that people routinely solve indeed constitute an easy subset of
the more general problem.

30.4.3 The P-Cognition Thesis and Beyond

How can complexity considerations inform our theory of cognition? The general
worry that realistic agents in a complex world must compute effective action despite
limited computational resources is the problem of bounded rationality [110].

http://dx.doi.org/10.1007/978-3-319-06025-5_6
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Simon [105] argued that bounded agents solve difficult problems with rough
heuristics rather than exhaustive analyses of the problem space. In essence, rather
than solve the hard problem presented to her by the environment, the agent solves an
easier, more tractable problem which nevertheless generates an effective action. In
order to apply this insight in cognitive science, it would be helpful to have a precise
characterization of which class of problems can plausibly be computed by a realistic
agent. The answer suggested by complexity theory is to adapt the Cobham-Edmonds
Thesis:

The class of problems which can be computed by a cognitive agent is approximated by the
PTIME class, i.e. bounded agents can only solve problems with polynomial time solutions.

As far as we are aware, a version of the Cobham-Edmonds Thesis for cognitive
science was first formulated explicitly in print by Frixione [46]6 and later dubbed the
P-Cognition Thesis by van Rooij [102]. The P-Cognition Thesis states that a cognitive
task is easy if it corresponds to a tractable problem, and hard if it corresponds to an
intractable one.

The P-Cognition Thesis can be used to analyze which task an agent is plausi-
bly solving when the world presents her with an (apparently) intractable problem.
For example, Levesque [76] argues that the computational complexity of general
logic problems motivates the use of Horn clauses and other tractable formalisms to
obtain psychologically realistic models of human reasoning. Similarly, Tsatsos [132]
emphasizes that visual search in its general bottom-up form is NP-complete. As a
consequence, only visual models in which top-down information constrains visual
search space are computationally plausible. In the study of categorization and sub-
set choice, computational complexity serves as a good evaluation of psychological
models [100].

Nevertheless, one might worry that the “worst-case scenario” attitude of com-
putational complexity theory is inappropriate for analyzing the pragmatic problem-
solving skills of real-world cognitive agents. Computational complexity is defined
in terms of limit behavior. It answers the question: as the size of the input increases
indefinitely, how do the running time and memory requirements of the algorithm
change? The results of this analysis do not necessarily apply to computations with
fixed or bounded input size.7

Our response to this worry is twofold. First, complexity analysis proves its value
through the role it plays in fruitful ongoing programs of empirical research, such
as those we discuss in Sects. 30.5 and 30.6. Second, there are natural extensions to
computational complexity theory which avoid this criticism, yet rest on the same
fundamental principles elucidated here. In the remainder of this section, we briefly
survey some of these extensions.

Some problems are NP-hard on only a small proportion of possible inputs.
Average-case complexity analysis studies the complexity of problems over randomly
generated inputs, thereby allowing algorithms to be optimized for average inputs on

6 See also [89].
7 However, see [102].
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problems for which only extraordinary inputs require exhaustive search (see e.g. [77]
Chap. 4). But average-case complexity theory extends and supplements worst-case
analysis; it does not, in general, replace it. For example, when deciding between
competing tractable algorithmic hypotheses, average-case analysis can be used to
compare their respective time-complexities with accuracy and reaction time data
obtained via experimentation [57, 102]. This research does not undermine the use
of complexity analysis in cognitive science, it supports and refines it.

Another extension of complexity theory which adds fine structure to the analysis
of realistic agents divides a problem into parameters which can be independently
analyzed for their contributions to its overall complexity. Such an analysis is useful,
for example, if the intractability of a problem comes from a parameter which is usually
very small, no matter how large the input (see [101] for examples). This way of
thinking leads to parametrized complexity theory as a measure for the complexity of
computational cognitive models. van Rooij [102] investigates this subject, proposing
the Fixed-Parameter Tractability Thesis as a refinement of the P-Cognition Thesis.
The FPT Thesis posits that cognitive agents can only solve problems which are
tractable modulo the fixing of a parameter which is usually small in practice, and
thereby subsumes many apparently “intractable” task analyses under the general
P-Cognition perspective.

The proof of any formal analysis in empirical research is its success in driving
predictions and increasing theoretical power. In the remainder of this chapter, we
demonstrate the power of complexity analysis for driving research on quantifier
processing and social cognition.

30.5 Between Computation and Algorithm: Quantifier
Efficiency

Computational complexity theory has been successfully employed to probe the inter-
action between Marr’s computational and algorithmic levels. Given a formal task
analysis, complexity theory can make predictions about reaction time; conversely,
abrupt changes in reaction time can provide evidence for changes in the algorithm
employed on a task. For example, it is known that reaction time increases linearly
when subjects are asked to count between 4 and 15 objects. Up to 3 or 4 objects
the answer is immediate, so-called subitizing. For judgments involving more than
15 objects, subjects start to approximate: reaction time is constant and the num-
ber of incorrect answers increases dramatically [32]. Results such as this allow a
fine-grained analysis of the algorithmic dynamics underlying a computational task.

This section illustrates how complexity theory can guide empirical research on
algorithmic dynamics through the example of natural language quantifiers. Johan
van Benthem’s analysis of quantifiers in terms of finite state automata, when com-
bined with complexity analysis, has produced a lively research program on quantifier
processing, confirmed by empirical data on reaction times and neuroimaging.
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30.5.1 Complexity and Natural Language

In Sect. 30.4.1 we saw how descriptive complexity can be used to analyze formal lan-
guages, but what about natural language? Some of the earliest research combining
computational complexity with semantics can be found in Ristad’s [99] The Lan-
guage Complexity Game. Ristad carefully analyzes the comprehension of anaphoric
dependencies in discourse. He considers a few approaches to describing the meaning
of anaphora and proves their complexity. Finally, he concludes that the problem is
inherently NP-complete and that all good formalisms accounting for it should be
NP-complete as well.

More recently, Pratt-Harmann [95] shows that different fragments of natural lan-
guage capture various complexity classes. More precisely, he studies the computa-
tional complexity of satisfiability problems for various fragments of natural language.
Pratt-Hartmann [95] proves that the satisfiability problem for the syllogistic fragment
is in PTIME, as opposed to the fragment containing relative clauses, which is NP-
complete. He also describes fragments of language of even higher computational
complexity, with non-copula verbs or restricted anaphora. Finally, he identifies an
undecidable fragment containing unrestricted anaphora. Thorne [130] observes that
the computational complexity of various fragments of English is inversely propor-
tional to their frequency.

This work appears to challenge the P-Cognition Thesis. For, suppose that satis-
fiability is NP-complete, or even uncomputable, for fragments of natural language.
Then it appears that we are forced not only to abandon the P-Cognition Thesis,
but even to abandon the Church-Turing Thesis. This would imply that cognition
involves super-Turing computation. As discussed above, this conclusion contradicts
all available evidence on physical systems. While it does not defeat the possibility
of formal analysis, since there is an extensive mathematics of super-Turing com-
putation, it does complicate, and maybe defeat, the experimental investigation of
the mind, which depends upon bounded and finite methods developed in continu-
ity with the rest of empirical science. Complexity analysis provides a constructive
way to move forward here. The negative results of Ristad [99] and Pratt-Hartmann
[95] suggest that the brain is not solving the complete satisfiability problem when
interpreting sentences of natural language. This motivates the search for polyno-
mial time heuristics that might plausibly compute interpretations of sentences of
natural language. For example, Pagin [91] tries to explain compositionality in terms
of computational complexity, cognitive burden during real-time communication, and
language learnability. He argues that compositionality simplifies the complexity of
language communication.
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30.5.2 Johan van Benthem’s Semantic Automata

Johan van Benthem [7] was one of the first to emphasize and explore the tight
connection between computation and meaning in natural language (see also [8]). He
proposed treating “linguistic expressions as denoting certain ‘procedures’ performed
within models for the language” [7].

Johan van Benthem formalized this proposal by identifying generalized quantifiers
with automata. These semantic automata operate over sequences of elements from
a universe, which they test for the quantified property. If they accept the sequence,
the quantificational claim is true, if they reject it, the claim is false.

Before looking at some examples, let us recall the definition of a generalized quan-
tifier. Intuitively, a generalized quantifier characterizes relations between properties
over a universe; for example, “every A is B” makes a claim about the relationship
between objects with property A and objects with property B. We can organize
quantifiers by the number and arity of the properties required to define them. More
formally:

Definition 30.1 Let t = (n1, . . . , nk) be a k-tuple of positive integers. A generalized
quantifier of type t is a class Q of models of a vocabulary τt = {R1, . . . , Rk}, such
that Ri is ni -ary for 1 ≤ i ≤ k, and Q is closed under isomorphisms, i.e. if M and
M

′ are isomorphic, then M ∈ Q iff M
′ ∈ Q.

Therefore, formally speaking:

∀ = {(M, A) | A = M}.
∃ = {(M, A) | A ⊆ M and A �= ∅}.

every = {(M, A, B) | A, B ⊆ M and A ⊆ B}.
most = {(M, A, B) | A, B ⊆ M and card(A ∩ B) > card(A − B)}.

Dn = {(M, A) | A ⊆ M and card(A) is divisible by n}.

The first two examples are the standard first-order universal and existential quan-
tifiers, both of type (1). They are classes of models with one unary predicate such
that the extension of the predicate is equal to the whole universe in the case of the
universal quantifier and is nonempty in the case of the existential quantifier. Quan-
tifiers every and most of type (1, 1) are familiar from natural language semantics.
Their aim is to capture the truth-conditions of sentences of the form: “Every A is
B” and “Most A’s are B.” In other words, they are classes of models in which these
statements are true. The divisibility quantifier of type (1) is a familiar mathematical
quantifier.

Johan van Benthem’s insight was to identify quantifier complexity with constraints
on the type of automata required to verify quantifier claims over an arbitrary universe.
Figures 30.2, 30.3, and 30.4 illustrate examples of these automata for some familiar
quantifiers. Johan van Benthem was able to prove the following:
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q0 q1

correct

incorrect

correct, incorrect

Fig. 30.2 This finite automaton checks whether every sentence in the text is grammatically correct.
It inspects the text sentence by sentence, starting in the accepting state (double circled), qo. As long
as it does not find an incorrect sentence, it stays in the accepting state. If it finds such a sentence,
then it already “knows” that the sentence is false and moves to the rejecting state, q1, where it stays
no matter what sentences come next

q0 q1 q2 q3

true true true true

false false false

Fig. 30.3 This finite automaton recognizes whether at least 3 sentences in the text are false. This
automaton needs 4 states. It starts in the rejecting state, q0, and eventually, if the condition is
satisfied, moves to the accepting state, q3. Furthermore, notice that to recognize “at least 8” we
would need 9 states, and so on

q0 q1

0

1

1
0

Fig. 30.4 Finite automaton checking whether the number of “1”s is even

Theorem 30.5 ([7]). A monadic quantifier Q is first-order definable if and only if
it can be recognized by a finite automaton without cycles.

But this does not exhaust the class of finite automata. Finite automata with cycles
can identify properties which depend on divisibility of the cardinality of the uni-
verse, such as whether the universe has an even or odd number of elements (see
Fig. 30.4). Consequently, they are definable in first-order logic supplemented with
special divisibility quantifiers, Dn , for each natural number n.

Theorem 30.6 ([88]). A monadic quantifier Q is definable in the divisibility logic
(i.e. F O(Dn)n<ω) iff it can be recognized by a finite automaton.

However, for recognizing some higher-order quantifiers such as “less than half” or
“most,” we need computability models that make use of internal memory. Intuitively,
to check whether sentence (1) is true we must identify the number of correct sentences
and hold it in working memory to compare with the number of incorrect sentences.

(1) Most of the sentences in this chapter are grammatically correct.

Mathematically speaking, such an algorithm can be realized by an automaton sup-
plemented with a push-down stack, a last-in / first-out form of memory.
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Theorem 30.7 ([7]). A quantifier Q of type (1) is definable in the arithmetic of
addition iff it can be recognized by a push-down automaton.

30.5.3 From Automata to Psycholinguistics

Johan van Benthem’s formal identification of generalized quantifiers with automata
can be used to generate empirical predictions about natural language processing. For
example, Szymanik [120, 121] investigate whether the cognitive difficulty of quan-
tifier processing can be assessed on the basis of the complexity of the corresponding
minimal automata. He demonstrates that the computational distinction between quan-
tifiers recognized by finite automata and those recognized by push-down automata
is psychologically relevant: the more complex the automaton, the longer the reaction
time and the greater the recruitment of working memory in subjects asked to solve the
verification task. Szymanik and Zajenkowski [123] show that sentences with the Aris-
totelian quantifiers “some” and “every,” corresponding to two-state finite automata,
were verified in the least amount of time, while the proportional quantifiers “more
than half” and “less than half” triggered the longest reaction times. When it comes to
the numerical quantifiers “more than k” and “fewer than k,” corresponding to finite
automata with k + 2 states, the corresponding latencies were positively correlated
with the number k. Szymanik and Zajenkowski [124, 128] explore this complexity
hierarchy in concurrent processing experiments, demonstrating that during verifica-
tion, the subject’s working memory is qualitatively more engaged while processing
proportional quantifiers than while processing numerical or Aristotelian quantifiers.

This work builds on recent neuroimaging research aimed at distinguishing the
quantifier classes identified by van Benthem in terms of the neural resources they
exploit. For example, McMillan and colleagues [83], in an fMRI study, show that
during verification all quantified sentences recruit the right inferior parietal cortex
associated with numerosity, but only proportional quantifiers recruit the prefrontal
cortex, which is associated with executive resources such as working memory. These
findings were later strengthened by evidence on quantifier comprehension in patients
with focal neurodegenerative disease ([84]; see [67] for a survey of related results).
Moreover, Zajenkowski and colleagues [140] compares the processing of natural
language quantifiers in a group of patients with schizophrenia and a healthy control
group. In both groups, the difficulty of the quantifiers was consistent with com-
putational predictions. In general, patients with schizophrenia had longer reaction
times. Their performance differed in accuracy only on proportional quantifiers, how-
ever, confirming the predicted qualitative increase in difficulty for quantifiers which
require memory, and explainable in terms of the diminished executive control in
schizophrenics.

In the next step, Szymanik [122] studied the computational complexity of multi-
quantifier sentences. It turns out that there is a computational dichotomy between
different readings of reciprocal sentences, for example between the following:
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(2) Most of the parliament members refer indirectly to each other.
(3) Boston pitchers were sitting alongside each other.

While the first sentence is usually given an intractable NP-hard reading in which all
pairs of parliament members need to be checked, the second one is interpreted by a
PTIME-computable formula. This motivates the conjecture that listeners are more
likely to assign readings that are simpler to compute. The psychological plausibility
of this conjecture is still awaiting further investigation; however, there are already
some interesting early results [104].

Szymanik [122] also asked whether multi-quantifier constructions could be com-
putationally analyzed by extending van Benthem’s framework. Threlkeld and Icard
[116] give a positive answer by showing that if two quantifiers are recognizable by
finite automata (push-down automata) then their iteration must also be recognizable
by a finite automaton (push-down automaton). For instance, there are finite automata
which recognize whether the following sentences are true:

(4) Some dots and every circle are connected.
(5) Every dot and some circles are connected.

This opens the road for further investigations into the delicate interplay between
computability, expressibility, and cognitive load (see e.g. [126]).

The above results demonstrate how the P-Cognition Thesis can drive experimental
practice. Differences in performance, such as in reaction times, can support a com-
putational analysis of the task being performed [123]. Furthermore, one can track
the changes in heuristics a single agent employs as the problem space changes [131].

30.6 The Complexity of Intelligent Interaction

Johan van Benthem begins his “Cognition as Interaction” [10] with a plea to cognitive
scientists to move away from their myopic focus on single agents:

It is intelligent social life which often shows truly human cognitive abilities at their best and
most admirable. But textbook chapters in cognitive science mostly emphasise the apparatus
that is used by single agents: reasoning, perception, memory or learning. And this emphasis
becomes even stronger under the influence of neuroscience, as the only obvious thing that
can be studied in a hard scientific manner are the brain processes inside individual bodies.
Protagoras famously said that “Man is the measure of all things”, and many neuroscientists
would even say that it’s just her brain. By contrast, this very brief chapter makes a plea for the
irreducibly social side of cognition, as evidenced in the ways in which people communicate
and interact. Even in physics, many bodies in interaction can form one new object, such as
a Solar system. This is true all the more when we have a meeting of many minds!

We could not agree more. In this section we discuss how computational constraints
can be taken seriously in the study of multi-agent social interactions. After exam-
ining a case study in detail, which illustrates how shifting from a global to a local
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perspective in a multi-agent reasoning scenario can reduce the complexity of repre-
sentations, we’ll briefly survey the role that games can play as an empirical testing
ground for logical models of social reasoning.

30.6.1 Plausible Epistemic Representations

Other chapters in this volume extensively discuss epistemic logics, and in partic-
ular Dynamic Epistemic Logic, DEL (see [12] for a recent survey). We argue that
although these logics can describe the epistemic reasoning in social interactions in
an elegant way, they postulate cognitively implausible representations. This leads
to discussion of a recent proposal for more computationally plausible models for
epistemic reasoning which repurposes models developed by van Benthem for repre-
senting quantifiers.

Let us start with a classic example: the Muddy Children puzzle. Three kids are
playing outside. When they come back home, their father says: (1) “At least one of
you has mud on your forehead.” Then, he asks the children: (I) “Can you tell for
sure whether you have mud on your forehead? If yes, announce your status.” The
children commonly know that their father never lies and that they are all sincere and
perfect logical reasoners. Each child can see the mud on others but cannot see his or
her own forehead. After the father asks (I) once, the children are silent. When he asks
the question a second time, however, suddenly all, in this case two, muddy children
respond that they know they have mud on their foreheads. How is that possible?

DEL models the underlying reasoning with Kripke structures characterizing the
agents’ uncertainty. Let us give the three children names: a, b, and c, and use propo-
sitional letters ma , mb, and mc to express that the corresponding child is muddy. Pos-
sible worlds correspond to distributions of mud on children’s foreheads, for example,
w5 : ma stands for a being muddy and b and c being clean in world w5. Two worlds
are joined with an edge labelled with i , for agent i ∈ {a, b, c}, if i cannot distin-
guish between the two worlds on the basis of his information; for clarity we drop the
reflexive arrows for each state. The standard epistemic modeling (see e.g. [34, 38])
is depicted in Fig. 30.5; the boxed state stands for the actual world, in this case, all
three children are muddy.

Now, let us recall how the reasoning process is modeled in this setting. The first
public announcement has the form: (1) ma ∨ mb ∨ mc, and after its announcement,
(1) becomes common knowledge among the children. As a result, the children per-
form an update, that is, they eliminate worldw8 in which (1) is false. Then the father
asks for the first time: (I) who among them knows his status. The children reason as
follows. In world w6, c knows that he is dirty (there is no uncertainty for c between
this world and any other world in which he is clean). Therefore, if the actual world
werew6, agent c would know his state and announce it. The situation is similar for a
and b inw5 andw7, respectively. The silence of the children after (I) is equivalent to
the announcement that none of them know whether they are muddy. Hence, all agents
eliminate those worlds that do not make such an announcement true:w5,w6, andw7.
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Fig. 30.5 The classical modeling of the Muddy Children puzzle. Arrows indicate the dynamic
update to the model after the corresponding announcement

When (I) is announced a second time, it is again clear that if one of w2, w3, or w4
were the actual world, the respective agents would have announced their knowledge.
The children still do not respond, so at the start of the next round everyone knows –
and in fact it is common knowledge – that the actual situation cannot be any of w2,
w3, or w4. Hence, they all eliminate these worlds leaving just the possibility w1. All
uncertainty disappears and they all know at the same time that they are dirty.

In spite of its logical elegance, the proposed solution is problematic from the
standpoint of the Tractable Cognition Thesis. DEL flexibly models epistemic sce-
narios from a global perspective, but this power comes at a price: the relevant logics
turn out to be very complex. First of all, DEL postulates exponential representations.
Not only is it intuitively implausible that actual agents generate such exponential
models of all possible scenarios, it is computationally intractable. The core of the
problem is DEL’s global perspective, shared with other modal logics, which assesses
complexity from the modeler’s point of view [115]. In fact, what we need is a new
local perspective, a study of epistemic reasoning from the perspective of the agents
involved. Such a shift in perspective can lead to logics and representations that are
much more cognitively plausible [31, 55, 56]. Let’s see how this applies to the Muddy
Children puzzle.

In Essays in Logical Semantics, van Benthem [7] proposes not only computa-
tional semantics but also a geometrical representation for generalized quantifiers in
the form of number triangles. Gierasimczuk and Szymanik [56] use number trian-
gles to develop a new, concise logical modeling strategy for multi-agent scenarios,
which focuses on the role of quantitative information in allowing agents to suc-
cessfully converge on qualitative knowledge about their situation. As an example,
let us consider a generalization of the Muddy Children puzzle by allowing public
announcements based on an arbitrary generalized quantifier Q, for example, “Most
children are muddy.”

As we restrict ourselves to finite universes, we can represent all that is relevant
for type (1) generalized quantifiers in a number triangle, which simply enumerates
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(0,0)

(1,0) (0,1)

(2,0) (1,1) (0,2)

(3,0) (2,1) (1,2) (0,3)

(4,0) (3,1) (2,2) (1,3) (0,4)

–

–

+

– + +

– + + +

– + + + +

Fig. 30.6 Number triangle representing the quantifier “at least 1”

all finite models of type (1). Let U be the universe of discourse, here all the father’s
children, and let A be the subset of muddy children. The node labeled (k, n) stands
for a model in which |U − A| = k and |A| = n. Now, every generalized quantifier of
type (1) can be represented by putting “+” at those (k, n) that belong to Q and “–” at
the rest. For example, the number triangle representation of the quantifier “at least 1”
is shown in Fig. 30.6. Number triangles play a crucial role in generalized quantifier
theory. Gierasimczuk and Szymanik [56] interpret the pairs (k, n) as possible worlds.

Gierasimczuk and Szymanik illustrate how the number triangle may be used to
derive a more concise solution for the Muddy Children puzzle. As before, we consider
three agents a, b, and c. All possibilities with respect to the size of the set of muddy
children are enumerated in the fourth level of the number triangle. Let us also assume
at this point that the actual situation is that agents a and b are muddy and c is clean.
Therefore, the real world is (1, 2), one child is clean and two are muddy:

Now, let us focus on what the agents observe. Agent a sees one muddy child and
one clean child. The same holds symmetrically for agent b. Their observational state
can be encoded as (1, 1). Accordingly, the observational state of c is (0, 2). In general,
if the number of agents is n, each agent can observe n − 1 agents. As a result, what
agents observe is encoded in the third level of the number triangle:

Each of the agents faces the question whether he is muddy. For example, agent
a has to decide whether he should extend his observation state (1, 1) to the left
state (2, 1) (a decides that he is clean) or to the right state (1, 2) (a decides that
he is muddy). The same holds for agent b. The situation of agent c is similar: his
observational state is (0, 2), which has two potential extensions, namely (1, 2) and
(0, 3). In general, note that every observational state has two possible successors.

Given this representation, we can now analyze what happens in the Muddy Chil-
dren scenario. Figure 30.7 represents the process, with the initial model at the top.
First, the announcement is made: “At least one of you is muddy.” This allows
elimination of those possible states, i.e. those on the bottom row, that are not in
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Fig. 30.7 Modeling of the
Muddy Children puzzle based
on number triangles
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the quantifier (i.e. intersecting with the “−”s in Fig. 30.6). In this case, (3, 0) is
eliminated. The resulting model is the second from the top. Then the father asks:
“Can you tell for sure whether or not you have mud on your forehead?” In our graph,
this question means: “Does any of you have only one successor?” All agents com-
monly know that (3, 0) has just been eliminated. Agent a considers it possible that
the actual state is (2, 1), i.e. that two agents are clean and one is muddy, so that
he himself would have to be clean. But then he knows that there would have to be
an agent whose observational state is (2, 0)—there has to be a muddy agent that
observes two clean ones. For this hypothetical agent, the uncertainty disappeared
just after the quantifier announcement (for (2, 0) there is only one successor left).
So, when it becomes clear that no one knows and the father asks the question again,
the world (2, 1) gets eliminated and the only possibility for agent a is now (1, 2)
via the right successor of (1, 1), and this indicates that he has to be muddy. Agent
b is in exactly the same situation. They both can announce that they know. Since c
witnessed the whole process, he now knows that the only way for them to know was
to be in (1, 1), and therefore he concludes (1, 2) as well.

In general, if there are n agents, we need levels n and n + 1 of the triangle to
enumerate all possible scenarios (up to isomorphism). Therefore, the total size of the
initial model is 2n+1. As a result, the proposed representation is exponentially more
succinct than the standard DEL approach, which requires on the order of 2n states.
Strategies such as this are attractive when modeling the representations employed
by realistic cognitive agents. Computational concerns constitute a plausibility test
on such proposed representations.

Classic epistemic logic usually assumes an exponential representation including
all possibilities (see e.g. [34]). The representation proposed here exploits a crucial
feature of generalized quantifiers, namely closure under isomorphism, in order to
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increase the informational power of a message relative to the observational powers
of the agents. Such informational “shortcuts” can be extremely powerful, yet have
so far rarely been taken into account in the epistemic literature.

30.6.2 Games and Social Cognition

There is a close relationship between epistemic logics and extensive form games.
Sequences of DEL models such as those depicted in Fig. 30.5 can be strung together
to form a single model for Epistemic Temporal Logic [13, 66]. These models can be
pictured as branching tree structures, and a distinguished subset of them, if supple-
mented with a preference ordering over end states, are equivalent to extensive form
games [69]. These close formal relations reflect the fact that DEL is well-suited for
modeling the higher-order reasoning (e.g. involving my belief about your belief about
my belief, etc.) required to explain game-theoretical arguments [135]. An important
concept common to both epistemic logic and game theory is backward induction, the
process of reasoning backwards from the end of the game to determine a sequence of
optimal actions [9]. Backward induction can be understood as an inductive algorithm
defined on a game tree. The backward induction algorithm tells us which sequence of
actions will be chosen by agents that want to maximize their own payoffs, assuming
common knowledge of rationality. In game-theoretical terms, backward induction
calculates subgame perfect equilibria for finite extensive form games.

Games have proved a powerful tool for studying the evolution of cooperation and
of social cognition [15, 111, 112, 139]. Games also play a pivotal role in designing
experiments for studying social cognition in actual use [17], recently with a particular
focus on higher-order social cognition, e.g. the matrix game [63], the race game [58,
62], the road game [41, 97], and the Marble Drop game [85–87].

But how well do games capture the actual dynamics of mental computation dur-
ing social reasoning? There are natural ways to view games as models of cogni-
tive processes [9], yet we might wonder how well the normative analysis of these
processes in traditional game theory captures the flexible dynamics of actual human
reasoning. Johan van Benthem’s [8], for instance, points out that it is not the realiza-
tion of perfect solutions, but rather the human ability to use interaction to dynamically
recover from mistakes, which is most impressive:

As Joerg Siekmann once said, the most admirable moments in a mathematics seminar are
not when someone presents a well-oiled proof, but when he discovers a mistake and recovers
on the spot. Logic should understand this dynamic behaviour, which surely involves many
more mechanisms than inference …. And on that view, logic is not the static guardian of
correctness, as we still find it defined in most textbooks, but rather the much more dynamic,
and much more inspiring immune system of the mind!

These considerations motivate a closer look at the fit between game-theoretic strate-
gies and actual human reasoning.

In this spirit, many studies have proven that the application of higher-order social
reasoning among adults is far from optimal (see, for example, [63, 134]). However,



818 A. M. C. Isaac et al.

Meijering and colleagues [85, 87] report an almost perfect performance by subjects
whose reasoning processes have been facilitated by step-wise training, which pro-
gresses from simple decisions without any opponent, through games that require
first-order reasoning (“he plans to go right at the next trapdoor”), to games that
require second-order reasoning (“he thinks that I plan to go left at the last trapdoor”).
Surprisingly, an eye-tracking study of the subjects solving the game suggests that
backward induction is not necessarily the strategy that participants used; they seemed
instead to favour a form of “forward reasoning plus backtracking” [86].

Another application of formal methods in this spirit has been implemented by
Ghosh et al. [53] and Gosh and Meijering [54]. They formulate all reasoning strategies
on an experimental task in a logical language and compare ACT-R models based on
each strategy with the subject’s actual performance in a sequence of games on the
basis of reaction times, accuracy, and eye-tracking data. These comparisons allowed
them to develop a “cognitive computational model” with similar task performance
to that of the human subjects. As a final example, consider the recent work of [125].
The authors successfully used structural properties of the game, namely types of turn
alternation and pay-off distributions, to predict the cognitive complexity of various
trials. This complexity analysis accurately predicted changes in subjects’ reaction
times during game play.

These examples confirm Johan van Benthem’s point: it is not static solution con-
cepts, but dynamic algorithm switching, which characterizes realistic game play. Yet,
far from being immune to logical analysis, such dynamic strategic reasoning can be
formalized and explored through logical methods.

30.7 Conclusion

We have examined a number of applications of logical methods in cognitive science.
These methods assume the computational perspective, which treats cognitive agents
as realistic machines solving information processing tasks. The value of the com-
putational perspective is in its fruitfulness as a research program: formal analysis
of an information processing task generates empirical predictions, and breakdowns
in these predictions motivate revisions in the formal theory. We have illustrated this
back-and-forth between logical analyses and empirical results through a number of
specific examples, including quantifier processing and higher-order social reasoning.

We have also emphasized the role that logical methods can play in clarifying
concepts, with a particular focus on the role of non-monotonic logics in bridging
Marr’s algorithmic and implementation levels and the role of complexity theory
in bridging his computational and algorithmic levels. Typically, formal methods
generate “in principle” results, such as the boundary between logical and illogical
solutions, tractable and intractable problems, or monotonic and non-monotonic rea-
soning. However, these in principle results do not constitute brittle hypotheses to
be confirmed or disconfirmed: it is not the case that humans are simply “logical”
or “illogical.” Rather, such results form a bedrock on which a nuanced analysis of
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fine structure can be built. An apparent strict boundary between logical and illogical
becomes an array of types of logic, an apparent strict boundary between tractable
and intractable becomes a hierarchy of algorithmic types which differentially recruit
processing resources. It is this fine structure which allows the subtle and fruitful
interplay between logical and empirical methods.

There are morals here for both sides of the logical/empirical coin. Logicians
can strengthen the relevance of their analyses for science by embracing complex-
ity analysis. Not just formal semantics and logics of agency, but all logical models
of cognitive behavior (temporal reasoning, learning, mathematical problem solving,
etc.) can strengthen their relevance for empirical methods by embracing complex-
ity analysis and the fine structure of the complexity hierarchy which rests upon it.
Likewise, empirical scientists should recognize the degree of nuance a formal analy-
sis can bring to empirical predictions: not just which task can be solved, but how
quickly, and using what resources may all be predicted by an algorithmic analysis.
The theme which unites these two facets of cognitive science is that representa-
tions matter. The content and structure of representations constrain performance on
cognitive tasks. Both experiments and logical models probe the nature of these rep-
resentations, and it is in converging on a single analysis through the back-and-forth
of theoretical/empirical interaction that cognitive science progresses.
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