
Column Stores as an IR Prototyping Tool

Hannes Mühleisen1, Thaer Samar1, Jimmy Lin2, and Arjen de Vries1

1 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
2 University of Maryland, College Park, Maryland, USA

{hannes|samar}@cwi.nl, jimmylin@umd.edu, arjen@acm.org

Abstract. We make the suggestion that instead of implementing custom
index structures and query evaluation algorithms, IR researchers should
simply store document representations in a column-oriented relational
database and write ranking models using SQL. For rapid prototyping, this
is particularly advantageous since researchers can explore new ranking
functions and features by simply issuing SQL queries, without needing to
write imperative code. We demonstrate the feasibility of this approach
by an implementation of conjunctive BM25 using MonetDB on a part of
the ClueWeb12 collection.

1 Introduction

Information retrieval researchers and practitioners have long implemented spe-
cialized data structures and algorithms for document ranking [6]. Today, these
techniques can be quite complex, especially with “structured queries” that span
multiple nested clauses with a panoply of query operators [4]. We make the
suggestion that the information retrieval community should look towards the
database community for general purpose data management solutions—namely,
column-oriented relational databases (or column stores). We show that one such
system, MonetDB, can be used for storing postings lists and that conjunctive
query evaluation with BM25 can be translated into an SQL query. We advocate
this approach especially for rapid prototyping in an IR research setting.

What advantages does using a database have? We see many, beginning with a
precise formal framework. Relational databases provide a formal and theoretically-
sound framework in which to express any query evaluation algorithm—namely,
relational calculus (or, practically, SQL). This forces IR researchers to be precise
about query semantics, which may be especially useful when complex query
operators are introduced in document ranking.

Second, taking advantage of relational databases yields a cleaner architecture.
Almost all IR systems today are monolithic agglomerations of components for text
processing, document inversion, integer compression, memory/disk management,
query evaluation, feature extraction, machine learning, etc. By offloading the
storage management to a relational database, we introduce a clean abstraction
(via SQL) between the “low-level” components of the engine and the IR-specific
components (e.g., learning to rank). This (hopefully) reduces overall system
complexity and may allow different IR engines to inter-operate.

Third, retrieval systems can benefit from advances in data management. In
IR, efficiency is a relatively niche topic. In contrast, performance is a dominant
preoccupation of database researchers, who make regular breakthroughs that
eventually propagate to IR (for example, PForDelta [7], the best practice for index
compression today, originated from database researchers). By using relational
databases, IR systems can benefit from future advances “for free”.

Finally, databases form a flexible rapid prototyping tool. Many IR researchers
do not really care about index structures and query evaluation per se—they are
merely means to an end, such as assessing the effectiveness of a particular ranking
function. In this case, forcing researchers to design data structures and query
evaluation algorithms is a burden. Using a relational database, researchers can
rapidly experiment by issuing declarative SQL queries without needing to write
(error-prone) imperative or object-oriented code.

There are many similarities between query evaluation in document retrieval
and online analytical processing (OLAP) tasks in modern data warehouses. Both
frequently involve scans, aggregations, and sorting. Thus, we believe that column-
oriented databases, which excel at OLAP queries, are amenable to retrieval tasks.
An overview of such databases is beyond the scope of this work, but the basic
insight is to decompose relations into columns for storage and processing [2].
In this paper, we use exactly such a system, MonetDB, to illustrate document
ranking on a portion of the ClueWeb12 collection.

2 Okapi BM25 in a Relational Database

All IR engines pre-process the input collection prior to indexing, and this is
no different when using a relational database. For this task, we take advantage
of Hadoop MapReduce to convert a document collection into a collection of
relational tables. We performed tokenization and stemming using the Krovetz
stemmer with a stopwords list from Terrier. The stemmed and filtered terms
were mapped to integer ids and stored in a dictionary table. In the main terms
table, we store all terms in a document (by term id), along with the position in
which they occur. To give a concrete example, consider the document doc1 with
the content “I put on my robe and wizard hat”. If we assume “I”, “on”, “my” and
“and” are stopwords, the relational tables generated from this document have the
following content:

table: dict
term termid df
1 put 1
2 robe 1
3 wizard 1
4 hat 1

table: terms
termid docid pos

1 1 2
2 1 5
3 1 7
4 1 8

table: docs
docid name len
1 doc1 8

We have chosen Okapi BM25 to implement as an SQL query, but our approach
can be easily extended to other ranking functions. Our experiments focused
on conjunctive query evaluation, where the document must contain all terms;

previous work [1] has shown that this approach yields comparable end-to-end
effectiveness to disjunctive query evaluation, but is substantially faster. When
scoring documents based on BM25, the only score component that depends on
the query–document combination is the term frequency f(qi, D). The document
length |D| for each document and the document frequency n(qi) for each term
can be precomputed. By sorting the terms table (from above) by term id (in
effect performing document inversion), we can avoid scanning the table entirely.
The complete ranking function can be expressed as follows:

WITH qterms AS (SELECT termid, docid FROM terms

 WHERE termid IN (10575, 1285, 191)),

subscores AS (

SELECT docs.docid, len, term_tf.termid,

tf, df, (log((45174549-df+0.5)/(df+0.5))* ((tf*(1.2+1)/(tf+1.2*(1-

0.75+0.75*(len/513.67)))))) AS subscore

FROM (SELECT termid, docid, COUNT(*) AS tf FROM qterms

GROUP BY docid, termid) AS term_tf

JOIN (SELECT docid FROM qterms

GROUP BY docid HAVING COUNT(DISTINCT termid) = 3)

AS cdocs ON term_tf.docid=cdocs.docid

JOIN docs ON term_tf.docid=docs.docid

JOIN dict ON term_tf.termid=dict.termid)

SELECT name, score FROM (SELECT docid, sum(subscore) AS score

FROM subscores GROUP BY docid) AS scores JOIN docs ON

scores.docid=docs.docid ORDER BY score DESC LIMIT 1000;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

To explain, we map conjunctive BM25 ranking to SQL in three parts: First, we
find the entries in the terms table for query terms (Lines 1 and 2).3 In this case,
the query terms have ids 10575, 1285, and 191. The second step calculates the
individual scores for all term/document combinations (Lines 4-13). To express
the conjunctivity in the query, we filter this intermediate result to only include
term/document combinations with exactly three different term ids for each
document. (Lines 9 to 11). We also collect information about document ids and
lengths (Line 12) as well as the document frequency of the terms (Line 13). Then,
we calculate the individual BM25 scores for each term/document combination
(Lines 5 and 6) and sum the results up and sort (Lines 14 to 16). The numbers
printed in bold are the only parts of the SQL query that depend on the document
collection and the query terms.

3 Although in theory it would be possible to “join in” the dictionary by term, in practice,
performing the mapping from query terms to identifiers turns out to be preferable
outside SQL.

Note that the entire ranking function is expressed as an SQL query and this
approach can be extended to any scoring function that is a sum of matching
query terms. Disjunctive query evaluation can be implemented by replacing inner
joins with outer joins. Phrase queries are performed by simple arithmetic over
term positions and relative phrase positions. In other words, IR researchers can
rapidly explore different retrieval options without writing imperative code.

We have implemented the above ranking function using the open-source
columnar database MonetDB [3]. Our experiments used the first segment on the
first disk of ClueWeb12 (∼45 million documents). We ran queries 201–250 from
the TREC 2013 web track and verified that both query latency and effectiveness
are comparable to existing open-source engines such as Terrier [5] and Indri [4].

3 Demonstration Description

Our demonstration allows a user to interactively compare our MonetDB solution
to existing open-source search engines. Users submit queries in a web interface,
which are concurrently dispatched to multiple backends. The interface displays
results from each backend as soon as it completes, allowing the user to compare
the performance of each search engine along with the effectiveness of the results.

Acknowledgments. This research was supported by the Netherlands Organiza-
tion for Scientific Research (NWO project 640.005.001) and the Dutch national
program COMMIT/.

References

1. Asadi, N., Lin, J.: Effectiveness/efficiency tradeoffs for candidate generation in
multi-stage retrieval architectures. In: SIGIR. pp. 997–1000 (2013)

2. Copeland, G., Khoshafian, S.: A decomposition storage model. In: SIGMOD (1985)
3. Idreos, S., Groffen, F., Nes, N., Manegold, S., Mullender, K.S., Kersten, M.L.: Monet-

DB: Two decades of research in column-oriented database architectures. IEEE Data
Engineering Bulletin 35(1), 40–45 (2012)

4. Metzler, D., Croft, W.B.: Combining the language model and inference network
approaches to retrieval. IP&M 40(5), 735–750 (2004)

5. Ounis, I., Amati, G., Plachouras, V., He, B., Macdonald, C., Lioma, C.: Terrier: A
high performance and scalable information retrieval platform. In: SIGIR Workshop
on Open Source Information Retrieval (2006)

6. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Computing Surveys
38(6), 1–56 (2006)

7. Zukowski, M., Heman, S., Nes, N., Boncz, P.: Super-scalar RAM-CPU cache com-
pression. In: ICDE. pp. 59–59 (2006)

	Column Stores as an IR Prototyping Tool

