
A tight lower bound instance for k-means++ in constant dimension

Anup Bhattacharya1, Ragesh Jaiswal ∗1, and Nir Ailon †2

1IIT Delhi, India
2Technion, Haifa, Israel

Abstract

The k-means++ seeding algorithm is one of the most popular algorithms that is used for
finding the initial k centers when using the k-means heuristic. The algorithm is a simple sampling
procedure and can be described as follows:

Pick the first center randomly from the given points. For i > 1, pick a point to be
the ith center with probability proportional to the square of the Euclidean distance
of this point to the closest previously (i− 1) chosen centers.

The k-means++ seeding algorithm is not only simple and fast but also gives an O(log k) ap-
proximation in expectation as shown by Arthur and Vassilvitskii [7]. There are datasets [7, 3]
on which this seeding algorithm gives an approximation factor of Ω(log k) in expectation. How-
ever, it is not clear from these results if the algorithm achieves good approximation factor with
reasonably high probability (say 1/poly(k)). Brunsch and Röglin [9] gave a dataset where the
k-means++ seeding algorithm achieves an O(log k) approximation ratio with probability that
is exponentially small in k. However, this and all other known lower-bound examples [7, 3] are
high dimensional. So, an open problem was to understand the behavior of the algorithm on
low dimensional datasets. In this work, we give a simple two dimensional dataset on which the
seeding algorithm achieves an O(log k) approximation ratio with probability exponentially small
in k. This solves open problems posed by Mahajan et al. [13] and by Brunsch and Röglin [9].

1 Introduction

The k-means clustering problem is one of the most important problems in Data Mining and Machine
Learning that has been widely studied. The problem is defined as follows:

(k-means problem): Given a set of n points X = {x1, ..., xn} in a d-dimensional
space, find a set of k points C = {c1, ..., ck} (these are called centers) such that the
cost function ΦC(X) =

∑
x∈X minc∈C D(x, c) is minimized. Here D(x, c) denotes the

square of the Euclidean distance between points x and c. In the discrete version of this
problem, the centers are constrained to be a subset of the given points X.

∗Corresponding author: rjaiswal@cse.iitd.ac.in
†Nir Ailon acknowledges the support of a Marie Curie International Reintegration Grant PIRG07-GA-2010-268403,

as well as the support of The Israel Science Foundation (ISF) no. 1271/13.

1

ar
X

iv
:1

40
1.

29
12

v2
 [

cs
.D

S]
 1

4
Ja

n
20

14

The problem is known to be NP-hard even for small values of the parameters such as when
k = 2 [10] and when d = 2 [14, 13]. There are various approximation algorithms for the problem.
However, in practice, a heuristic known as the k-means algorithm (also known as Lloyd’s algorithm)
is used because of its excellent performance on real datasets even though it does not give any
performance guarantees. This algorithm is simple and can be described as follows:

(k-means Algorithm): (i) Arbitrarily, pick k points C as centers. (ii) Cluster the
given points based on the nearest distance to centers in C. (iii) For all clusters, find
the mean of all points within a cluster and replace the corresponding member of C with
this mean. Repeat steps (ii) and (iii) until convergence.

Even though the above algorithm performs very well on real datasets, it guarantees only con-
vergence to local minima. This means that this local search algorithm may either converge to a
local optimum solution or may take a large amount of time to converge [5, 6]. Poor choice of
the initial k centers (step (i)) is one of the main reasons for its bad performance with respect to
approximation factor. A number of seeding heuristics have been suggested for choosing the initial
centers. One such seeding algorithm that has become popular is the k-means++ seeding algorithm.
The algorithm is extremely simple and runs very fast in practice. Moreover, this simple randomized
algorithm also gives an approximation factor of O(log k) in expectation [7]. In practice, this seeding
technique is used for finding the initial k centers to be used with the k-means algorithm and this
ensures a theoretical approximation guarantee. The simplicity of the algorithm can be seen by its
simple description below:

(k-means++ seeding): Pick the first center randomly from the given points. After
picking (i− 1) centers, pick the ith center to be a point p with probability proportional
to the square of the Euclidean distance of p to the closest previously (i − 1) chosen
centers.

A lot of recent work has been done in understanding the power of this simple sampling based
approach for clustering. We discuss these in the following paragraph.

1.1 Related work

Arthur and Vassilvitskii [7] showed that the sampling algorithm gives an approximation guarantee of
O(log k) in expectation. They also give an example dataset on which this approximation guarantee
is best possible. Ailon et al. [4] and Aggarwal et al. [3] showed that sampling more than k centers
in the manner described above gives a constant pseudo-approximation.1 Ackermann and Blömer [1]
showed that the results of Arthur and Vassilvitskii [7] may be extended to a large class of other
distance measures. Jaiswal et al. [12] showed that the seeding algorithm may be appropriately
modified to give a (1+ ε)-approximation algorithm for the k-means problem. Jaiswal and Garg [11]
and Agarwal et al. [2] showed that if the dataset satisfies certain separation conditions, then the
seeding algorithm gives constant approximation with probability Ω(1/k). Bahmani et al. [8] showed
that the seeding algorithm performs well even when fewer than k sampling iterations are executed
provided that more than one center is chosen in a sampling iteration. We now discuss our main
results.

1Here pseudo-approximation means that the algorithm is allowed to output more than k centers but the approxi-
mation factor is computed by comparing with the optimal solution with k centers.

2

1.2 Main results

The lower-bound examples of Arthur and Vassilvitskii [7] and Aggarwal et al. [3] have the following
two properties: (a) the examples are high dimensional and (b) the examples lower-bound the
expected approximation factor. Brunsch and Röglin [9] showed that the k-means++ seeding gives
an approximation ratio of at most (2/3−ε)·log k only with probability that is exponentially small in
k. They constructed a high dimensional example where this is not true and showed that an O(log k)
approximation is achieved with probability exponentially small in k. An important open problem
mentioned in their work is to understand the behavior of the seeding algorithm on low-dimensional
datasets. This problem is also mentioned as an open problem by Mahajan et al. [13] who showed
that the planar (dimension=2) k-means problem is NP-hard. In this work, we construct a two
dimensional dataset on which the k-means++ seeding algorithm achieves an approximation ratio
O(log k) with probability exponentially small in k. More formally, here is the main theorem that
we prove in this work.

Theorem 1 (Main Theorem). Let r(k) = δ · log k for a fixed real δ ∈ (0, 1
120). There exists a

family of instances for which k-means++ achieves an r(k)-approximation with probability at most

2−k + e(−(k−1)1−120δ−o(1)).

Note that the theorem refutes the conjecture by Brunsch and Röglin [9]. They conjectured that
the k-means++ seeding algorithm gives an O(log d)-approximation for any d-dimensional instance.

1.3 Our techniques

All the known lower-bound examples [7, 3, 9] have the following general properties:

(a) All optimal clusters have equal number of points.

(b) The optimal clusters are high dimensional simplices.

In order to construct a counterexample for the two dimensional case, we consider datasets that have
different number of points in different optimal clusters. Our counterexample is shown in Figure 2.
The optimal clusters (indicated in the figure using shaded areas) are along the vertical lines drawn
along the x-axis. In the next section, we will show that these are indeed the optimal clusters. Note
that the cluster sizes decrease exponentially going from left to right. We say that an optimal cluster
is covered by the algorithm if the algorithm picks a center from that optimal cluster. We will use
the following two high level observations to show the main theorem:

• Observation 1: The algorithm needs to cover more than a certain minimum fraction of
clusters to achieve a required approximation.

• Observation 2: After any number of iterations, the probability of sampling the next center
from an uncovered cluster is not too large compared to the probability of sampling from a
covered cluster.

We bound the probability of covering more than a certain minimum fraction of clusters by
analyzing a simple Markov chain. This Markov chain is almost the same as the chain used by
Brunsch and Röglin [9]. We also borrow the analysis of the Markov chain from [9]. So, in some
sense, the main contribution of this paper is to come up with a two dimensional instance the analysis
of which may be reduced to the Markov chain analysis in [9].

In the next section, we give the details of our construction and proof.

3

2 The Bad Instance

We provide a family of 2-dimensional instances on which performance of k-means++ is bad in
the sense of Theorem 1. This family is depicted in Figure 2. We first recursively define certain
quantities that will be useful in describing the construction. Here m is any positive integer, r is
any positive real number, and ∆ is a positive real number dependent on k (we will define this
dependency later during analysis).

r1 = r and ∀i, 2 ≤ i < k, ri = 2 · ri−1

m1 = m and ∀i, 2 ≤ i < k,mi = (1/4) ·mi−1

Note that the input points may overlap in our construction. We will consider k groups of
points G0, ..., Gk−1. These groups are shown as shaded areas in Figure 2. They are located at
only k distinct x-coordinates. These k distinct x-coordinates are given by (x0, x1, ..., xk−1), where
x0 = 0, x1 = ∆ · r1, x2 = ∆ · (r1 + r2), ..., xk−1 = ∆ · (r1 + ...+ rk−1). The ith group, Gi, consists of
points that have the x-coordinate xi. We will later show that G0, ..., Gk−1 is actually the optimal
k-means clustering for our instance. Group G0 has 12k2km points located at (x0, 0). For all i ≥ 1,
group Gi has 4kmi points located at (xi, 0), and for all 0 ≤ j < k, Gi has mi

4j
points located at each

of
(
xi, 2

jri
)

and
(
xi,−2jri

)
.

Let the total number of points on ith group be denoted by Mi. Therefore, we can write summing
points across all locations on that cluster to get the following:

∀i ≥ 1,Mi = 4kmi + 2mi + 2(mi/4) + ...+ 2(mi/4
k−1)

= 4kmi + 2mi(1 + 1/4 + ...+ 1/4k−1) (1)

Note that Mi+1 = Mi/4.

2.1 Optimal solution for our instance

We consider the following partitioning of the given points: Let H0 denote the subset of points on
the x-axis and for |i| ≥ 1, let Hi denote the subset of all points that are located at y-coordinate
sgn(i) · 2|i|−1 · r. For any point p ∈ Hi, we say that point p is in level i. Given the above definitions
of group and level, the location of a point may be defined by a tuple (i, j), where i denotes the
index of the group to which this point belongs and j denotes the level of this point.

Given a set C of centers and a subset of points Y , the potential of Y with respect to C is given
by ΦC(Y) =

∑
y∈Y minc∈C D(y, c). Furthermore, the potential of a location l = (i, r) with respect

to C is defined as ΦC(l) =
∑

p located at lD(p, C). Here, D(p, C) = minc∈C D(p, c). Given a set of
locations L = {l1, ..., ls} and a subset of points Y , ΦL(Y) denotes the potential of points Y with
respect to a set of centers located at locations in L.

We start by showing certain basic properties of our instance.

Lemma 2. Let |j| ≥ i > 0. The total number of points at level j in group i is m
4|j|−1 .

Proof. The points for group i are located at distance ±ri,±2ri,±4ri, Since ri = 2i−1 · r, this
means that the points in Gi are located at ±2i−1r,±2ir,±2i+1r, So, the number of points is
given by mi

4|j|−i
= m

4|j|−1 .

4

Figure 1: 2-D example instance showing the 0th, 1st, 2nd, and 3rd optimal clusters only. Note that
this figure is not to scale.

Lemma 3. For all i > 0 and |j| > 0,

Φ{(i,0)}(Hj)− Φ{(i,j)}(Hj) ≤ kmr2

Proof. From Lemma 2, we know that the total number of points at level j of any group is either 0
or m/4|j|−1. The net change in the squared Euclidean distance of any point in Hj with respect to
locations (i, 0) and (i, j) is (2|j|−1r)2. So, the total change in potential is at most k· m

4|j|−1 ·(2|j|−1r)2 =

kmr2.

Lemma 4. For all i > 0 and |j| > 0,

Φ{(i,0)}(Hj+1·sgn(j) ∪Hj+2·sgn(j) ∪ ...) ≤
Φ{(i,j)}(Hj+1·sgn(j) ∪Hj+2·sgn(j) ∪ ...) + 2kmr2.

Proof. WLOG assume that j > 0. From Lemma 2, we can get an upper bound in the following

5

manner:

Φ{(i,0)}(Hj+1 ∪Hj+2 ∪ · · ·)− Φ{(i,j)}(Hj+1 ∪Hj+2 ∪ · · ·)

≤
k∑
t=1

∞∑
l=j+1

m

4l−1
· r2
(

(2l−1)2 − (2l−1 − 2j−1)2
)

= kmr2 ·
∞∑

l=j+1

1

4l−1
·
(

2l+j−1 − 22j−2
)

≤ kmr2 ·
∞∑

l=j+1

2j−l+1

≤ 2kmr2

Let C denote a set of optimal centers for the k-means problem. Let L denote the set of locations
of these centers. We will show that L = {(0, 0), (1, 0), ..., (k − 1, 0)}. We start by showing some
simple properties of the set L. We will need the following additional definitions: We say that a
group Gi is covered with respect to C if C has at least one center from group Gi. Group Gi is said
to be uncovered otherwise.

Lemma 5. (0, 0) ∈ L.

Proof. Let L′ = {(0, 0), (1, 0), ..., (k − 1, 0)}. Then we have:

ΦL′(X) =

k−1∑
i=1

2
(
mir

2
i +

mi

4
(2ri)

2 + ...+
mi

4k−1
(2k−1ri)

2
)

=
k−1∑
i=1

2k ·mir
2
i

= 2k(k − 1)mr2.

Let L′′ be any set of locations that do not include (0, 0), then ΦL′′(X) ≥ 12k2kmr2 (since the
nearest location to (0, 0) is (1, 0)). So, L necessarily includes the location (0, 0).

Lemma 6. For any i, if group Gi is covered with respect to C, then (i, 0) ∈ L.

Proof. For the sake of contradiction, assume that (i, 0) /∈ L. Let (i, j) ∈ L be the location that is
farthest from the x-axis among the locations of the form (i, .) ∈ L. Consider the set of locations
L′ = (L \ {(i, j)}) ∪ {(i, 0)}. We will now show that ΦL′(X) < ΦL(X). WLOG let us assume that
j is positive. The change in center location does not decrease the potential of Hj , Hj+1, ..., does
not increase the potential of Hj−1, Hj−2, ..., and does not increase the potential of points on the
x-axis. From Lemmas 3 and 4, we have that the increase in potential is at most 3kmr2. On the
other hand, since the contribution of the points located at (i, 0) to the total potential changes from
4kmr2 to 0, the total decrease in potential is at least 4kmr2. So, we have that the total potential
decreases and hence ΦL′(X) < ΦL(X). This contradicts the fact that L denotes the location of the
optimal centers.

6

Lemma 7. All groups are covered with respect to C.

Proof. For the sake of contradiction, assume that there is a group Gi that is uncovered. This means
that there is another group Gj such that there are at least two locations from Gj that is present in
L. Note that from the previous lemma (j, 0) ∈ L. Let (j, l) ∈ L for some l > 0. We now consider
the set of locations L′ = (L \ {(j, l)}) ∪ {(i, 0)}. We will now show that ΦL′(X) < ΦL(X). Since
(j, 0) ∈ L, the change in center location does not decrease the potential of Hl, Hl+1, ..., does not
increase the potential of Hl−1, Hl−2, ... and does not increase the potential of points on the x-axis.
From Lemmas 3 and 4, we have that the increase in potential is at most 3kmr2. On the other hand,
since the contribution of the points located at (i, 0) to the total potential changes from 4kmr2 to
0, the total decrease in potential is at least 4kmr2. So, we have that the total potential decreases
and hence ΦL′(X) < ΦL(X). This contradicts the fact that L denotes the location of the optimal
centers.

The following is a simple corollary of Lemmas 6 and 7.

Corollary 8. Let C denote the optimal set of centers for our k-means problem instance and let L
denote the location of these optimal centers. Then L = {(0, 0), (1, 0), ..., (k − 1, 0)}.

2.2 Potential of the optimal solution

Let us denote the potential of the optimum solution by Φ∗. Since optimum chooses its centers only
from locations on the x-axis, we can compute Φ∗ as follows:

Φ∗ =

k−1∑
i=1

2 · (mir
2
i +

mi

4
(2ri)

2 + · · ·+ mi

4k−1
(2k−1ri)

2)

=
k−1∑
i=1

2kmir
2
i

= 2k(k − 1)mr2 (2)

3 Analysis of k-means++ for our instance

We will first show that with very high probability, the first center chosen by the k-means++ seeding
algorithm is located at the location (0, 0). This is simply due to the large number of points located
at the location (0, 0) and the fact that the first center is chosen uniformly at random from all the
given points.

Lemma 9. Let p be the location of the first center chosen by the k-means++ seeding algorithm.
Then Pr[p 6= (0, 0)] ≤ 2−k.

Proof. For any i ≥ 1 let ω(i) = 1 + 1/4 + ...+ 1/4i−1 = (4/3) · (1− 1/4i). Since the first center is
chosen uniformly at random, we have:

Pr[p = (0, 0)] =
M0

M0 +M1 + ...+Mk−1

7

=
M0

M0 +
∑k−1

i=1 mi · (4k + 2ω(k))

(since from (1), Mi = mi(4k + 2ω(k)))

=
M0

M0 +
∑k−1

i=1
m

4i−1 · (4k + 2ω(k))

=
M0

M0 +m · ω(k − 1) · (4k + 2ω(k))

=
(12k) · 2k

(12k) · 2k + ω(k − 1) · (4k + 2ω(k))

≥ (12k) · 2k

(12k) · 2k + (4/3) · (4k + (8/3))

≥ (12k) · 2k

(12k) · 2k + 12k
(since k ≥ 1)

≥ 1− 2−k

Let us define the following event:

Definition 10. ξ denotes the event that the location of the first chosen center is (0, 0).

Lemma 9 shows that ξ happens with a very high probability. We will do the remaining analysis
conditioned on the event ξ. We will later use the above lemma to remove the conditioning. The
advantage of using this event is that once the first center has the location (0, 0), computing an upper-
bound on the potential of any location becomes easy. This is because we can compute potential
with respect to the center at location (0, 0). Computing such upper bounds will be crucial in our
analysis.

Our analysis closely follows that of [9]. Let us analyze the situation after (1 + t) iterations
of the k-means++ seeding algorithm (given that the event ξ happens). Let Ct denote the set
of chosen centers. Let s ≤ t denote the number of optimal clusters among G1, ..., Gk−1 that are
covered by Ct. Let Xc denote the points in these covered clusters and Xu denote the points in the
uncovered clusters. Conditioned on ξ, the probability that the next center will be chosen from Xu

is Φ(Xu)
Φ(Xu)+Φ(Xc)

. So, the probability of covering a previously uncovered cluster in iteration (t + 2)

depends on the ratio Φ(Xu)
Φ(Xc)

. The smaller this ratio, the smaller is the chance of covering a new
cluster. We will show that this ratio is small for most iterations of the algorithm. This means
that even when the algorithm terminates, there are a number of uncovered clusters. This implies
that the algorithm gives a solution that is worse compared to the optimal solution. In order to
upper-bound the ratio Φ(Xu)

Φ(Xc)
, we will upper bound the value of Φ(Xu) and lower-bound the value

of Φ(Xc). We state these bounds formally in the next two lemmas.

Lemma 11. Φ(Xc) ≥ (2s− 1) · kmr2

4 .

Proof. For any covered cluster Gi for i > 0, we know that Gi has points at levels 0, i − 1,−i +
1, i,−i, i + 1, For any such location (i, j) (except location (i, 0)) such that Ct does not have a
center at this location, the contribution of the points at this location to Φ(Xc) is at least mi

4|j|−1 ·

8

(2|j|−1 −max(2|j|−2, 1))2 · r2
i ≥ mr2/4. Furthermore, the contribution of points at location (i, 0) in

case Ct does not contain a center from this location, is at least mr2. Therefore,

Φ(Xc) ≥ ((2k + 1) · s− t) · mr
2

4

≥ (2s− 1) · kmr
2

4
(since t ≤ k − 1)

Lemma 12. Φ(Xu) ≤ (40k) · (k − s− 1)mr2∆2.

Proof. Since the number of covered clusters among G1, ..., Gk−1 is s, the number of uncovered
clusters is given by (k − s− 1). Let Gi be any such uncovered cluster. Since ξ happens, there is a
center at location (0, 0). Therefore, the contribution of Gi to Φ(Xu) can be upper bounded by the
quantity Φ{(0,0)}(Gi). This can be computed in the following manner:

Φ{(0,0)}(Gi)

= Φ{(i,0)}(Gi) +Mi ·∆2 · (r1 + r2 + ...+ ri)
2

= Φ{(i,0)}(Gi) +Mi ·∆2 · (2i − 1)2 · r2

= Φ{(i,0)}(Gi) + (4k + 2ω(k))
m

4i−1
·∆2 · (2i − 1)2 · r2

≤ Φ{(i,0)}(Gi) + (4k + (8/3)) · (4mr2∆2)

= 2 ·
k∑
j=1

mi

4j−1
· (2j−1ri)

2 + (4k + (8/3)) · (4mr2∆2)

= 2kmr2 + (4k + (8/3)) · (4mr2∆2)

≤ (40k)mr2∆2

Hence, the total contribution from the uncovered clusters Φ(Xu) is upper bounded by (40k)(k −
s− 1)mr2∆2.

We will also need a lower bound on Φ(Xu). This is given in the next lemma.

Lemma 13. Φ(Xu) ≥ 4k(k − s− 1)mr2∆2.

Proof. Let Gi be an uncovered cluster for some i ≥ 1. For any location (i, j), the contribution of
the points at this location to Φ(Xu) is at least r2

i ∆
2 times the number of points at that location.

So we have:

Φ(Xu) ≥
∑

{i|Gi uncovered}

Mi · r2
i ∆

2

=
∑

{i|Gi uncovered}

mi(4k + 2ω(k)) · r2
i ∆

2

≥
∑

{i|Gi uncovered}

4k ·mr2∆2

≥ 4k(k − s− 1) ·mr2∆2

9

Figure 2: Markov chain used for analyzing the algorithm.

Since most of our bounds have the term k−1, we define k̄ = k−1 and do the remaining analysis
in terms of k̄. Note that all the bounds on Φ(Xu) and Φ(Xc) are dependent only on s and not on
t. This allows us to define the following quantity that will be used in the remaining analysis. This
is an upper bound on the ratio Φu(X)

Φc(X) obtained from Lemmas 11 and 12.

zs
def
=

(k̄ − s)(80∆2)

s− 1/2
=

(k − s− 1)(80∆2)

s− 1/2
(3)

We now get a bound on the number of clusters among G1, ..., Gk̄ that are needed to be covered
to achieve an approximation factor of α for a fixed α. For any such fixed approximation factor α,
we define the following quantities that will be used in the analysis.

u
def
=

α

2∆2
and s∗

def
= dk̄ · (1− u)e (4)

Lemma 14. Any α-approximate clustering covers G0 and at least s∗ clusters among G1, ..., Gk̄.

Proof. The optimal potential is given by Φ∗ = 2kk̄mr2 (by (2)). Consider any α-approximate clus-
tering. Suppose this clustering covers s clusters among G1, ..., Gk̄. Let the covered and uncovered
clusters be denoted by Xc and Xu respectively. Then we have:

α =
Φ(X)

Φ∗
≥ Φ(Xu)

Φ∗
≥ 4k(k̄ − s)mr2∆2

2kk̄mr2
≥ 2(k̄ − s)∆2

k̄

The second inequality above is using Lemma 13. This means that the number of covered clusters
among G1, ..., Gk−1 should satisfy

s ≥
⌈
k̄ ·
(

1− α

2∆2

)⌉
= s∗.

We analyze the behavior of the k-means++ seeding algorithm with respect to the number of
covered optimal clusters using a Markov chain (see Figure 2). This Markov chain is almost the
same as the Markov chain used to analyze the bad instance by Brunsch and Röglin [9]. In fact,
the remaining analysis will mostly mimic that analysis in [9]. The next lemma formally relates the
probability that the algorithm achieves an α approximation to the Markov chain reaching its end
state. We analyze this Markov chain in the next subsection.

10

Lemma 15. Let p0 = 1 and for s = 1, 2, ..., s∗, let ps = 1
1+ 1

zs

We consider the linear Markov

chain with states v0, v1, ..., vs∗ with starting state v0 (see Figure 2). Edges (vs, vs+1) have transition
probabilities ps and the self-loops (vs, vs) have transition probabilities qs = (1 − ps). Then the
probability that the k-means++ seeding algorithm gives an α-approximate solution is upper bounded
by the probability that the state vs∗ is reached by the Markov chain within k̄ steps.

Proof. The proof is trivial from the observation that the probability that a previously uncovered
cluster will be covered in iteration i > 2 is given by Φ(Xu)

Φ(Xc)+Φ(Xu) ≤
1

1+ 1
zs

= ps.

3.1 Definitions and inequalities

A number of quantities will be used for the analysis of the Markov chain. The reader is advised to
refer to this subsection when reading the next subsection dealing with the analysis of the Markov
chain. The following quantities written as a function of k̄ will be used in the analysis:

α(k̄) = δ · log k̄ (5)

ε(k̄) =
1

120
· logα(k̄)

α(k̄)
(6)

∆(k̄) =

⌈√
α(k̄) · exp

(
80 · α(k̄) · 1 + ε(k̄)

4

)⌉
(7)

u(k̄) =
α(k̄)

2∆2(k̄)
(8)

s∗(k̄) = dk̄ · (1− u(k̄))e (9)

zs(k̄) =
(k̄ − s) · (80∆2)

s− 1/2
(10)

ps(k̄) =
1

1 + 1
zs(k̄)

(11)

We will also use the following inequalities. Here, whenever we say that f(k̄) ≤ g(k̄) for two
functions f and g, we actually mean to say that f(k̄) ≤ g(k̄) for all sufficiently large k̄.

1

k
≤ u(k̄) <

1

2
(12)

(1 + 40α(k̄))∆(k̄) ≥ 1

u2(k̄)
(13)

1

k̄
≤ ε(k̄)

9
(14)

1

80∆2(k̄)
≤ ε(k̄)

3
· u(k̄) (15)

u(k̄) +
ε(k̄)

3
·
(

1 +
ε(k̄)

3

)
· u2(k̄) ≤

(
ε(k̄)

3

)2

(16)

Except for inequality (13), all the inequalities are the same as in [9]. We refer the reader to
[9] for the correctness of these inequalities. As for (13), note that (1 + 40α(k̄))∆(k̄) ≥ 2∆(k̄) =

11

2Ω(
√
α(k̄)·eα(k̄)/4) and 1/u2(k̄) = O(e2α(k̄)). So, for sufficiently large values of k̄, the inequality is

true.
For the remaining analysis, we will assume that the value of k̄ is fixed such that inequalities

(12), (13), (14), (15), and (16) are true. Given this, we will avoid using the functional notation and
simply use the name of the quantities. For example, we will use u instead of u(k̄) and ε instead of
ε(k̄) etc.

3.2 Analysis of Markov chain

We now analyze the Markov chain and upper bound the probability of this Markov chain reaching
the state vs∗ within k̄ steps. To be able to do so, we define random variables X0, X1, ..., Xs∗−1,
where the Xs denotes the number of steps to move from state vs to state vs+1. We consider the
random variable X =

∑s∗−1
s=0 Xs. We would like to show that the expected value of X is much

larger than k̄ and then use the Hoeffding inequality to bound the probability. To do this using
the well known Hoeffding bound, we need to have a bound on the value of each of the random
variables. So, we define related random variables Y0, Y1, ..., Ys∗−1, where Ys = min(Xs,∆). We will
analyze the random variable Y =

∑s∗−1
s=0 Ys ≤ X. We will use the following lemma from [9].

Lemma 16 (Claim 5 from [9]). The expected value of Xs is 1/ps and the expected value of Ys is
(1− q∆

s)/ps.

The next lemma relates the expected values of Xs and Ys.

Lemma 17 (Similar to Lemma 6 in [9]). E[Ys]
E[Xs]

≥ 1− u2.

Proof. First we get a lower bound on zs in the following manner:

zs =
(k̄ − s)(80∆2)

s− 1/2

≥ u · (80∆2)

1− u− 1
2k̄

(since s ≤ s∗ − 1 ≤ k̄(1− u))

=
40α

1− u− 1
2k̄

(using (8))

≥ 40α (using (12))

Also, from the previous lemma we have:

E[Ys]

E[Xs]
= 1− q∆

s = 1− (1− ps)∆ = 1−
(

1

1 + zs

)∆

≥ 1−
(

1

1 + 40α

)∆

≥ 1− u2.

The last inequality used (13).

Next, we we get a lower bound on E[X].

Lemma 18 (Similar to Lemma 7 in [9]). E[X]

k̄
≥ 1 + ε

3 ·
(
1 + ε

3

)
· u.

12

Proof. We can lower-bound E[X] in the following manner:

E[X] =
s∗−1∑
s=0

1

ps

= 1 +
s∗−1∑
s=1

(
1 +

s− 1/2

(k̄ − s)(80∆2)

)

= s∗ +

k−1∑
i=k̄−s∗+1

k̄ − 1/2− i
i · (80∆2)

≥ s∗ − s∗ − 1

80∆2
+
k̄ − 1

80∆2
·

k̄−1∑
i=k̄−s∗+1

1

i

≥ s∗ ·
(

1− 1

80∆2

)
+
k̄ − 1

80∆2
· log

(
k̄

k̄ − s∗ + 1

)

Since s∗ ≥ k̄(1− u), we can write,

E[X]

≥ k̄(1− u)

(
1− 1

80∆2

)
+
k̄ − 1

80∆2
· log

(
k̄

k̄ − k̄(1− u) + 1

)
≥ k̄

(
1− u− 1

80∆2
+
k̄ − 1

k̄
· 1

80∆2
· log

(
1

u+ 1
k̄

))
Using this, we have:

E[X]

k̄

≥

(
1− u− εu

3
+
k̄ − 1

k̄
· 1

80∆2
· log

(
1

u+ 1
k̄

))
(using (15))

≥
(

1− u
(

1 +
ε

3

)
+
k̄ − 1

k̄
· 1

80∆2
· log

(
1

2u

))
(using (12))

≥
(

1− u
(

1 +
ε

3

)
+
(

1− ε

9

)
· 1

80∆2
· log

(
1

2u

))
(using (14))

=

(
1− u

(
1 +

ε

3

)
+
(

1− ε

9

)
· 1

80∆2
· log

(
∆2

α

))
(using (8))

≥
(

1− u
(

1 +
ε

3

)
+
(

1− ε

9

) 1

∆2
· α · 1 + ε

2

)
(using (7))

=
(

1− u
(

1 +
ε

3

)
+
(

1− ε

9

)
(1 + ε)u

)
(using (8))

= 1 +
ε

3

(
1 +

ε

3

)
u

13

Using the previous two lemmas, we can now obtain a lower bound on E[Y].

Lemma 19 (Same as Corollary 8 in [9]). E[Y]

k̄
≥ 1 + ε

3 · u.

Proof. Using the last two lemmas, we have

E[Y]

k̄
≥ (1− u2) · E[X]

k̄

≥ (1− u2) ·
(

1 +
ε

3

(
1 +

ε

3

)
u
)

= 1 + u ·
(ε

3

(
1 +

ε

3

)
−
(
u+

ε

3

(
1 +

ε

3

)
u2
))

≥ 1 + u ·
(
ε

3

(
1 +

ε

3

)
−
(ε

3

)2
)

(using (16))

= 1 +
ε

3
· u

We can finally bound the probability that the Markov chain reaches the state vs∗ .

Lemma 20 (Similar to Lemma 9 in [9]). The probability that the state vs∗ is reached within k̄ steps
is bounded by exp(−k̄1−120δ−o(1)).

Proof. The bound on the probability is obtained through the following calculations:

Pr[X ≤ k̄] ≤ Pr[Y ≤ k̄] (since Y ≤ X)

≤ Pr
[
E[Y]− Y ≥ ε

3
· u · k̄

]
(by Lemma 19)

≤ exp

(
−

2 · (ε3 · u · k̄)2

s∗∆2

)
(by Hoeffding bound)

≤ exp

(
−2ε2u2k̄2

9k∆2

)
= exp

(
−k̄ · 2ε2u2

9∆2

)
We will now get a bound on 2ε2u2

9∆2 .

2ε2u2

9∆2
=

ε2α2

18∆6

=
ε2α2

18 · α3 · exp
(
80 · 6 · α · 1+ε

4

) (using (7))

=
ε2 · α−2 · e−120α

18

= k̄−o(1) · k̄−o(1) · k̄−120δ

Now we can put everything together and prove our main theorem.

14

(Proof of main theorem). Given that the event ξ occurs, the probability that the k-means++ seed-
ing algorithm gives an approximation factor of at most (δ · log (k − 1)) is upper bounded by the
probability that the Markov chain reaches the state vs∗ in at most (k − 1) steps. This is bounded
by exp(−(k − 1)1−o(1)−120δ) from Lemma 20. Also, from Lemma 9, we know that Pr[¬ξ] ≤ 2−k.
Combining these, we get that the probability that the algorithm gives an approximation factor of
(δ · log k) is at most 2−k + exp(−(k − 1)1−o(1)−120δ)

4 Acknowledgements

Ragesh Jaiswal would like to thank Prachi Jain, Saumya Yadav, Nitin Garg, and Abhishek Gupta
for helpful discussions.

References

[1] M. R. Ackermann and J. Blömer. Bregman clustering for separable instances. In Proceedings
of the 12th Scandinavian conference on Algorithm Theory, SWAT’10, pages 212–223, Berlin,
Heidelberg, 2010. Springer-Verlag.

[2] M. Agarwal, R. Jaiswal, and A. Pal. k-means++ under approximation stability. In T.-H.
Chan, L. Lau, and L. Trevisan, editors, Theory and Applications of Models of Computation,
volume 7876 of Lecture Notes in Computer Science, pages 84–95. Springer Berlin Heidelberg,
2013.

[3] A. Aggarwal, A. Deshpande, and R. Kannan. Adaptive sampling for k-means clustering.
In I. Dinur, K. Jansen, J. Naor, and J. Rolim, editors, Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, volume 5687 of Lecture Notes in
Computer Science, pages 15–28. Springer Berlin Heidelberg, 2009.

[4] N. Ailon, R. Jaiswal, and C. Monteleoni. Streaming k-means approximation. In NIPS, pages
10–18. 2009.

[5] D. Arthur and S. Vassilvitskii. How slow is the k-means method? In Proceedings of the
twenty-second annual symposium on Computational geometry, SCG ’06, pages 144–153, New
York, NY, USA, 2006. ACM.

[6] D. Arthur and S. Vassilvitskii. Worst-case and smoothed analysis of the ICP algorithm, with
an application to the k-means method. In Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science, FOCS ’06, pages 153–164, Washington, DC, USA, 2006.
IEEE Computer Society.

[7] D. Arthur and S. Vassilvitskii. k-means++: the advantages of careful seeding. In Proceedings
of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, SODA ’07, pages
1027–1035, Philadelphia, PA, USA, 2007. Society for Industrial and Applied Mathematics.

[8] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii. Scalable k-means++.
Proc. VLDB Endow., 5(7):622–633, Mar. 2012.

15

[9] T. Brunsch and H. Röglin. A bad instance for k-means++. Theoretical Computer Science,
2012.

[10] S. Dasgupta. The hardness of k-means clustering. Technical report, University of California
San Diego.

[11] R. Jaiswal and N. Garg. Analysis of k-means++ for separable data. In A. Gupta, K. Jansen,
J. Rolim, and R. Servedio, editors, Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques, volume 7408 of Lecture Notes in Computer Science,
pages 591–602. Springer Berlin Heidelberg, 2012.

[12] R. Jaiswal, A. Kumar, and S. Sen. A simple D2-sampling based PTAS for k-means and other
clustering problems. Algorithmica, 2013.

[13] M. Mahajan, P. Nimbhorkar, and K. Varadarajan. The planar k-means problem is NP-hard.
Theoretical Computer Science, 442(0):13 – 21, 2012. Special Issue on the Workshop on Algo-
rithms and Computation (WALCOM 2009).

[14] A. Vattani. The planar k-means problem is NP-hard. Manuscript, 2009.

16

	1 Introduction
	1.1 Related work
	1.2 Main results
	1.3 Our techniques

	2 The Bad Instance
	2.1 Optimal solution for our instance
	2.2 Potential of the optimal solution

	3 Analysis of k-means++ for our instance
	3.1 Definitions and inequalities
	3.2 Analysis of Markov chain

	4 Acknowledgements

