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MULTI-RECEIVER AUTHENTICATION SCHEME FOR MULTIPLE
MESSAGES BASED ON LINEAR CODES

JUN ZHANG, XINRAN LI AND FANG-WEI FU

Abstract. In this paper, we construct an authentication scheme for multi-receivers and
multiple messages based on a linear codeC. This construction can be regarded as a gener-
alization of the authentication scheme given by Safavi-Naini and Wang [8]. Actually, we
notice that the scheme of Safavi-Naini and Wang is constructed with Reed-Solomon codes.
The generalization to linear codes has the similar advantages as generalizing Shamir’s se-
cret sharing scheme to linear secret sharing sceme based on linear codes [1, 6, 5, 7, 9]. For
a fixed message base fieldFq, our scheme allows arbitrarily many receivers to check the
integrity of their own messages, while the scheme of Safavi-Naini and Wang has a con-
straint on the number of verifying receiversV 6 q. And we introduce access structure in
our scheme. Massey [5] characterized the access structure of linear secret sharing scheme
by minimal codewords in the dual code whose first component is1. We slightly modify the
definition of minimal codewords in [5]. LetC be a [V, k] linear code. For any coordinate
i ∈ {1, 2, · · · ,V}, a codeword~c in C is calledminimal respect to iif the codeword~c has
component 1 at thei-th coordinate and there is no other codeword whosei-th component
is 1 with support strictly contained in that of~c. Then the security of receiverRi in our au-
thentication scheme is characterized by the minimal codewords respect toi in the dual code
C⊥. Authentication scheme, linear codes, secret sharing, minimal codewords, substitution
attack.

1. Introduction

1.1. Background. One of the important goals of cryptographic scheme is authentication,
which is concerned with the approaches of providing data integrity and data origin vali-
dation between two communication entities in computer network. Traditionally, it simply
deals with the data authentication problem from a single sender to a single receiver. With
the rapid progress of network communication, the urgent need for providing data authenti-
cation has escalated to multi-receiver and/or multi-sender scenarios. However, the original
point-to-point authentication techniques are not suitable for multi-point communication.
In the multi-receiver authentication model, a sender broadcasts an authenticated message
such that all the receivers can independently verify the authenticity of the message with
their own private keys. It requires a security that malicious groups of up to a given size
of receivers can not successfully impersonate the transmitter, or substitute a transmitted
message. Desmedt et al. [4] gave an authentication scheme ofsingle message for multi-
receivers. Safavi-Naini and Wang [8] extended the DFY scheme [4] to be an authentication
scheme of multiple messages for multi-receivers.

The receivers independently verify the authenticity of themessage using each own pri-
vate key. So multi-receiver authentication scheme involves a procedure of secret sharing.
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2013CB834204), and the National Natural Science Foundation of China (Nos. 61171082, 10990011 and
60872025). The author Jun Zhang is also supproted by the Chinese Scholarship Council under the State Scholar-
ship Fund during visiting University of California, Irvine.
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To introduce the linear secret sharing scheme based on linear codes, we recall some defi-
nitions in coding theory.

Let FV
q be theV-dimensional vector space over the finite fieldFq with q elements. For

any vector~x = (x1, x2, · · · , xV) ∈ FV
q , theHamming weightWt(~x) of ~x is defined to be the

number of non-zero coordinates, i.e.,

Wt(~x) = # {i | 1 6 i 6 V, xi , 0} .

A linear [V, k] code Cis a k-dimensional linear subspace ofFV
q . Theminimum distance

d(C) of C is the minimum Hamming weight of all non-zero vectors inC, i.e.,

d(C) = min{Wt(~c) |~c ∈ C \ {~0}} .

A linear [V, k] codeC ⊆ FV
q is called a [V, k, d] linear codeif C has minimum distanced. A

vector inC is called acodewordof C. A matrix G ∈ Fk×V
q is call agenerator matrixof C

if rows of G form a basis forC. A well known trade-off between the parameters of a linear
[V, k, d] code is the Singleton bound which states that

d 6 V − k+ 1 .

A [V, k, d] code is called amaximum distance separable(MDS) code ifd = V − k+ 1. The
dual code C⊥ of C is defined as the set

{

~x ∈ FV
q | ~x · ~c = 0 for all~c ∈ C

}

,

where~x · ~c is the inner product of vectors~x and~c, i.e.,

~x · ~c = x1c1 + x2c2 + · · · + xVcV .

The secret sharing scheme provides security of a secret key by “splitting” it to several
parts which are kept by different persons. In this way, it might need many persons to
recover the original key. It can achieve to resist the attackof malicious groups of persons.
Shamir [9] used polynomials over finite fields to give an (S,T) threshold secret sharing
scheme such that anyT persons of theS shares can uniquely determine the secret key
but anyT − 1 persons can not get any information of the key. A linear secret sharing
scheme based on a linear code [5] is constructed as follows: encrypt the secret to be the
first coordinate of a codeword and distribute the rest of the codeword (except the first secret
coordinate) to the group of shares. McEliece and Sarwate [7]pointed out that the Shamir’s
construction is essentially a linear secret sharing schemebased on Reed-Solomon codes.
Also as a natural generalization of Shamir’construction, Chen and Cramer [1] constructed
a linear secret sharing scheme based on algebraic geometriccodes.

The qualified subsetof a linear secret sharing scheme is a subset of shares such that
the shares in the subset can recover the secret key. A qualified subset is callminimal if
any share is removed from the qualified subset, the rests cannot recover the secret key.
Theaccess structureof a linear secret sharing scheme consists of all the minimalqualified
subsets. A codeword~v in a linear codeC is said to beminimal if ~v is a non-zero codeword
whose leftmost nonzero component is a 1 and no other codeword~v′ whose leftmost nonzero
component is 1 has support strictly contained in the supportof ~v. Massey [5, 6] showed that
the access structure of a linear secret sharing scheme basedon a linear code are completely
determined by the minimal codewords in the dual code whose first component is 1.

Proposition 1 ([5]). The access structure of the linear secret-sharing scheme correspond-
ing to the linear code C is specified by those minimal codewords in the dual code C⊥ whose
first component is1. In the manner that the set of shares specified by a minimal codeword
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whose first component is1 in the dual code is the set of shares corresponding to those
locations after the first in the support of this minimal codeword.

In both schemes of Desmedt et al. [4] and Safavi-Naini and Wang [8], the key distri-
bution is similar to that in Shamir’s secret sharing scheme [9], using polynomials. Both
schemes are (V, k) threshold authentication scheme, i.e., any malicious groups of up tok−1
receivers can not successfully ( unconditional secure in the meaning of information theory)
impersonate the transmitter, or substitute a transmitted message to any other receiver, while
anyk receivers or more receivers can successfully impersonate the transmitter, or substitute
a transmitted message to any other receiver. Actually, in the proof of security of the au-
thentication scheme of Safavi-Naini and Wang, the securityis equivalent to the difficulty
to recover the private key of other receivers. So the security essentially depends on the
security of key distribution.

In this paper, we use general linear codes to generalize the scheme of Safavi-Naini and
Wang. One advantage is that our scheme allows arbitrarily many verifying receivers for a
fixed message base fieldFq, while the scheme of Safavi-Naini and Wang has a constraint on
the number of verifying receiversV 6 q. We introduce the concept of minimal codeword
respect to each coordinate, which helps to characterize thecapability of resisting substitu-
tion attack in our authentication scheme, similarly to the linear secret sharing scheme [6].
It guarantees higher security for some important receivers.

1.2. Our Construction and Main Results. In a multi-receiver authentication model for
multiple messages, a trusted authority choose random parameters as the secret key and
generates shares of private keys secretly. Then the trustedauthority transmits a private
key to each receiver and secret parameters to the source. Foreach fixed message, the
source computes the authentication tag using the secret parameters and sends the message
adding with the tag. In the verification phase, the receiver verify the integrity of each
tagged message using his private key. There are some malicious receivers who collude to
perform an impersonation attack by constructing a fake message, or a substitution attack
by altering the message content such that the new tagged message can be accepted by some
other receiver or specific receiver.

In this subsection, we present our construction of an authentication scheme based on
a linear code for multi-receivers and multiple messages. Itwill be shown that the ability
of our scheme to resist the attack of the malicious receiversis measured by the minimum
distance of the dual code and minimal codewords respect to specific coordinate in the dual
code.

Let C ⊆ FV
q be a linear code with minimum distanced(C) > 2. And assume that the

minimum distance of the dual codeC⊥ is d(C⊥) > 2. Fix a generator matrixG of C

G =



































g1,1 g1,2 · · · g1,V

g2,1 g2,2 · · · g2,V
...

...
. . .

...

gk,1 gk,2 · · · gk,V



































.

Then makeG public. Our scheme is as follows.
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• Key generation: A trusted authority randomly chooses parameters

A =



































a0,1 a0,2 · · · a0,k

a1,1 a1,2 · · · a1,k
...

...
. . .

...

aM,1 aM,2 · · · aM,k



































∈ F(M+1)×k
q .

• Key distribution: The trusted authority computes

B = A ·G =



































b0,1 b0,2 · · · b0,V

b1,1 b1,2 · · · b1,V
...

...
. . .

...

bM,1 bM,2 · · · bM,V



































.

Then the trusted authority distributes each receiverRi the i-th column ofB as his
private key, fori = 1, 2, · · · ,V.
• Authentication tag: For messages ∈ Fq, the source computes the tag map

L = [L1, L2, · · · , Lk] : Fq → F
k
q

s 7→ [L1(s), L2(s), · · · , Lk(s)] ,

where the mapLi (i = 1, 2, · · · , k) is defined by

Li(s) =
M
∑

j=0

a j,i s
j .

Instead of sending the messages ∈ Fq, the source actually sends the authenticated
messages~x of the form1

~x = [s, L(s)] ∈ F1+k
q .

• Verification: The receiverRi accepts the message [s, L(s)] if
∑M

t=0 stbt,i =
∑k

j=1 L j(s)g j,i.
Under the integrity of the tagged message, one can easily verify the following

M
∑

t=0

stbt,i =

M
∑

t=0

st
k
∑

j=1

at, jg j,i =

k
∑

j=1

(
M
∑

t=0

at, j s
t)g j,i =

k
∑

j=1

L j(s)g j,i .

Here, we call the result
∑M

t=0 stbt,i the labelof Ri for messages.

If we takeC to be the Reed-Solomon code, i.e., the generator matrixG is of the form

(1.1) G =













































1 1 · · · 1
x1 x2 · · · xV

x2
1 x2

2 · · · x2
V

...
...

. . .
...

xk−1
1 xk−1

2 · · · xk−1
V













































,

for pairwise distinctx1, x2, · · · , xV ∈ Fq, then the scheme is the scheme of Safavi-Naini
and Wang [8].

The security of the above authentication scheme is summarized in the following theo-
rems.

1In general, we can first use a hash functionh : {0, 1}∗ → Fq to hash the messages, then send the tagged
message [s, L(h(s))].



MULTI-RECEIVER AUTHENTICATION SCHEME FOR MULTIPLE MESSAGES BASED ON LINEAR CODES 5

Theorem 2. The scheme we constructed above is a unconditionally securemulti-receiver
authentication code against a coalition of up to (d(C⊥) − 2) malicious receivers in which
every key can be used to authentication up to M messages.

More specifically, if we consider what a coalition of malicious receivers can success-
fully make a substitution attack to one fixed receiverRi . To characterize this malicious
group, we slightly modify the definition of minimal codewordin [5].

Definition 1. Let C be a[N, k] linear code. For any i∈ {1, 2, · · · ,N}, a codeword~c in C is
calledminimal respect toi if the codeword~c has component1 at the i-th location and there
is no other codeword whose i-th component is1 with support strictly contained in that of
~c.

Then we have

Theorem 3. For the authentication scheme we constructed, we have

(i): The set of all minimal malicious groups that can successfully make a substitution
attack to the receiver Ri is determined completely by all the minimal codewords
respect to i in the dual code C⊥.

(ii): All malicious groups that can not produce a fake authenticated message which
can be accepted by the receiver Ri are one-to-one corresponding to subsets of
[V] \ {i} such that each of them together with i does not contain any support of
minimal codeword respect to i in the dual code C⊥, where[V] = {1, 2, · · · ,V}.

Compared with Safavi-Naini and Wang’s scheme, our scheme has an important advan-
tage. The scheme of Safavi-Naini and Wang is a (V, k) threshold authentication scheme,
so any coalition ofk malicious receivers can easily make a substitution attack to any other
receiver. While in our scheme, by Theorem 3, sometimes it canwithstand the attack of
coalitions ofk or more malicious receivers to some fixed important receiverRi . And it
is in generalNP-hard to find one (or list all) coalition(s) of malicious receivers with the
minimum members that can make a substitution attack to the receiverRi . So in this sense,
our scheme has better security than the previous one.

The rest of this paper is organized as follows. In Section 2, we give the security analysis
of our scheme. In Section 3, we show the relationship betweenthe security of our scheme
and parameters of the linear code.

2. Security Analysis of Our Authentication Scheme

In this section, we present the security analysis of our scheme. From the verification
step, we notice that a tagged message [s, v1, v2, · · · , vk] can be accepted by the receiverRi

if and only if
∑M

t=0 stbt,i =
∑k

j=1 v jg j,i. So in order to make a substitution attack toRi , it

suffices to know the label
∑M

t=0 stbt,i for somes ∈ Fq not sent by the transmitter, then it is
trivial to construct a tag (v1, v2, · · · , vk) such that

∑M
t=0 stbt,i =

∑k
j=1 v jg j,i.

Indeed, we will find that the security of the above authentication scheme depends on the
hardness of finding the key matrixA from a system of linear equations. Suppose a group
of K malicious receivers collaborate to recoverA and make a substitution attack. Without
loss of generality, we assume that the malicious receivers are R1,R2, · · · ,RK . Suppose
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s1, s2, · · · , sM have been sent. EachRi has some information about the keyA:



































1 s1 s2
1 · · · sM

1
1 s2 s2

2 · · · sM
2

...
...

...
. . .

...

1 sM s2
M · · · sM

M



































· A =



































L1(s1) L2(s1) · · · Lk(s1)
L1(s2) L2(s2) · · · Lk(s2)
...

...
. . .

...

L1(sM) L2(sM) · · · Lk(sM)



































and

A ·



































g1,i

g2,i
...

gk,i



































=



































b0,i

b1,i
...

bM,i



































.

The group of malicious receivers combines their equations,and they get a system of linear
equations

(2.1)





















































































































1 s1 s2
1 · · · sM

1
1 s2 s2

2 · · · sM
2

...
...

...
. . .

...

1 sM s2
M · · · sM

M



































· A =



































L1(s1) L2(s1) · · · Lk(s1)
L1(s2) L2(s2) · · · Lk(s2)
...

...
. . .

...

L1(sM) L2(sM) · · · Lk(sM)



































,

A ·



































g1,1 g1,2 · · · g1,K

g2,1 g2,2 · · · g2,K
...

...
. . .

...

gk,1 gk,2 · · · gk,K



































=



































b0,1 b0,2 · · · b0,K

b1,1 b1,2 · · · b1,K
...

...
. . .

...

bM,1 bM,2 · · · bM,K



































.

Lemma 4. Let P be the subspace ofFk
q generated by{g j | j = 1, 2, · · · ,K}, where gj

represents the j-th column of the generator matrix G. Suppose K0 = dimP 6 k − 1.
Then there exists exact qk−K0 matrices A satisfying the system of equations (2.1).

Proof. Denote

SM =



































1 s1 s2
1 · · · sM

1
1 s2 s2

2 · · · sM
2

...
...

...
. . .

...

1 sM s2
M · · · sM

M



































.
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Rewrite the matrixA of variablesai, j as a single column ofk(M + 1) variables. Then
System (2.1) becomes

(2.2)























































































SM

SM

. . .

SM

g1,1~IM+1 g2,1~IM+1 · · · gk,1~IM+1

g1,2~IM+1 g2,2~IM+1 · · · gk,2~IM+1
...

...
. . .

...

g1,K~IM+1 g2,K~IM+1 · · · gk,K~IM+1























































































·



















































































































































a0,1

a1,1
...

aM,1

a0,2

a1,2
...

aM,2
...

a0,k

a1,k
...

aM,k



















































































































































= T

where~IM+1 is the identity matrix with rank (M+1) andT is the column vector of constants
in System (2.1) with proper order. Notice that the space generated by rows ofSM is con-
tained in the spaceFM+1

q generated bygi, j~IM+1 if gi, j , 0. So the rank of the big matrix of
coefficients in System (2.2) equals to

M · k+ K0

which is less thank(M + 1), the number of variables. So System (2.2) hasqk(M+1)−kM−K0 =

qk−K0 solutions, i.e., System (2.1) hasqk−K0 solutions. �

Remark 1. In [8], they gave a constructive proof of Lemma 4 in the case that G isof the
form (1.1). The method here can be used for a general class of systems of linear equations
over a field F:

{

D · X = C1

X · Z = C2

where X is a m×n matrix of variables, the coefficient matrices D∈ Fg×m with rank6 m−1
and Z ∈ Fn×h with rank6 n − 1, the constant matrices C1 ∈ Fg×n and C2 ∈ Fm×h. Then
solutions of the system in Fm×n has(m− g)(n− h)-dimensional hypersurface in the space
Fm×n.

Note that ifC [n, k, d = n − k + 1] is an MDS code, e.g., Reed-Solomon code, then
wheneverK 6 k− 1 the vectors in anyK-subset of columns ofG are linearly independent.

By Lemma 4, the security of our authentication scheme follows.

Theorem 5. The scheme we constructed above is an unconditionally secure multi-receiver
authentication scheme against a coalition of up to (d(C⊥)−2) malicious receivers in which
every key can be used to authentication up to M messages.

Proof. Suppose the source receiver has sent messagess1, s2, · · · , sM. It is enough to con-
sider the case thatK = d(C⊥) − 2 malicious receiversR1, · · · ,RK have received theM
messages, since in this case they know the most information about the key matrixA.
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What they try to do is to guess the labelb0,K+1+b1,K+1sM+1+b2,K+1s2
M+1+· · ·+bM,K+1sM

M+1
for somesM+1 < {s1, s2, · · · , sM} and construct a vector (v1, v2, · · · , vk) such that

k
∑

i=1

vigi,K+1 = b0,K+1 + b1,K+1sM+1 + b2,K+1s2
M+1 + · · · + bM,K+1sM

M+1 .

Then the fake message [sM+1, v1, v2, · · · , vk] can be accepted byRK+1.
Because anyK = d(C⊥) − 2 columns of the generator matrixG is linearly independent

overFq, otherwise there existx1, · · · , xK ∈ Fq such that
∑K

j=1 x j~g j = ~0 where~g j is the
j-th column ofG, then the dual codeC⊥ will have a codeword (x1, · · · , xK , 0, · · · , 0) with
Hamming weight6 d(C⊥)−2 which is a contradiction. By Lemma 4, there existsqk−d(C⊥)+2

matricesA satisfying the system of equations (2.1).
For anysM+1 < {s1, s2, · · · , sM}, we define the label map

ϕsM+1 : {Solutions of System (2.1)} −→ Fq

A 7→ (1, sM+1, s2
M+1, · · · , s

M
M+1)A



































g1,K+1

g2,K+1
...

gk,K+1



































.

Then we claim:

(1): ϕsM+1 is surjective.
(2): for anyy ∈ Fq, the number of the inverse image ofy is #ϕ−1

sM+1
(y) = qk−d(C⊥)+1.

So the information held by the colluders allows them to calculateq equally likely different
labels for sM+1 and hence their probability of success is 1/q which is equal to that of
guessing a labelb0,K+1 + b1,K+1sM+1 + b2,K+1s2

M+1 + · · · + bM,K+1sM
M+1 for sM+1 randomly

from Fq. And hence we finish the proof of the theorem.
Next, we prove our claim. AsK+1 = d(C⊥)−1,g1, g2, · · · , gK+1 is linearly independent

overFq, otherwise the dual codeC⊥ will have a codeword with Hamming weight6 d(C⊥)−
1 which is impossible by the definition of minimum distance ofa code. Then choose
k−K−1 = k−d(C⊥)+1 extra columns ofG such that they combining withg1, g2, · · · , gK+1

form a basis ofFk
q. Without loss of generality, we assume the firstk columns ofG is linearly

independent ofFq. For anyP ∈ F(M+1)×(k−d(C⊥ )+1)
q , the system of linear equations

(2.3)





































































































































































1 s1 s2
1 · · · sM

1
1 s2 s2

2 · · · sM
2

...
...

...
. . .

...

1 sM s2
M · · · sM

M



































· A =



































L1(s1) L2(s1) · · · Lk(s1)
L1(s2) L2(s2) · · · Lk(s2)
...

...
. . .

...

L1(sM) L2(sM) · · · Lk(sM)



































,

A ·



































g1,1 g1,2 · · · g1,K

g2,1 g2,2 · · · g2,K
...

...
. . .

...

gk,1 gk,2 · · · gk,K



































=



































b0,1 b0,2 · · · b0,K

b1,1 b1,2 · · · b1,K
...

...
. . .

...

bM,1 bM,2 · · · bM,K



































,

A ·



































g1,K+2 g1,K+3 · · · g1,k

g2,K+2 g2,K+3 · · · g2,k
...

...
. . .

...

gk,K+2 gk,K+3 · · · gk,k



































= P ,
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hasq solutions by Lemma 4, sayingA1,A2, · · · ,Aq. The solutionsA1,A2, · · · ,Aq are also
solutions of System (2.1). Next, we show

{ϕsM+1(A j) | j = 1, 2, · · · , q} = Fq .

Otherwise, there are two solutionsA j1 andA j2 such that

(1, sM+1, s
2
M+1, · · · , s

M
M+1)A j1



































g1,K+1

g2,K+1
...

gk,K+1



































= (1, sM+1, s
2
M+1, · · · , s

M
M+1)A j2



































g1,K+1

g2,K+1
...

gk,K+1



































.

Then we have



































1 s1 s2
1 · · · sM

1
1 s2 s2

2 · · · sM
2

...
...

...
. . .

...

1 sM+1 s2
M+1 · · · sM

M+1



































A j1



































g1,1 g1,2 · · · g1,k

g2,1 g2,2 · · · g2,k
...

...
. . .

...

gk,1 gk,2 · · · gk,k



































=



































1 s1 s2
1 · · · sM

1
1 s2 s2

2 · · · sM
2

...
...

...
. . .

...

1 sM+1 s2
M+1 · · · sM

M+1



































A j2



































g1,1 g1,2 · · · g1,k

g2,1 g2,2 · · · g2,k
...

...
. . .

...

gk,1 gk,2 · · · gk,k



































.

But matrices



































1 s1 s2
1 · · · sM

1
1 s2 s2

2 · · · sM
2

...
...

...
. . .

...

1 sM+1 s2
M+1 · · · sM

M+1



































,



































g1,1 g1,2 · · · g1,k

g2,1 g2,2 · · · g2,k
...

...
. . .

...

gk,1 gk,2 · · · gk,k



































are invertible. SoA j1 = A j2 which contradicts to the conditionA j1 , A j2. And hence, the
statement (1) holds.

Next, we prove (2). Any one solution of System (2.1) gives oneP ∈ F(M+1)×(k−d(C⊥ )+1)
q ,

while corresponding to such aP there areq solutions of System (2.1) from the proof of (1).
In this way, we partition solutions of System (2.1) intoqk−d(C⊥)+1 parts such that each part
containsq elements. Also from the proof of (1), the image of each part underϕsM+1 is Fq.
So for anyy ∈ Fq, the number of the inverse image ofy is #ϕ−1

sM+1
(y) = qk−d(C⊥)+1.

�

Remark 2. From the proofs of Lemma 4 and Theorem 5, the coalition of malicious re-
ceivers B can successfully make a substitution attack to thereceiver Ri if and only if~gi

is contained in the subspace ofFk
q generated by{~g j | j ∈ B}, where~g j represents the j-th

column of the generator matrix G. In this case, they can recover the private key of Ri . This
is the motivation of the next section.

Next, we give a toy example to illustrate Lemma 4 and Theorem 5.
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Example 1. LetFq = F5. The M= 3 messages sent are s1 = 1, s2 = 2, s3 = 4. The C is a
systematic code with the generator matrix

G =







































1 0 0 0 0 1 2 4 0
0 1 0 0 0 2 2 3 2
0 0 1 0 0 3 1 3 4
0 0 0 1 0 4 0 0 2
0 0 0 0 1 2 1 1 4







































.

One can check that the dual code C⊥ has minimum distance d(C⊥) = 5. The trusted
authority randomly chooses A∈ F4×5

5 , for instance,

A =





























3 2 2 0 2
0 4 3 0 2
0 1 2 3 1
3 3 0 1 3





























.

Then the trusted authority computes

B = AG=





























3 2 2 0 2 2 4 1 0
0 4 3 0 2 1 3 3 3
0 1 2 3 1 2 0 0 0
3 3 0 1 3 4 0 4 0





























and distributes the i-th column of B to the receiver Ri as his private key.
Suppose R1,R2,R3 are corrupted and they have seen the authenticated messages





















x1

x2

x3





















=





















1 1 0 2 4 3
2 2 3 1 0 4
3 4 4 4 4 3





















,

then they want to substitute one of the authenticated messages during the transmission by
a new codeword[s, L(s)] that can be accepted by one of the other receivers. They have
information about the key matrix A:

(2.4)



























































































1 1 1 1
1 2 4 3
1 3 4 2





















A =





















1 0 2 4 3
2 3 1 0 4
4 4 4 4 3





















,

A







































1 0 0
0 1 0
0 0 1
0 0 0
0 0 0







































=





























3 2 2
0 4 3
0 1 2
3 3 0





























.

This system of linear equations has25solutions





























3 0 0 3 2
4 1 3 2 3
2 0 1 4 4
0 1 3 0 4





























+ a1





























0 0 0 0 0
0 0 0 0 0
0 0 1 4 1
4 0 0 0 0





























+ a2





























0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 4 1 4




























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(0, 4, 3, 2, 0, 2) (0, 3, 1, 1, 4, 3) (0, 2, 4, 0, 3, 4) (0, 1, 2, 4, 2, 0) (0, 0, 0, 3, 1, 1)
(4, 4, 4, 2, 0, 0) (4, 3, 2, 1, 4, 1) (4, 2, 0, 0, 3, 2) (4, 1, 3, 4, 2, 3) (4, 0, 1, 3, 1, 4)
(3, 4, 0, 2, 0, 3) (3, 3, 3, 1, 4, 4) (3, 2, 1, 0, 3, 0) (3, 1, 4, 4, 2, 1) (3, 0, 2, 3, 1, 2)
(2, 4, 1, 2, 0, 1) (2, 3, 4, 1, 4, 2) (2, 2, 2, 0, 3, 3) (2, 1, 0, 4, 2, 4) (2, 0, 3, 3, 1, 0)
(1, 4, 2, 2, 0, 4) (1, 3, 0, 1, 4, 0) (1, 2, 3, 0, 3, 1) (1, 1, 1, 4, 2, 2) (1, 0, 4, 3, 1, 3)

where a1, a2 ∈ F5. For s4 = 4 and any i= 4, 5, · · · , 9, we have the label map

ϕs4,Ri : {Solutions of System (2.4)} −→ Fq

A 7→ (1, sM+1, s2
M+1, · · · , s

M
M+1)A



































g1,i

g2,i
...

gk,i



































.

Letϕs4 = (ϕs4,R4, ϕs4,R5, · · · , ϕs4,R9). Then the images ofϕs4 are
Notice that for any i> 4, ϕs4,Ri is surjective and for any y∈ Fq, the number of the inverse
image of y is#ϕ−1

s4
(y) = 5. One can check the properties ofϕs4,Ri about surjection and

uniform distribution of the images for s4 = 0 also hold.
Actually, we can verify that even the coalition of R1,R2,R3,R4 can successfully generate

a fraudulent codeword[s4, L(s4)] for any other Ri still only in a probability1/5 which is
the success probability of randomly choosing a label fromF5 for a fake message.

3. Code-based Authentication Scheme and Minimal Codewords

In the previous section, we considered that any coalition ofK malicious receivers can
not obtain any information about any other receiver’s labelto make a substitution attack.
To consider a weak point, we propose that for a fixed receiverRi , what a coalition of
malicious receivers that can not get any information of the label ofRi . By Theorem 5, we
have seen that any coalition of up to (d(C⊥)−2) malicious receivers can not generate a valid
codeword [s, L(s)] for Ri in a probability better than guessing a label fromFq randomly for
the fake messages.

Denote [V] = {1, 2, · · · ,V} andP = {R1,R2, · · · ,RV}. Without any confusion, we
identify the index set{1, 2, · · · ,V} and the receiver set{R1,R2, · · · ,RV}.

Definition 2. A subset of V− 1 receiversP \ {Ri} is call an adversary groupto Ri if
their coalition can not obtain any information of the label of Ri when they want to make
a substitution attack to Ri . Define ti(C) to be the largest integerτi such that any subset
A ⊆ P \ {Ri} with cardinalityτi is an adversary group to Ri .

Definition 3. A subset ofP \ {Ri} that can successfully make a substitution attack to Ri is
call a substitution groupto Ri . Moreover, a substitution group is callminimal if any one
receiver is removed from the group, then the rests can not obtain any information of the
label of Ri . Define ri(C) to be the smallest integerρi such that any subset B⊆ P \ {Ri} with
cardinalityρi is a substitution group to Ri .

For anyA ⊆ [V], πA is the projection ofFV
q to F|A|q defined by

πA((x1, x2, · · · , xV)) = (x j) j∈A,

for any (x1, x2, · · · , xV) ∈ FV
q . And denote byπi = π{i} for short. For any receiverRi , the

substitution groups toRi are completely characterized as follows.
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Proposition 6. For any receiver Ri , the following conditions are equivalent:

(i): B ⊆ P \ {Ri} is a substitution group to Ri ;
(ii): ~gi is contained in the subspace ofFk

q generated by{~g j | j ∈ B}, where~g j repre-
sents the j-th column of the generator matrix G;

(iii): there exists a codeword~c ∈ C⊥ such that

πi(~c) = 1 and πBc(~c) = ~0 ,

where Bc = (P \ {Ri}) \ B is the complement of B inP \ {Ri};
(iv): there is anFq-linear map

fB,i : πB(C) −→ Fq

such that fB,i(πB(~c)) = πi(~c) for all ~c ∈ C;
(v): there is no codeword~c ∈ C such that

πi(~c) = 1 and πB(~c) = ~0 .

Proof. By Remark 2, conditions (i) and (ii) are equivalent.
First, we show that there exists a codeword~c ∈ C⊥ such thatπi(~c) , 0. If not, that is,

for any codeword~c ∈ C⊥, it holdsπi(~c) = 0. Then the unit vector with the unique nonzero
component 1 on thei-th coordinate belongs toC, which contradicts to the assumption
d(C) > 2.

So there exists a codeword~c ∈ C⊥ such thatπi(~c) = 1 by the linearity ofC. The rest of
the proof that conditions (ii) and (iii) are equivalent is clear.

(iii)=⇒(iv). For any codeword~y ∈ C⊥ with

πi(~y) = 1 and πBc(~y) = ~0 ,

we have
∑

j∈B

π j(~y)π j(~c) + πi(~c) = 0

for any codeword~c ∈ C. So definefB,i : πB(C)→ Fq by setting

fB,i(πB(~c)) = −
∑

j∈B

π j(~y)π j(~c),

for all ~c ∈ C. Then fB,i satisfies the condition.
(iv)=⇒(iii). From the proof of “(iii)=⇒(iv)”, we see that the required codeword inC⊥

is actually the coefficients of the map

φB,i = πi − fB,i.

(iv)=⇒(v). If the statement (v) does not hold, then there exists a codeword~c ∈ C such
that

πi(~c) = 1 and πB(~c) = ~0 ,

which contradicts tofB,i(πB(~c)) = πi(~c).
(v)=⇒(iv). A map

fB,i : πB(C) −→ Fq

satisfying fB,i(πB(~c)) = πi(~c) for all ~c ∈ C is always linear overFq by the linearity ofC. So
if the map

fB,i : πB(C) −→ Fq

satisfying fB,i(πB(~c)) = πi(~c) for all ~c ∈ C does not exist, then there exist two different
codewords~c, ~c′ ∈ C such that

πi(~c) , πi(~c
′) and πB(~c) = πB(~c′) .
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That is, the codeword~x = ~c− ~c′ ∈ C satisfies

πi(~x) = πi(~c− ~c
′) , 0 and πB(~x) = πB(~c− ~c′) = ~0 ,

which contradicts to (v). �

By Proposition 6, adversary groups toRi can be completely characterized by

Proposition 7. For any receiver Ri , the following conditions are equivalent:

(i): A ⊆ P \ {Ri} is an adversary group to Ri ;
(ii): ~gi is not contained in the subspace ofFk

q generated by{~g j | j ∈ A};
(iii): there is no codeword~c ∈ C⊥ such that

πi(~c) = 1 and πAc(~c) = ~0 ;

(iv): there exists a codeword~c ∈ C such that

πi(~c) = 1 and πA(~c) = ~0 .

Corollary 8. (i): For any i= 1, 2, · · · ,V, we have

d(C⊥) − 1 6 r i(C) 6 V − d(C) + 1 ,

and

max{r i(C) | i = 1, 2, · · · ,V} = V− d(C)+ 1, min{r i(C) | i = 1, 2, · · · ,V} − 1 = d(C⊥)− 1 .

(ii): For any i= 1, 2, · · · ,V, we have

d(C⊥) − 2 6 ti(C) 6 r i(C) − 1 ,

and
min{ti(C) | i = 1, 2, · · · ,V} = d(C⊥) − 2 .

Proof. (i) SupposeB ⊆ P\{Ri} is any substitution group toRi . By Proposition 6 (iii), there
is a codeword~c ∈ C⊥ such that

πi(~c) = 1 and πBc(~c) = ~0 .

Then we have
d(C⊥) 6 wt(~c) 6 |B| + 1 .

So
r i(C) > |B| > d(C⊥) − 1 .

For anyB ⊆ P\{Ri}with cardinality> V−d(C)+1, it is obvious that any codeword~c ∈ C
with πi(~c) = 1 (in the proof of Proposition 6, we have seen that such a codeword does exist.)
hasπB(~c) , ~0. Otherwise, the minimum distanced(C) 6 V − (V − d(C) + 1) = d(C) − 1.
So by Proposition 6 (v), it follows

r i(C) 6 V − d(C) + 1 .

Let~c be a codeword inC with minimum Hamming weight. Denote byS the support of
~c. Let B = [V] \ S. Then by Proposition 6 (v),B is not a substitution group toRi for any
i ∈ S. So

max{r i(C) | i = 1, 2, · · · ,V} > max{r i(C) | i ∈ S} > |B| + 1 = V − d(C) + 1 .

And hence
max{r i(C) | i = 1, 2, · · · ,V} = V − d(C) + 1 .

To prove min{r i(C) | i = 1, 2, · · · ,V} − 1 = d(C⊥) − 1, it suffices to show

r i(C) = d(C⊥) − 1
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for somei = 1, 2, · · · ,V. Let ~y be a codeword inC⊥ with minimum Hamming weight.
Denote byT the support of~y. For anyi ∈ T, T \ {i} is a substitution group toRi with
cardinalityd(C⊥) − 1. On the other hand, by Proposition 6 (ii), any subset ofP \ {Ri} with
cardinality6 d(C⊥) − 2 could not be a substitution group toRi . So

r i(C) = d(C⊥) − 1

for any i ∈ T.
(ii) ti(C) 6 r i(C)−1 by the definition. For anyB ⊆ P\{Ri} with cardinality6 d(C⊥)−2,

there is no codeword~c ∈ C⊥ such that

πi(~c) = 1 and πBc(~c) = ~0 .

If not, then there is a codeword~c ∈ C⊥ such that

πi(~c) = 1 and πBc(~c) = ~0 .

ThenC⊥ has a codeword~c with Hamming weight6 |B| + 1(6 d(C⊥) − 1) which is impos-
sible. So by Proposition 7,B is an adversary group toRi . And hence

d(C⊥) − 2 6 ti(C) .

Since
d(C⊥) − 2 6 ti(C) 6 r i(C) − 1 ,

we have

d(C⊥) − 2 6 min{ti(C) | i = 1, 2, · · · ,V} 6 min{r i(C) | i = 1, 2, · · · ,V} − 1 = d(C⊥) − 2 .

So
min{ti(C) | i = 1, 2, · · · ,V} = d(C⊥) − 2 .

�

By Corollary 8, it is natural to get

Corollary 9. For any receiver Ri , we have

(i): Subsets ofP \ {Ri} with cardinality> (V − d(C) + 1) are substitution groups to
Ri .

(ii): Subsets ofP \ {Ri} with cardinality6 (d(C⊥) − 2) are adversary groups to Ri .
(iii): For MDS codes C, subsets ofP \ {Ri} with cardinality6 (d(C⊥) − 2) are all the

adversary groups to Ri .

There is a gap in Corollary 9 in general we do not known whethera subset of size in
the gap is a substitution group toRi or not for general code-based authentication scheme.
Actually, it is NP-hard to list all substitution groups toRi in general. Even for authentica-
tion scheme based on algebraic geometric codes from elliptic curves, it is alreadyNP-hard
(underRP-reduction) to list all substitution groups toRi [2, 3].

By Proposition 6, we obtain the main result of this section, ageneralization of Proposi-
tion 1:

Theorem 10. For the authentication scheme we constructed, we have

(i): The set of all minimal substitution groups to the receiver Ri is determined com-
pletely by all the minimal codewords respect to i in C⊥.

(ii): All adversary groups to the receiver Ri are one-to-one corresponding to subsets
of [V] \ {i} such that each of them together with i does not contain any support of
minimal codeword respect to i in C⊥.
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(2 2 1 0 1 0 4 0 0) (0 1 0 3 1 2 0 2 2) (0 3 0 0 1 3 3 4 4) (3 0 0 4 1 1 3 0 1) (2 0 0 0 1 2 4 2 1)
(3 0 2 0 1 0 2 2 0) (0 0 3 1 1 0 2 4 2) (0 4 0 1 1 1 2 0 0) (0 0 4 4 1 2 4 0 4) (4 0 2 4 1 4 1 0 0)
(1 0 1 4 1 0 2 0 3) (0 0 1 0 1 1 3 2 3) (0 2 2 0 1 4 3 0 2) (1 0 0 1 1 3 0 4 1) (2 0 3 4 1 3 0 0 2)
(0 2 0 4 1 0 4 3 3) (4 0 0 3 1 0 2 3 1) (0 0 2 3 1 3 0 3 0) (1 4 0 0 1 0 1 3 0) (3 3 0 2 1 0 0 3 4)
(4 3 3 0 1 0 0 4 0) (3 1 4 2 1 2 0 0 0) (0 3 1 3 1 0 0 0 1) (0 0 0 2 1 4 1 1 1) (2 4 0 4 1 4 0 1 0)
(4 2 0 0 1 1 0 0 3) (4 0 4 0 1 3 0 2 4) (0 1 4 0 1 0 3 1 0)

Table 1.

{ 1, 2, 3, 7} { 2, 4, 6, 8, 9} { 2, 6, 7, 8, 9} { 1, 4, 6, 7, 9} { 1, 6, 7, 8, 9}
{ 1, 3, 7, 8} { 3, 4, 7, 8, 9} { 2, 4, 6, 7} { 3, 4, 6, 7, 9} { 1, 3, 4, 6, 7}
{ 1, 3, 4, 7, 9} { 3, 6, 7, 8, 9} { 2, 3, 6, 7, 9} { 1, 4, 6, 8, 9} { 1, 3, 4, 6, 9}
{ 2, 4, 7, 8, 9} { 1, 4, 7, 8, 9} { 3, 4, 6, 8} { 1, 2, 7, 8} { 1, 2, 4, 8, 9}
{ 1, 2, 3, 8} { 1, 2, 3, 4, 6} { 2, 3, 4, 9} { 4, 6, 7, 8, 9} { 1, 2, 4, 6, 8}
{ 1, 2, 6, 9} { 1, 3, 6, 8, 9} { 2, 3, 7, 8}

Table 2.

{ 1, 2, 3, 8, 9} { 2, 3, 4, 6, 7} { 3, 4, 6, 8, 9} { 1, 3, 4, 6, 7} { 1, 2, 3, 4, 7} { 3, 4, 7, 8, 9}
{ 2, 3, 6, 8, 9} { 1, 3, 6, 8, 9} { 2, 4, 6, 7, 9} { 1, 4, 6, 7, 8} { 2, 4, 6, 7, 8} { 1, 4, 6, 7, 9}
{ 1, 2, 4, 7, 8} { 1, 2, 4, 7, 9} { 1, 2, 6, 7, 8} { 1, 2, 6, 7, 9} { 1, 2, 3, 4, 9} { 1, 3, 6, 7, 9}
{ 2, 3, 6, 7, 8} { 1, 3, 6, 7, 8} { 2, 3, 6, 7, 9} { 1, 2, 4, 6, 8} { 1, 2, 4, 6, 7} { 1, 2, 3, 4, 8}
{ 2, 3, 4, 6, 9} { 4, 6, 7, 8, 9} { 1, 3, 4, 6, 8} { 1, 2, 4, 6, 9} { 2, 4, 7, 8, 9} { 1, 2, 3, 7, 8}
{ 1, 2, 3, 7, 9} { 2, 6, 7, 8, 9} { 1, 2, 6, 8, 9} { 1, 4, 7, 8, 9} { 2, 3, 4, 6, 8} { 3, 6, 7, 8, 9}
{ 3, 4, 6, 7, 9} { 1, 2, 3, 6, 7} { 1, 3, 4, 6, 9} { 3, 4, 6, 7, 8} { 1, 2, 4, 8, 9} { 1, 3, 4, 8, 9}
{ 1, 6, 7, 8, 9} { 1, 2, 3, 6, 9} { 1, 2, 7, 8, 9} { 2, 3, 4, 8, 9} { 2, 3, 4, 7, 8} { 1, 3, 4, 7, 9}
{ 1, 4, 6, 8, 9} { 2, 4, 6, 8, 9} { 2, 3, 4, 7, 9} { 1, 3, 4, 7, 8} { 1, 2, 3, 6, 8} { 1, 3, 7, 8, 9}
{ 2, 3, 7, 8, 9} { 1, 2, 3, 4, 6}

Table 3.

Example 2. Continue with Example 1, minimum codewords respect to5 in C⊥ are list in
Table 1.

Since coordinate5 is in the support of any minimal codeword respect to5, we exclude5
from all supports of these codewords. Then we get supports ofminimal codewords exclud-
ing 5, see Table 2.

So any substitution group to the receiver R5 must contain at least one set in Table 2. And
subset ofP \ {R5} that does not contain any one set in Table 1 can not make a substitution
attack to the receiver R5 successfully in a probability better than1/5 (1/5 is the success
probability of randomly choosing a label fromF5 for a fake message) using their knowledge
of the key matrix A. From Table 2, notice that most subsets ofP\{R5}with cardinality4 can
not generate a fake message that can accepted by R5 successfully in a probability better
than1/5, even subsets ofP \ {R5} with cardinality5 can not, such as shown in Table 3.
While in the scheme of Safavi-Naini and Wang with a[9, 5] Reed-Solomon code (the field
must have cardinality> 9), any subset ofP \ {R5} with cardinality 5 can successfully
recover the private key of R5 and hence they can easily make a substitution attack to R5.
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4. Conclusion

In this paper, we construct an authentication scheme for multi-receivers and multiple
messages based on linear codeC [V, k, d]. There are many advantages. Compared with
schemes based on MACs or digital signatures which depend on computational security.
Our scheme is an unconditional secure authentication scheme, which can offer robustness
against a coalition of up to (d(C⊥)− 2) malicious receivers. Similarly as the generalization
of Shamir’s secret sharing scheme to linear secret sharing sceme based on linear codes,
compared with the scheme of Safavi-Naini and Wang [8] which has a constraint on the
number of verifying receivers that can not be larger than thesize of the finite field. Our
scheme allows arbitrary receivers for a fixed message base field. And, for some important
receiver, coalitions ofk or more malicious receivers can not yet make a substitution attack
on the receiver more efficiently than randomly guessing a label from the finite field for
a fake message. While the authentication scheme of Safavi-Naini and Wang is a (V, k)
threshold authentication scheme, anyk of theV receivers can easily produce a fake message
that can be accepted by the receiver.
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