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MULTI-RECEIVER AUTHENTICATION SCHEME FOR MULTIPLE
MESSAGES BASED ON LINEAR CODES

JUN ZHANG, XINRAN LI AND FANG-WEI FU

AsstrAcT. In this paper, we construct an authentication scheme fdti-negeivers and
multiple messages based on a linear c8d&his construction can be regarded as a gener-
alization of the authentication scheme given by SafavANand Wang/[[8]. Actually, we
notice that the scheme of Safavi-Naini and Wang is congtdaith Reed-Solomon codes.
The generalization to linear codes has the similar advastag generalizing Shamir’s se-
cret sharing scheme to linear secret sharing sceme basetandodes [1.16./5.7] 9]. For

a fixed message base figlg, our scheme allows arbitrarily many receivers to check the
integrity of their own messages, while the scheme of Safaimi and Wang has a con-
straint on the number of verifying receive¥s< g. And we introduce access structure in
our scheme. Massey|[5] characterized the access strudtlinear secret sharing scheme
by minimal codewords in the dual code whose first componehtWe slightly modify the
definition of minimal codewords in [5]. LeE be a |, K] linear code. For any coordinate

i €{1,2---,V}, acodeword®in C is calledminimal respect to if the codeworde has
component 1 at theth coordinate and there is no other codeword whethecomponent

is 1 with support strictly contained in that 6f Then the security of receiveé; in our au-
thentication scheme is characterized by the minimal cod#gsvwe@spect toin the dual code
C+. Authentication scheme, linear codes, secret sharingnmalrcodewords, substitution
attack.

1. INTRODUCTION

1.1. Background. One of the important goals of cryptographic scheme is atittegion,
which is concerned with the approaches of providing dategirity and data origin vali-
dation between two communication entities in computer netwTraditionally, it simply
deals with the data authentication problem from a singlelseto a single receiver. With
the rapid progress of network communication, the urgend fi@eproviding data authenti-
cation has escalated to multi-receiver amanulti-sender scenarios. However, the original
point-to-point authentication techniques are not su@dbt multi-point communication.
In the multi-receiver authentication model, a sender beaats an authenticated message
such that all the receivers can independently verify thbenticity of the message with
their own private keys. It requires a security that malisiguoups of up to a given size
of receivers can not successfully impersonate the tratesndr substitute a transmitted
message. Desmedt et all [4] gave an authentication schesieghé message for multi-
receivers. Safavi-Naini and Warig [8] extended the DFY sahBlito be an authentication
scheme of multiple messages for multi-receivers.

The receivers independently verify the authenticity ofriessage using each own pri-
vate key. So multi-receiver authentication scheme inwl/@rocedure of secret sharing.
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To introduce the linear secret sharing scheme based orr lioelas, we recall some defi-
nitions in coding theory.

Let ]F}]/ be theV-dimensional vector space over the finite figlgdwith g elements. For
any vectorX = (Xg, Xz, , Xy) € ]Fg theHamming weighiVt(X) of X is defined to be the
number of non-zero coordinates, i.e.,

WE(X) = #{i|1<i<V,x =0} .

A linear [V, K] code Cis ak-dimensional linear subspace Ba‘ The minimum distance
d(C) of C is the minimum Hamming weight of all non-zero vectorgini.e.,

d(C) = minfwt(d)|ce C\ {C}} .

Alinear [V, k] codeC C ]Fg is called a ¥, k, d] linear codeif C has minimum distanocg. A
vector inC is called acodewordof C. A matrixG € ]F'(;XV is call agenerator matrixof C

if rows of G form a basis foC. A well known trade-& between the parameters of a linear
[V, k, d] code is the Singleton bound which states that

d<V-k+1.

A[V,k, d] code is called anaximum distance separalf/dDS) code ifd = V —k+ 1. The
dual code C of C is defined as the set

{xeFy|x-c=0forallceCl,
whereXx- € is the inner product of vectorsandc, i.e.,
X-C= X1C1 + XoCp + - - - + XyCy .

The secret sharing scheme provides security of a secretyk&sphtting” it to several
parts which are kept by flerent persons. In this way, it might need many persons to
recover the original key. It can achieve to resist the attdakalicious groups of persons.
Shamir [9] used polynomials over finite fields to give & T) threshold secret sharing
scheme such that arnly persons of thes shares can uniquely determine the secret key
but anyT — 1 persons can not get any information of the key. A linearetesiaring
scheme based on a linear code [5] is constructed as follomsypt the secret to be the
first coordinate of a codeword and distribute the rest of dueword (except the first secret
coordinate) to the group of shares. McEliece and Sarwatedifited out that the Shamir’s
construction is essentially a linear secret sharing schzased on Reed-Solomon codes.
Also as a natural generalization of Shamir’constructidmeiand Cramer [1] constructed
a linear secret sharing scheme based on algebraic geocwies.

The qualified subsebf a linear secret sharing scheme is a subset of shares saich th
the shares in the subset can recover the secret key. A gdaiiieset is calminimal if
any share is removed from the qualified subset, the restsotaecover the secret key.
Theaccess structuref a linear secret sharing scheme consists of all the minjmalified
subsets. A codewonrdin a linear codeC is said to beminimalif Vis a non-zero codeword
whose leftmost nonzero componentis a 1 and no other codeivattbse leftmost nonzero
componentis 1 has support strictly contained in the suggaettMassey([5, 6] showed that
the access structure of a linear secret sharing scheme tvasdthear code are completely
determined by the minimal codewords in the dual code whosedirmponentis 1.

Proposition 1 ([5]). The access structure of the linear secret-sharing schemesmond-
ing to the linear code C is specified by those minimal codesworthe dual code Ewhose
first componentid. In the manner that the set of shares specified by a minimawortl
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whose first component & in the dual code is the set of shares corresponding to those
locations after the first in the support of this minimal codedv

In both schemes of Desmedt et &ll [4] and Safavi-Naini andgN@h the key distri-
bution is similar to that in Shamir’s secret sharing schefjeysing polynomials. Both
schemes aré/[ k) threshold authentication scheme, i.e., any maliciousgs®f up tok—1
receivers can not successfully ( unconditional securedmtBaning of information theory)
impersonate the transmitter, or substitute a transmiteskage to any other receiver, while
anyk receivers or more receivers can successfully impersohateansmitter, or substitute
a transmitted message to any other receiver. Actually,émptioof of security of the au-
thentication scheme of Safavi-Naini and Wang, the secigigquivalent to the diiculty
to recover the private key of other receivers. So the sgcassentially depends on the
security of key distribution.

In this paper, we use general linear codes to generalizectreree of Safavi-Naini and
Wang. One advantage is that our scheme allows arbitrarilyynaarifying receivers for a
fixed message base fidlg, while the scheme of Safavi-Naini and Wang has a constraint o
the number of verifying receivei < g. We introduce the concept of minimal codeword
respect to each coordinate, which helps to characterizesthability of resisting substitu-
tion attack in our authentication scheme, similarly to ihedr secret sharing schemé [6].
It guarantees higher security for some important receivers

1.2. Our Construction and Main Results. In a multi-receiver authentication model for
multiple messages, a trusted authority choose random péeasnas the secret key and
generates shares of private keys secretly. Then the trastidrity transmits a private
key to each receiver and secret parameters to the sourceeaEbrfixed message, the
source computes the authentication tag using the secrnesers and sends the message
adding with the tag. In the verification phase, the receiaify the integrity of each
tagged message using his private key. There are some nuali@ceivers who collude to
perform an impersonation attack by constructing a fake aggEssor a substitution attack
by altering the message content such that the new taggedg®san be accepted by some
other receiver or specific receiver.

In this subsection, we present our construction of an atittegion scheme based on
a linear code for multi-receivers and multiple messagewilltboe shown that the ability
of our scheme to resist the attack of the malicious receigareasured by the minimum
distance of the dual code and minimal codewords respeceiifgpcoordinate in the dual
code.

LetC ¢ ]F}{ be a linear code with minimum distandéC) > 2. And assume that the
minimum distance of the dual co@ is d(C*) > 2. Fix a generator matri% of C

011 Q12 -+ Ouv
B O21 OG22 -+ Qov
Ok1 Ok2 - Okv

Then makes public. Our scheme is as follows.
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e Key generation: A trusted authority randomly chooses parameters

Qo1 dg2 -+ dok
a1 a2 0 Ak
_ > ? ? (M+1)xk
= ) . . € Fy .
avl aw2 - amk

e Key distribution: The trusted authority computes

bo1 bo2 -+ bov

bi1 bz -+ buy
B=A-G= . .

bwmi bmz -+ bmy

Then the trusted authority distributes each receiyghei-th column ofB as his
private key, fori = 1,2,--- , V.
¢ Authentication tag: For messags € Fy, the source computes the tag map

L=[LiLlo--,L]: Fy — FY
s [Li(9),L29), -, Lk(9)]

where the map; (i = 1,2,---,K) is defined by

M
Li(S) = Z aj,isl .
=0
Instead of sending the message Fq, the source actually sends the authenticated
messageg of the fornf
X=[s L(9)] € Fg**.

e Verification: ThereceiveR accepts the message[(9)] if Zt'\io sy = Ij(:l L;(9gi;-
Under the integrity of the tagged message, one can easily tiee following

M Mok kK M K
Disby=>"8 > aygn=> O ays)g = ) Li(99;
t=0 =0 =1 =1 t=0 =1

Here, we call the resuEt'V:‘O s'hy; thelabel of R for messags.
If we takeC to be the Reed-Solomon code, i.e., the generator m@tiixof the form

1 1 A 1
X1 Xo e Xy
2 2 2
(1.1) G=| X X% - X |,
1 kel kel
for pairwise distinctxy, X, - - - , Xv € Fg, then the scheme is the scheme of Safavi-Naini

and Wangl[8].
The security of the above authentication scheme is sumathnizthe following theo-
rems.

Iin general, we can first use a hash function {0, 1}* — Fq to hash the messagge then send the tagged
messageq L(h(s))].
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Theorem 2. The scheme we constructed above is a unconditionally senuliereceiver
authentication code against a coalition of up td@d) — 2) malicious receivers in which
every key can be used to authentication up to M messages.

More specifically, if we consider what a coalition of malig®receivers can success-
fully make a substitution attack to one fixed receilRer To characterize this malicious
group, we slightly modify the definition of minimal codewadrd[5].

Definition 1. Let C be dN, K] linear code. Forany & {1,2,--- , N}, a codeworc in C is
calledminimal respect toif the codeword® has componeritat the i-th location and there

is no other codeword whose i-th component isith support strictly contained in that of
c.

Then we have

Theorem 3. For the authentication scheme we constructed, we have

(i): The set of all minimal malicious groups that can successfulike a substitution
attack to the receiver Rs determined completely by all the minimal codewords
respect to i in the dual code'C

(ii): All malicious groups that can not produce a fake authenédanessage which
can be accepted by the receiver &e one-to-one corresponding to subsets of
[V]\ {i} such that each of them together with i does not contain anpatwf
minimal codeword respect to i in the dual codé,®vhere[V] = {1,2,---,V}.

Compared with Safavi-Naini and Wang’s scheme, our schemahamportant advan-
tage. The scheme of Safavi-Naini and Wang i8/&) threshold authentication scheme,
so any coalition ok malicious receivers can easily make a substitution at@eky other
receiver. While in our scheme, by TheorEin 3, sometimes itvaeimstand the attack of
coalitions ofk or more malicious receivers to some fixed important receyerAnd it
is in generaNP-hard to find one (or list all) coalition(s) of malicious régers with the
minimum members that can make a substitution attack to ttevwerR;. So in this sense,
our scheme has better security than the previous one.

The rest of this paper is organized as follows. In Sectione2give the security analysis
of our scheme. In Section 3, we show the relationship betwieerecurity of our scheme
and parameters of the linear code.

2. Sscurity ANALYSIS OF OUR AUTHENTICATION SCHEME

In this section, we present the security analysis of oureheFrom the verification
step, we naotice that a tagged message| v, - - - , V] can be accepted by the receir
if and only if Zt"ﬁos‘bt,i = Z'j;l vjg;i. So in order to make a substitution attackRg it
suffices to know the labelY,, sby; for somes e Fq not sent by the transmitter, then it is
trivial to construct a tagv, Vo, - - - , V) such thatzt'\io sy = Z'j‘:l Vj0ii.

Indeed, we will find that the security of the above authetiticescheme depends on the
hardness of finding the key matrifrom a system of linear equations. Suppose a group
of K malicious receivers collaborate to reco¥eand make a substitution attack. Without
loss of generality, we assume that the malicious receiverRgR,, - -- ,Rc. Suppose
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S1, S, -+, Sw have been sent. Eaét has some information about the kay
1 5 ¢ s Li(s1) La(s)) -+ Lk(s1)
1 s 35 S| | L L) - =)
1 su s M Li(sw) La(sm) - Li(sw)
and
o1 bo,i
02i by
Al T =
Oki b,

The group of malicious receivers combines their equatiand they get a system of linear
equations

1 s 2 S%AM Li(s1) Lao(s)) -+ Lk(s)
1 s s | L) L(s) o L)
1 sw S M Li(sm) La(sm) -+ Lk(sm)
2.1)
Ou1 Q12 - Ok bo1 boz -+ bok
A Q1 G2 v Gak | b1 bz -0 bk
Ot Ok2 - Okk bmi bm2 - bmk

Lemma 4. Let P be the subspace E‘g generated byg;lj = 1,2,---,K}, where g
represents the j-th column of the generator matrix G. Suppg®s= dimP < k — 1.
Then there exists exacttfo matrices A satisfying the system of equatiéng (2.1).

Proof. Denote

R
¢ @

NZPI7Y
SR

Swm

2
S
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Rewrite the matrixA of variablesa; j as a single column df(M + 1) variables. Then
System[(2.11) becomes

o1
api

Swm

Su am,1

Q0,2

a2

Swm .

- - -

Orilmer  Ooalmsr -+ Okilmer
- - -

Orolmer  Oo2lmsr -0 Ok2lmet

(2.2)
am,2
Aok
a1k

- - =
OrkiImer OoklImer 0 Okklms

am.k
WhereIﬁMH is the identity matrix with rankN1 + 1) andT is the column vector of constants
in System[(2.11) with proper order. Notice that the space igeeé by rows oSy, is con-

tained in the spacB¥** generated by jl.1 if gij # 0. So the rank of the big matrix of
codficients in Systeni(2]2) equals to

M-k+Ko

which is less thak(M + 1), the number of variables. So Systém[2.2) f&é+1)-kM-Ko -
gk solutions, i.e., Systerfi (2.1) hg§™° solutions. O

Remark 1. In [8], they gave a constructive proof of Lemipla 4 in the case thatdbtlse
form (I.3). The method here can be used for a general clagsti#ras of linear equations
over a field F:

X-Z=Cy

where X is a nx n matrix of variables, the cgcient matrices D= F&™ with rank< m-1
and Z € F™" with rank< n — 1, the constant matrices;Ce F¥" and G, € F™". Then

solutions of the system in"E" has(m - g)(n — h)-dimensional hypersurface in the space
men.

{ D-X=C;

Note that ifC[n,k,d = n - k + 1] is an MDS code, e.g., Reed-Solomon code, then
wheneveKK < k- 1 the vectors in an¥-subset of columns d& are linearly independent.
By Lemmd4, the security of our authentication scheme falow

Theorem 5. The scheme we constructed above is an unconditionallyeseaulti-receiver
authentication scheme against a coalition of up tJtl) — 2) malicious receivers in which
every key can be used to authentication up to M messages.

Proof. Suppose the source receiver has sent messages: - - , Su. Itis enough to con-
sider the case th& = d(C*) — 2 malicious receiverR,, - - - , R« have received th&/
messages, since in this case they know the most informatioutghe key matriA.
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What they try to do is to guess the lagk +1+by k+1Sv+1+P2k+15, 1+ ~+bMKk+15m.41
for somesy.1 ¢ {S1, S, -+, Sw} and construct a vectovy, v, - - - , V) such that

k
Zvigi,KJrl = Bok+1 + Drks1Sust + Dok1So,q + -+ + DMKs1SMy 1 -
i=1

Then the fake messags\{;1, Vi, Va2, - - - , Vk] can be accepted bk, 1.

Because anik = d(C*) — 2 columns of the generator mati&is linearly independent
over Fg, otherwise there existy, -, Xk € Fq such thatz'f=1 x;g; = O whereg; is the
j-th column ofG, then the dual cod€* will have a codewordXy, - - - , X, 0, - - - , 0) with
Hamming weighk d(C*)-2 which is a contradiction. By Lemrha 4, there exigts!(¢)+2
matricesA satisfying the system of equatioiis (2.1).

For anysy:1 ¢ {S1, %, -+ , Sm}, we define the label map

@sy., . {Solutions of Systeni (2.1) — Fq
O1K+1
O2.k+1
A = (1’ S’\/|+1’ S§/|+1a Tt Sm+1)A
Ok K+1

Then we claim:

(1): sy, IS surjective.
(2): for anyy € Fq, the number of the inverse imageyois #g5> (y) = gf-9C)+L,

So the information held by the colluders allows them to dalieq equally likely diferent
labels forsy.1 and hence their probability of success igyWwhich is equal to that of
guessing a labédg 1 + bik+1Swe1 + bok+1Sy,; + - - + Dmk+1S\,, for swe1 randomly
fromFq. And hence we finish the proof of the theorem.

Next, we prove our claim. AK+1 = d(C*)-1,01,02, - - , Gk+1 IS linearly independent
overFg, otherwise the dual codg" will have a codeword with Hamming weigkitd(C*) -
1 which is impossible by the definition of minimum distanceao€ode. Then choose
k—K-1 = k-d(C*)+1 extra columns o6 such that they combining witly, gz, - - - , Ok+1
form a basis oF'é. Without loss of generality, we assume the fikesblumns ofG is linearly

independent of,. For anyP e FM*>(-dC)*D) the system of linear equations

1 o 5 - ¢ Li(s) La(s) - Lu(s1)

1 s 5 - 8 A Li(s) L) - L)

1 osw s M Li(sw) La(sw) -+ Li(sw)
Out O12 - Oik bo1 bo2 -+ bok
O21 Qo2 - Ok b1 bz -0 bk

(2.3) ] ] ) ) = ] j ) ) ,

Ok1 Ok2 - Okk bmi bmz - buk

Oik+2 Oik+3 - Oik

O2k+2 O2k+3 - G2k

. . . = P,

Okk+2 Okk+3 - Okk
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hasq solutions by LemmAl4, sayingy, Ay, - - - , Aq. The solutionsAg, Ay, - - -, Aq are also
solutions of Systeni(2.1). Next, we show

{903M+1(Aj) | J = 1’ 2&' o ’q} = ]Fq .

Otherwise, there are two solutioAg, andA;, such that

O1K+1 O1K+1
M O2.k+1 M O2k+1

(L, Smi1. Sppgs - » Sm+1) AL = (L Sms1. Sipypo - s S+ A
Ok K+1 Ok K+1

Then we have

1 s s s)! O11 G2 - Oik
l s s 021 OG22 - Ok

: ) Al . . )
1 swa Sy She1 Ok1 Ok2 - Okk
1 s & s, Ou1 Oi2 -+ Oik
1 % s - s O21 Q22 - Q2

= . : AIZ : : . .
1 s Sy Shiet Oki Ok2 -+ Okk

But matrices

1 5 S O11 12 -+ Ouk
1 5 s - S O21 22 -+ G2k
1 Swer Sy 0 S Ok1 Ok2 - Okk

are invertible. SA\;, = A;, which contradicts to the conditiol;, # A;,. And hence, the
statement (1) holds.

Next, we prove (2). Any one solution of Systelm {2.1) gives Bne
while corresponding to suchRathere areg solutions of Systeni (2.1) from the proof of (1).
In this way, we partition solutions of System (2.1) info9C" )+ parts such that each part
containsg elements. Also from the proof of (1), the image of each padeups,., is Fq.
So for anyy € Fq, the number of the inverse imageyois #p32 (y) = g<-9C)+L,

(M+1)x(k-d(C*)+1)
FY :

O

Remark 2. From the proofs of Lemnid 4 and Theoreln 5, the coalition ofaiwals re-
ceivers B can successfully make a substitution attack toetbeiver R if and only if g
is contained in the subspace]ﬁg generated byg;| j € B}, whereg; represents the j-th
column of the generator matrix G. In this case, they can rectve private key of RThis
is the motivation of the next section.

Next, we give a toy example to illustrate Lemfda 4 and Thedidem 5
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Example 1. LetFq = Fs. The M= 3 messages sentares 1,5, =2,53=4. TheCisa
systematic code with the generator matrix

1000012 40
01 0002 2 3 2
G=({0 0 1 0 0 3 1 3 4
00 010 400 2
000012114

One can check that the dual codé @as minimum distance(8+) = 5. The trusted
authority randomly chooses AF¢*®, for instance,

3 22 0 2

0 4 3 02

A=lo 1 2 3 1

3 3013

Then the trusted authority computes

322022410
043021333
B=AG=1p0 12312000
330134040

and distributes the i-th column of B to the receive®lR his private key.
Suppose R Ry, Rs are corrupted and they have seen the authenticated messages

X 110243
x |=|2 2 3 1 0 4],
X3 34 4 4 4 3

then they want to substitute one of the authenticated mesghging the transmission by
a new codewords, L(s)] that can be accepted by one of the other receivers. They have
information about the key matrix A:

1111 1 0 2 4 3
[1243A=23104],
1 3 4 2 4 4 4 4 3
(2.4) P20 (322
0 4 3
Al0O 0 1]= .
01 2
000 330]
0 0O
This system of linear equations h2Ssolutions
3 00 3 2 0 00 O0O 0 00 OO
4 1 3 2 3 0 00 O0O 0 00 OO
2 014 4" o014 1("* 00000
01 30 4 4 0 00O 01 41 4
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(0,4,3,2,0,2) (0,3,1,1,4,3) (0,2,4,0,3,4) (0,1,2,4,2,0) (0,0,0,3,1,1)
(4,4,4,2,0,0) (4,3,2,1,4,1) (4,2,0,0,3,2) (4,1,3,4,2,3) (4,0,1,3,1,4)
(3.4,0,2,0,3) (3,3,3,1,4,4) (3,2,1,0,3,0) (3,1,4,4,2,1) (3,0,2,3,1,2)
(2,4,1,2,0,1) (2,3,4,1,4,2) (2,2,2,0,3,3) (2,1,0,4,2,4) (2,0,3,3,1,0)
(1,4,2,2,0,4) (1,3,0,1,4,0) (1,2,3,0,3,1) (1,1,1,4,2,2) (1,0,4,3,1,3)

where g,a, € Fs. For s, = 4and any i= 4,5, - -- , 9, we have the label map

¢s,r . {Solutions of Systern (2}4) — Fq
Oui
O2i
A (L Swet Sopaqs s S DA
Oki

Letys, = (@sr PsuRss -+ * » PsiRe)- Then the images afs, are
Notice that for any & 4, ¢, r iS surjective and for any ¥ Fq, the number of the inverse
image of y is#<pg41(y) = 5. One can check the properties @f r about surjection and
uniform distribution of the images fog s= 0 also hold.

Actually, we can verify that even the coalition af R;, Rs, R4 can successfully generate
a fraudulent codewor(ls,, L(s4)] for any other Rstill only in a probability1/5 which is
the success probability of randomly choosing a label fieyfior a fake message.

3. CopE-BASED AUTHENTICATION SCHEME AND MINIMAL CODEWORDS

In the previous section, we considered that any coalitioK afialicious receivers can
not obtain any information about any other receiver’s labehake a substitution attack.
To consider a weak point, we propose that for a fixed recdfewhat a coalition of
malicious receivers that can not get any information of #ieel ofR.. By Theoreni b, we
have seen that any coalition of up {C*)—-2) malicious receivers can not generate a valid
codeword g, L(s)] for R; in a probability better than guessing a label frgrandomly for
the fake message

Denote V] = {1,2,---,V} and®P = {R;,Ry,---,Ry}. Without any confusion, we
identify the index setl, 2, - - - , V} and the receiver s¢Ry, Ry, - - - , Ry}.

Definition 2. A subset of \- 1 receivers® \ {R;} is call an adversary groupo R if
their coalition can not obtain any information of the labdlR when they want to make
a substitution attack to R Define {(C) to be the largest integer; such that any subset
A C P\ {R} with cardinality; is an adversary group to;R

Definition 3. A subset of? \ {R;} that can successfully make a substitution attack;ts R
call a substitution groupto R. Moreover, a substitution group is cathinimal if any one
receiver is removed from the group, then the rests can naioliny information of the
label of R. Define r(C) to be the smallest integer such that any subset 8% \ {R;} with
cardinality p; is a substitution group to;R

For anyA C [V], ma is the projection oFy to Fy' defined by

aa((X1, X2, -+, X)) = (X)) jeas

for any (i, X2, -+, Xy) € ]Fg And denote byr = 7y for short. For any receiveR,, the
substitution groups t& are completely characterized as follows.
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Proposition 6. For any receiver R the following conditions are equivalent:
(): BC P\ {R}is a substitution group to R
(ii): @i is contained in the subspace}ﬂ}‘ generated byd;| j € B}, whereg; repre-
sents the j-th column of the generator matrix G;
(iii): there exists a codewoile C* such that

m@=1 and #g(® =0,
where B = (P \ {R}) \ B is the complement of Bifi \ {R};
(iv): there is arFg-linear map
fB,i . ﬂ'B(C) — Fq

such that §;(rg(C)) = i(c) for all ¢ € C;
(v): there is no codeword € C such that

m(@=1 and 7@ =0.

Proof. By RemarK2, conditions (i) and (ii) are equivalent.

First, we show that there exists a codew6rd C* such thatrj(¢) # 0. If not, that is,
for any codeword € C*, it holdsr;(€) = 0. Then the unit vector with the unique nonzero
component 1 on théth coordinate belongs t€, which contradicts to the assumption
d(C) > 2.

So there exists a codewot C*+ such thatr;() = 1 by the linearity ofC. The rest of
the proof that conditions (ii) and (iii) are equivalent ieat.

(iii) =(iv). For any codeworg € C*+ with

m()=1 and  7e(y) =0,
we have
> aG)ri(@) + m(Q) =0
jeB
for any codeword € C. So definefg; : 78(C) — Fq by setting
foi(ma(Q) = - ) m()i(©),
jeB

for all € € C. Thenfg; satisfies the condition.

(iv)=>(iii). From the proof of “(iii)=>(iv)", we see that the required codeword@r
is actually the cogicients of the map

¢Bi = i — fg;.

(iv)=(v). If the statement (v) does not hold, then there existsdewordc € C such

that
n(@=1 and ng(@®=0,

which contradicts tdg(7g(C)) = 7i(C).

(V)=(iv). Amap

fgi 1 78(C) — Fq
satisfyingfgi(7g(C)) = 7i(C) for all C € C is always linear oveF, by the linearity ofC. So
if the map
fgi : 18(C) — Fq

satisfying fg(75(C)) = #i(C) for all ¢ € C does not exist, then there exist twdfdrent
codeword<, ¢ € C such that

7i(C) # mi(C) and  7g(C) = 7g(C) .
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That is, the codeword = ¢ — € € C satisfies
() =m@E-¢)#0 and #g(X) =ng@-¢)=0,
which contradicts to (v). O
By Propositiol B, adversary groupsRpcan be completely characterized by

Proposition 7. For any receiver R the following conditions are equivalent:
(): AcC P\ {R}isan adversary group tojR
(ii): @i is not contained in the subspace]Rgfgenerated bygilj € Al;
(iii): there is no codeword € C+ such that
i@ =1 and  ma(®)=0;
(iv): there exists a codewoidle C such that
m@=1 and 7A@ =0.
Corollary 8. (): Foranyi=1,2,---,V,we have
dCY) -1<r((C)<V-dC)+1,
and
maxri(C)|i=1,2,---,V}=V-d(C)+1, min{r(C)|i=1,2---,V}-1=d(C*)-1.
(i): Foranyi=1,2,---,V,we have
diCH -2<(C)<ri(C)-1,
and
min{t;(C)|i=1,2,---,V}=d(C") - 2.
Proof. (i) SupposeB C P\ {R} is any substitution group . By Propositiof b (iii), there
is a codeword € C* such that
m(@=1 and 7g(®)=0.
Then we have
d(CH) <wt(© <|B|+1.
So
r(C)>|B/>d(C+)-1.

For anyB C £\{R;} with cardinality> V—-d(C)+1, it is obvious that any codewodk C
with 7;(€) = 1 (in the proof of Propositidn] 6, we have seen that such a codbsoes exist.)
hasng(C) # 0. Otherwise, the minimum distandéC) < V — (V — d(C) + 1) = d(C) - 1.
So by Propositiofl6 (v), it follows

nC)<v-dC)+1.
Let € be a codeword i€ with minimum Hamming weight. Denote l§ the support of

¢ LetB =[V]\ S. Then by Propositionl6 (v is not a substitution group t& for any
ieS.So

maxri(C)|i=1,2,---,V}2maXri(C)|ieS}>Bl+1=V-dC)+1.
And hence
maxri(C)|i=12,---,V}=V-d(C)+ 1.
To prove minri(C)|i=1,2,---,V} - 1=d(C*) -1, it sufices to show
ri(C) =d(CH -1
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for somei = 1,2,---,V. Lety be a codeword irC+ with minimum Hamming weight.
Denote byT the support off. For anyi € T, T \ {i} is a substitution group t& with
cardinalityd(C*) — 1. On the other hand, by Propositidn 6 (ii), any subse® §f{R;} with
cardinality< d(C+) — 2 could not be a substitution group®p. So

r(C)=dicH-1
foranyi e T.

(i) t(C) < ri(C) -1 by the definition. For an® C P\ {R} with cardinality< d(C*) -2,
there is no codeworde C+ such that

m(@=1 and 7e(@=0.
If not, then there is a codewoidk C* such that
m(@=1 and (@) =0.

ThenC+* has a codeword with Hamming weighk |B| + 1(< d(C*) — 1) which is impos-
sible. So by Propositidi B is an adversary group f&. And hence

d(CH) -2<4(C).
Since
dCH-2<(C)<r((C)-1,
we have
diCH -2<min{t(C)|i=1,2,---,V}<min{r;(C)|i=1,2,--- ,V}-1=d(C*) - 2.

So
min{t(C)|i=1,2,---,V}=d(C*) -2.

By Corollary8, it is natural to get

Corollary 9. For any receiver R we have
(i): Subsets oP \ {R} with cardinality> (V — d(C) + 1) are substitution groups to
R.
(i): Subsets oP \ {R} with cardinality< (d(C*) — 2) are adversary groups to;R
(iii): For MDS codes C, subsets®f\ {R;} with cardinality< (d(C*) — 2) are all the
adversary groups toR

There is a gap in Corollafy 9 in general we do not known whethgubset of size in
the gap is a substitution group R or not for general code-based authentication scheme.
Actually, it is NP-hard to list all substitution groups & in general. Even for authentica-
tion scheme based on algebraic geometric codes from elliptives, it is alreadi)P-hard
(underRP-reduction) to list all substitution groups B [2,[3].

By Propositior 6, we obtain the main result of this sectiogeaeralization of Proposi-
tion[d:

Theorem 10. For the authentication scheme we constructed, we have

(i): The set of all minimal substitution groups to the receiveisRletermined com-
pletely by all the minimal codewords respect to i ih.C

(ii): All adversary groups to the receiver &e one-to-one corresponding to subsets
of [V] \ {i} such that each of them together with i does not contain angtof
minimal codeword respect to i in‘C
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(221010400) (01031
(302010220) (00311
(101410203) (00101
(020410433) (40031
(433010040) (31421
(420011003) (40401

2022) (030013344)(300411301)
0242) (040111200) (00441240 4)
1323) (022014302) (10011304 1)
0231) (002313030)(140010130)
2000) (031310001) (000214111)
3024) (014010310)

(200012421)
(402414100)
(20341300 2)
(33021003 4)
(24041401 0)

TasLE 1.

{1,2,3,7 |1{2,4,6,8,9%1{2,6,7,8,9({1,4,6,7,9|({1,6,7,8,9
{1,3,7,8 |{3,4,7,8,9%| {2,4,6,7} [{3,4,6,7,9|({1,3,4,6,7}
{1,3,4,7,911{3,6,7,8,91({2,3,6,7,9|{1,4,6,8,9|{1,3,4,6,9
{2,4,7,8,91{1,4,7,8,9 | {3,4,6,8} {1,2,7,8 |{1,2,4,8,9
{1,2,3,8 |{1,2,3,4,6| {2,3,4,9 |{4,6,7,8,9|({1,2,4,6,8
{1,2,6,9 |{1,3,6,8,9%| {2,3,7,8}

TABLE 2.
{1,2,3,8,91{2,3,4,6,7|{3,4,6,8,9|(1,3,4,6,74|{1,2,3,4,7/|{3,4,7,8,9
{2,3,6,8,91{1,3,6,8,9|{2,4,6,7,9 |(1,4,6,7,8|{2,4,6,7,8 |{1,4,6,7,9
{1,2,4,7,8 {1,2,4,7,9 |/{1,2,6,7,8 |(1,2,6,7,91{1,2,3,4,9|{1,3,6,7,9
{2,3,6,7,81{1,3,6,7,8 |{2,3,6,7,9|(1,2,4,6,8 |{1,2,4,6,7|{1,2,3,4,8
{2,3,4,6,9 | {4,6,7,8,9/{1,3,4,6,8|({1,2,4,6,91{2,4,7,8,9{1,2,3,7,8
{1,2,3,7,91{2,6,7,8,91{1,2,6,8,9|(1,4,7,8,91{2,3,4,6,8|{3,6,7,8,9
{3,4,6,7,911{1,2,3,6,7|1{1,3,4,6,9|(3,4,6,7,8({1,2,4,8,9|{1,3,4,8,9
{1,6,7,8,91{1,2,3,6,9 |{1,2,7,8,91(2,3,4,8,91{2,3,4,7,8 |{1,3,4,7,9
{1,4,6,8,91{2,4,6,8,9|1{2,3,4,7,9(1,3,4,7,8({1,2,3,6,8 |{1,3,7,8,9
{2,3,7,8,91{1,2,3,4,6

TABLE 3.

Example 2. Continue with Examplgl 1, minimum codewords respeé&titoC* are list in

Table 1.

Since coordinat® is in the support of any minimal codeword respechtave exclud&
from all supports of these codewords. Then we get supponténifnal codewords exclud-

ing 5, see Table 2.

So any substitution group to the receiverrRust contain at least one set in Table 2. And
subset of? \ {Rs} that does not contain any one set in Table 1 can not make aisulst
attack to the receiver Rsuccessfully in a probability better thdn5 (1/5 is the success
probability of randomly choosing a label frofg for a fake message) using their knowledge
of the key matrix A. From Table 2, notice that most subses, s} with cardinality4 can
not generate a fake message that can acceptedstsucessfully in a probability better
than1/5, even subsets @ \ {Rs} with cardinality5 can not, such as shown in Table 3.
While in the scheme of Safavi-Naini and Wang wi{8,&] Reed-Solomon code (the field
must have cardinality= 9), any subset of \ {Rs} with cardinality 5 can successfully
recover the private key ofsRand hence they can easily make a substitution attackto R
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4. CONCLUSION

In this paper, we construct an authentication scheme fotisradeivers and multiple
messages based on linear c@tlg/, k, d]. There are many advantages. Compared with
schemes based on MACs or digital signatures which dependmpuatational security.
Our scheme is an unconditional secure authentication sehehich can fer robustness
against a coalition of up tal(C*) — 2) malicious receivers. Similarly as the generalization
of Shamir’s secret sharing scheme to linear secret shaceme based on linear codes,
compared with the scheme of Safavi-Naini and Welrg [8] whiak & constraint on the
number of verifying receivers that can not be larger thansthe of the finite field. Our
scheme allows arbitrary receivers for a fixed message bddeAied, for some important
receiver, coalitions ok or more malicious receivers can not yet make a substitutiacla
on the receiver moreficiently than randomly guessing a label from the finite field fo
a fake message. While the authentication scheme of Safaivirldnd Wang is a\{, k)
threshold authentication scheme, &of theV receivers can easily produce a fake message
that can be accepted by the receiver.
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