Skip to main content

ACP-lrFEM: Functional Encryption Mechanism with Automatic Control Policy in the Presence of Key Leakage

  • Conference paper
  • 1789 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8434))

Abstract

We present a leakage-resilient functional encryption from finite automata control policy, in which the ciphertext is associated with an input string w and the private key is connected to a finite automata \({\mathcal{M}}\). The decryption will succeed iff the automata accepts the string, i.e., \(Accept({\mathcal{M}}, w)=1\). In our scheme, we allow the leakage of sensitive key by allowing the attacker to provide an efficiently computable function (leakage function) adaptively, and to receive the output of the function taking the private key as input. Our security model considers two sides: key-leakage resilience and plaintext confidentiality. Not only can the attacker request the reveal of all non-match keys of finite automata, but can query the leakage for the match key. We also deploy an update algorithm to support the continual leakage resilience. We give the construction in bilinear groups of composite order and prove the security in dual system framework. The analysis shows that the maximum leakage of the key can be 33%.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, S., Dodis, Y., Vaikuntanathan, V., Wichs, D.: On continual leakage of discrete log representations. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 401–420. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Boyle, E., Garg, S., Jain, A., Kalai, Y.T., Sahai, A.: Secure computation against adaptive auxiliary information. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 316–334. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption under subgroup indistinguishability. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole in the bucket: Publickey cryptography resilient to continual memory leakage. In: FOCS 2010, pp. 501–510 (2010)

    Google Scholar 

  7. Chow, S., Dodis, Y., Rouselakis, Y., Waters, B.: Practical leakage-resilient identity-based encryption from simple assumptions. In: ACM-CCS 2010, pp. 152–161 (2010)

    Google Scholar 

  8. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptography in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 613–631. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Dodis, Y., Lewko, A., Waters, B., Wichs, D.: Storing secrets on continually leaky devices. In: FOCS 2011, pp. 688–697 (2011)

    Google Scholar 

  10. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 44–61. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Hazay, C., López-Alt, A., Wee, H., Wichs, D.: Leakage-resilient cryptography from minimal assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 160–176. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Hopcroft, J.E., Motwani, R., Ullman, J.: Introduction to automata theory, languages and computation, 2nd edn. Addison Wesley (2000)

    Google Scholar 

  14. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Lewko, A.: Tools for simulating features of composite order bilinear groups in the prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: Achieving full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Lewko, A., Rouselakis, Y., Waters, B.: Achieving leakage resilience through dual system encryption. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 70–88. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Mather, L., Oswald, E., Bandenburg, J., Wójcik, M.: Does my device leak information? An a priori statistical power analysis of leakage detection tests. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 486–505. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  19. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Qin, B., Liu, S.: Leakage-resilient chosen-ciphertext secure public-key encryption from hash proof system and one-time lossy filter. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 381–400. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  21. Ramanna, S.C.: DFA-based functional encryption: adaptive security from dual system encryption. IACR Cryptology ePrint Archive 2013, 638 (2013)

    Google Scholar 

  22. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  23. Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  24. Zhang, M., Shi, W., Wang, C., Chen, Z., Mu, Y.: Leakage-resilient attribute-based encryption with fast decryption: Models, analysis and constructions. In: Deng, R.H., Feng, T. (eds.) ISPEC 2013. LNCS, vol. 7863, pp. 75–90. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  25. Zhang, M., Yang, B., Takagi, T.: Bounded leakage-resilient funtional encryption with hidden vector predicate. The Computer Journal, Oxford 56(4), 464–477 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, M. (2014). ACP-lrFEM: Functional Encryption Mechanism with Automatic Control Policy in the Presence of Key Leakage. In: Huang, X., Zhou, J. (eds) Information Security Practice and Experience. ISPEC 2014. Lecture Notes in Computer Science, vol 8434. Springer, Cham. https://doi.org/10.1007/978-3-319-06320-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06320-1_35

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06319-5

  • Online ISBN: 978-3-319-06320-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics