Skip to main content

Shifting Hypergraphs by Probabilistic Voting

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8444))

Abstract

In this paper, we develop a novel paradigm, namely hypergraph shift, to find robust graph modes by probabilistic voting strategy, which are semantically sound besides the self-cohesiveness requirement in forming graph modes. Unlike the existing techniques to seek graph modes by shifting vertices based on pair-wise edges (i.e, an edge with 2 ends), our paradigm is based on shifting high-order edges (hyperedges) to deliver graph modes. Specifically, we convert the problem of seeking graph modes as the problem of seeking maximizers of a novel objective function with the aim to generate good graph modes based on sifting edges in hypergraphs. As a result, the generated graph modes based on dense subhypergraphs may more accurately capture the object semantics besides the self-cohesiveness requirement. We also formally prove that our technique is always convergent. Extensive empirical studies on synthetic and real world data sets are conducted on clustering and graph matching. They demonstrate that our techniques significantly outperform the existing techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bomze, I.M.: Branch-and-bound approahces to standard quadratic optimization problems. Journal of Global Optimization 22(1-4), 17–37 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bulo, S., Pellilo, M.: A game-theoretic approach to hypergraph clustering. In: NIPS (2009)

    Google Scholar 

  3. Cho, M., Lee, K.M.: Progressive graph matching: Making a move of graphs via probabilistic voting. In: CVPR (2012)

    Google Scholar 

  4. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. TPAMI 24(5), 603–619 (2002)

    Article  Google Scholar 

  5. Ding, L., Yilmaz, A.: Interactive image segmentation using probabilistic hypergraphs. Pattern Recognition 43(5), 1863–1873 (2010)

    Article  MATH  Google Scholar 

  6. Duchenme, O., Bach, F., Kweon, I., Ponce, J.: A tensor-based algorithm for high-order graph matching. In: CVPR (2009)

    Google Scholar 

  7. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2012 (VOC 2012) Results, http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html

  8. Huang, Y., Liu, Q., Zhang, S., Metaxas, D.N.: Image retrieval via probabilistic hypergraph ranking. In: CVPR (2010)

    Google Scholar 

  9. Kim, S., Nowozin, S., Kohli, P., Yoo, C.D.: Higher-order correlation clustering for image segmentation. In: NIPS (2011)

    Google Scholar 

  10. Leoradeanu, M., Hebert, M.: A spectral technique for correspondence problems using pairwise constraints. In: ICCV (2005)

    Google Scholar 

  11. Leordeanu, M., Hebert, M., Sukthankar, R.: Integer projected fixed point for graph matching and map inference. In: NIPS (2009)

    Google Scholar 

  12. Leordeanu, M., Sminchisescu, C.: Efficient hypergraph clustering. In: AISTATS (2012)

    Google Scholar 

  13. Liu, H., Latecki, L., Yan, S.: Robust clustering as ensembles of affinity relations. In: NIPS (2010)

    Google Scholar 

  14. Liu, H., Yan, S.: Robust graph mode seeking by graph shift. In: ICML (2010)

    Google Scholar 

  15. Macrini, D., Siddiqi, K., Dickinson, S.: From skeletons to bone graphs: Medial abstrations for object recognition. In: CVPR (2008)

    Google Scholar 

  16. Pavan, M., Pelillo, M.: Dominant sets and pairwise clustering. TPAMI 29(1), 167–171 (2007)

    Article  Google Scholar 

  17. Sheikh, Y., Khan, E.A., Kanade, T.: Mode seeking by medoidshifts. In: ICCV (2007)

    Google Scholar 

  18. Wang, Y., Huang, X.: Geometric median-shift over riemannian manifolds. In: Zhang, B.-T., Orgun, M.A. (eds.) PRICAI 2010. LNCS, vol. 6230, pp. 268–279. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Wang, Y., Huang, X., Wu, L.: Clustering via geometric median shift over riemannian manifolds. Information Science 20, 292–305 (2013)

    Article  MathSciNet  Google Scholar 

  20. Weibull, J.W.: Evolutionary game theory. MIT Press (1995)

    Google Scholar 

  21. Zangwill, W.: Nonlinear programming: a unified approach. Prentice-Hall (1969)

    Google Scholar 

  22. Zass, R., Shashua, A.: Probabilistic graph and hypergraph matching. In: CVPR (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, Y., Lin, X., Zhang, Q., Wu, L. (2014). Shifting Hypergraphs by Probabilistic Voting. In: Tseng, V.S., Ho, T.B., Zhou, ZH., Chen, A.L.P., Kao, HY. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2014. Lecture Notes in Computer Science(), vol 8444. Springer, Cham. https://doi.org/10.1007/978-3-319-06605-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06605-9_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06604-2

  • Online ISBN: 978-3-319-06605-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics