Skip to main content

Privacy-Preserving Collaborative Anomaly Detection for Participatory Sensing

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8443))

Included in the following conference series:

Abstract

In collaborative anomaly detection, multiple data sources submit their data to an on-line service, in order to detect anomalies with respect to the wider population. A major challenge is how to achieve reasonable detection accuracy without disclosing the actual values of the participants’ data. We propose a lightweight and scalable privacy-preserving collaborative anomaly detection scheme called Random Multiparty Perturbation (RMP), which uses a combination of nonlinear and participant-specific linear perturbation. Each participant uses an individually perturbed uniformly distributed random matrix, in contrast to existing approaches that use a common random matrix. A privacy analysis is given for Bayesian Estimation and Independent Component Analysis attacks. Experimental results on real and synthetic datasets using an auto-encoder show that RMP yields comparable results to non-privacy preserving anomaly detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dung, L.T., Bao, H.T.: A Distributed Solution for Privacy Preserving Outlier Detection. In: Third International Conference on KSE, pp. 26–31 (2011)

    Google Scholar 

  2. Vaidya, J., Clifton, C.: Privacy-preserving outlier detection. In: IEEE ICDM, pp. 233–240 (2004)

    Google Scholar 

  3. Bhaduri, K., Stefanski, M.D., Srivastava, A.N.: Privacy-preserving outlier detection through random nonlinear data distortion. IEEE TSMC, Part B 41, 260–272 (2011)

    Google Scholar 

  4. Burke, J., Estrin, D., Hansen, M., Parker, A., Ramanathan, N., Reddy, S., Srivastava, M.B.: Participatory sensing. In: ACM SenSys 1st Workshop on World-Sensor-Web: Mobile Device Centric Sensor Networks and Applications (2006)

    Google Scholar 

  5. Liu, K., Kargupta, H., Ryan, J.: Random projection-based multiplicative data perturbation for privacy preserving distributed data mining. IEEE TKDE 18(1), 92–106 (2006)

    Google Scholar 

  6. Chen, K., Liu, L.: Privacy-preserving multiparty collaborative mining with geometric data perturbation. IEEE TPDS 20(12), 1764–1776 (2009)

    Google Scholar 

  7. Mangasarian, O.L., Wild, E.W.: Privacy-preserving classification of horizontally partitioned data via random kernels. In: Proceedings of DMIN (2007)

    Google Scholar 

  8. Bansal, A., Chen, T., Zhong, S.: Privacy preserving Back-propagation neural network learning over arbitrarily partitioned data. Neural Computing and Applications 20, 143–150 (2010)

    Article  Google Scholar 

  9. Zhang, Y., Zhong, S.: A privacy-preserving algorithm for distributed training of neural network ensembles. Neural Computing and Applications 22, 269–282 (2012)

    Article  Google Scholar 

  10. Agrawal, R., Srikant, R.: Privacy-preserving data mining. ACM SIGMOD Record 29(2), 439–450 (2000)

    Article  Google Scholar 

  11. Agrawal, D., Aggarwal, C.C.: On the design and quantification of privacy preserving data mining algorithms. In: Proceedings of ACM PODS, pp. 247–255 (2001)

    Google Scholar 

  12. Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: On the privacy preserving properties of random data perturbation technique. In: IEEE ICDM, pp. 99–106 (2003)

    Google Scholar 

  13. Huang, Z., Du, W., Chen, B.: Deriving private information from randomized data. In: Proceedings of ACM SIGMOD, pp. 37–48 (2005)

    Google Scholar 

  14. Papadimitriou, S., Li, F., Kollios, G., Yu, P.S.: Time series compressibility and privacy. In: Proceedings of VLDB, pp. 459–470 (2007)

    Google Scholar 

  15. Ganti, R.K., Pham, N., Tsai, Y.E., Abdelzaher, T.F.: Poolview: stream privacy for grassroots participatory sensing. In: Proceedings of ACM SenSys, pp. 281–294 (2008)

    Google Scholar 

  16. Liu, K., Giannella, C., Kargupta, H.: A survey of attack techniques on privacy-preserving data perturbation methods. In: Privacy-Preserving Data Mining. Springer (2008)

    Google Scholar 

  17. Sang, Y., Shen, H., Tian, H.: Effective reconstruction of data perturbed by random projections. IEEE Transactions on Computers 61(1), 101–117 (2012)

    Article  MathSciNet  Google Scholar 

  18. Liu, B., Jiang, Y., Sha, F., Govindan, R.: Cloud-enabled privacy-preserving collaborative learning for mobile sensing. In: Proceedings of SenSys, pp. 57–70 (2012)

    Google Scholar 

  19. Giannella, C.R., Liu, K., Kargupta, H.: Breaching euclidean distance-preserving data perturbation using few known inputs. Data & Knowledge Engineering (2012)

    Google Scholar 

  20. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    Article  Google Scholar 

  21. Liu, K., Giannella, C., Kargupta, H.: An attacker’s view of distance preserving maps for privacy preserving data mining. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 297–308. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Guo, S., Wu, X.: Deriving private information from arbitrarily projected data. In: Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4426, pp. 84–95. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  23. Dykstra, R.L.: Establishing the positive definiteness of the sample covariance matrix. The Annals of Mathematical Statistics 41(6), 2153–2154 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  24. Grimmett, G.R., Stirzaker, D.R.: Probability and Random Processes, 3rd edn. Oxford University Press (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Erfani, S.M., Law, Y.W., Karunasekera, S., Leckie, C.A., Palaniswami, M. (2014). Privacy-Preserving Collaborative Anomaly Detection for Participatory Sensing. In: Tseng, V.S., Ho, T.B., Zhou, ZH., Chen, A.L.P., Kao, HY. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2014. Lecture Notes in Computer Science(), vol 8443. Springer, Cham. https://doi.org/10.1007/978-3-319-06608-0_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06608-0_48

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06607-3

  • Online ISBN: 978-3-319-06608-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics