arXiv:1303.6862v1 [cs.LO] 27 Mar 2013

Primal implication as encryption

Vladimir N. Krupski
August 10, 2018

Abstract

We propose a “cryptographic” interpretation for the propositional
connectives of primal infon logic introduced by Y. Gurevich and I. Nee-
man and prove the corresponding soundness and completeness results.
Primal implication ¢ —, v corresponds to the encryption of ¢ with a
secret key ¢, primal disjunction ¢ V, 1 is a group key and L reflects
some backdoor constructions such as full superuser permissions or a
universal decryption key. For the logic of L as a universal key (it was
never considered before) we prove that the derivability problem has
linear time complexity. We also show that the universal key can be
emulated using primal disjunction.

1 Introduction

Primal Infon Logic ([1], [2], [3], [4], [5]) formalizes the concept of infon,
i.e. a message as a piece of information. The corresponding derivability
statement I' F ¢ means that the principal can get (by herself, without any
communication) the information ¢ provided she already has all infons ¢ € T".

Primal implication (—,) that is used in Primal Infon Logic to represent
the conditional information is a restricted form of intuitionistic implication
defined by the following inference rules:

ey 'y ThHe—,9
(_>P I)) (—>p E) .
'y =, 'y
These rules admit cryptographic interpretation of primal implication ¢ —,
1 as some kind of digital envelop: it is an infon, containing the information ¢

http://arxiv.org/abs/1303.6862v1

encrypted by a symmetric key (generated from) ¢. Indeed, the introduction
rule (—, I) allows to encrypt any available message by any key. Similarly,
the elimination rule (—, E) allows to extract the information from the ci-
phertext provided the key is also available. So the infon logic incorporated
into communication protocols ([I], [2]) is a natural tool for manipulating with
commitment schemes (see [7]) without detailed analysis of the scheme itself.

Example. (cf. [§]). Alice and Bob live in different places and communicate
via a telephone line or by e-mail. They wish to play the following game
distantly. Each of them picks a bit, randomly or somehow else. If the bits
coincide then Alice wins; otherwise Bob wins. Both of them decide to play
fair but don’t believe in the fairness of the opponent. To play fair means that
they honestly declare their choice of a bit, independently of what the other
player said. So they use cryptography.

We discuss the symmetric version of the coin flipping protocol from [§] in
order to make the policies of both players the same. Consider the policy of
one player, say Alice. Her initial state can be represented by the context

I' = {Asaid m,, Asaid k,, AlsTrustedOnm,, AlsTrustedOn k,},

where infons m, and k, represent the chosen bit and the key Alice intends to
use for encryption. Her choice is recorded by infons A said m, and A said k,
where A said is the quotation modality governed by the modal logic K[Alice
simply says, to herself, the infons m, and k,.

The remaining two members of I' reflect the decision to play fair. The
infon X IsTrustedOn y abbreviates (X said y) —, y. It provides the ability
to obtain the actual value of y from the declaration X said y, so Alice can
deduce the actual m, and k, she has spoken about.

The commit phase. Alice derives m, and k, —, m, from her context
by rules (—, E), (—, I) and sends the infon k, —, m, to Bob. Bob acts
similarly, so Alice will receive a message from him and her context will be
extended to

" =T U{B said (ky —, mp)}.

The reveal phase. After updating the context Alice obtains k, by rule

(—, E) and sends it to Bob. He does the same, so Alice’s context will be

I =T"U{ B said ky}.

! The only modal inference rule that is used in this paper is X said o, X said (p —
¥) b X said v. Tt is admissible in K. For more details about modalities in the infon logic
see [M],[5].

Now by reasoning in K Alice deduces B said m;,. She also has A said m,,
so it is clear to her who wins. Alice simply compares these infons with the
patterns B said 0, B said 1 and A said 0, A said 1 respectively.

The standard analysis of the protocol shows that Bob will come to the
same conclusion. Moreover, Alice can be sure that she is not cheated provided
she successively follows her policy up to the end The same with Bob.

Note that infon logic is used here as a part of the protocol. It is one of
the tools that provide the correctness. But it does not prove the correctness.
In order to formalize and prove the correctness of protocols one should use
much more powerful formal systems. [

We make our observation precise by defining interpretations of purely
propositional part of infon logic in “cryptographic” infon algebras and prov-
ing the corresponding soundness and completeness theorems.

In Section @ this is done for the system P which is the {T,A, —,}-
fragment of infon logic. We also show that the quasi-boolean semantics for
P (see [4]) is essentially a special case of our semantics.

In Section [3] we show that L can be used to reflect some backdoor con-
structions. Two variants are considered: system P[L] from [4] with the usual
elimination rule for L and a new system P[L,] with a weak form of elimi-
nation rule for L. The first one treats L as a root password, and the second
one — as a universal key for decryption. For almost all propositional primal
infon logics the derivability problem has linear time complexity. We prove
the same complexity bound for P[L,] in Section [l

Finally we consider a system P[V,| which is the modal-free fragment of
Basic Propositional Primal Infon Logic PPIL from [5]. The primal disjunc-
tion V, in P[V,] has usual introduction rules and no elimination rules. We
treat it as a group-key constructor and provide a linear time reduction of
P[Ll,] to P[V,]. It thus gives another proof of linear time complexity bound
for P[L,].

2 Here we suppose that the encryption method is practically strong and unambiguous.
It is impossible for a player who does not know the encryption key to restore the plaintext
from a ciphertext. It is also impossible for him to generate two key-message pairs with
different messages and the same ciphertext.

2 Semantics for {T, A, —,}-fragment

Let ¥ be a finite alphabet, say ¥ = {0, 1}. Let us fix a total pairing function
T (2*)2 — X* with projections [, r : ¥* — X*, where ¥* is the set of all
binary strings,

Wr(z,y)) ==, rr(z,y)) =y, (1)

and two functions enc, dec : (£*)> — £* such that enc is total and
dec(x, enc(z,y)) = y. (2)

String enc(z,y) will be treated as a ciphertext containing string y en-
crypted with key x. Function dec is the decryption method that exploits the
same key. In this text we do not restrict ourselves to encryptions that are
strong in some sense. For example, enc(x,y) may be the concatenation of
strings and y. Then dec on arguments z,y simply removes the prefix z
from y. The totality of functions I, r, dec is not supposed, but the left-hand
parts of () and (2)) must be defined for all z,y € ¥*.

We also fix some set £ C ¥*, F # (. It will represent the information
known by everyone, for example, facts like 0 < 1 and 2-2 = 4. The structure
A = (X% 7, 1,r enc,dec,) will be referred as an infon algebmﬁ

Definition 2.1 A set M C ¥* will be called closed if E C M and M satisfies
the following closure conditions:

1. a,b € M < 7w(a,b) € M,
2. a,enc(a,b) e M =be M,
3. a€¥*, be M= enc(a,b) € M.

A closed set M represents the information that is potentially available
to an agent in a local state, i.e. between two consecutive communication
steps of a protocol. The information is represented by texts. M contains
all public and some private texts. The agent can combine several texts in a
single multi-part document using 7 function as well as to extract its parts
by means of [and r. She has access to the encryption tool enc, so she can

3We use this term differently from [2] where infon algebras are semi-lattices with infor-
mation order “z is at least as informative as y”.

convert a plaintext into a ciphertext. The backward conversion (by dec) is
also available provided she has the encryption key.

Note that in the closure condition 3 we do not require that a € M. The
agent will never need to decrypt the ciphertext enc(a, b) encrypted by herself
because she already has the plaintext b. The key a can be generated by
some trusted third party and sent to those who really need it. This is the
case when the encryption is used to provide secure communications between
agents when only the connections to the third party are secure (and the
authentication is reliable). On the other hand, some protocols may require
the agent to distribute keys by herself. Then she can use a key that is known
to her or get it from the third party. In the latter case a will be available
in her new local state that will be updated by the communication with the
third party.

The natural deduction calculus for primal infon logic P is considered in
[4]. The corresponding derivability relation I' F ¢ is defined by the following
rules:

| R) 'y otk oe
I - —— (Weakening) ' L (Cut)
FT eFe T AR I'E oo
I+ | '@ A
TRy — 2P R (i=1,2)
I'F o Ay I'F
I'F o Lo T'Epr = 02
(= 1) (=, F) .
['F o1 —p oo I'F o

Here ¢, 1, po are infons, i.e. the expressions constructed from the set At of
atomic infons by the grammar

pu=T|At| (e A@) | (@ —=p0),

and I', A are sets of infons.

As usual, a derivation of ¢ from a set of assumptions I' is a sequence of
infons @1, ..., @, where ¢, = ¢ and each ¢y is either a member of I' U {T}
or is obtained from some members of {¢; | j < k} by one of the rules

Y1 P2 1N\ P ¥2 Y1 Y1 —p P2

P1 N\ P2 Vi P1 —p P2 P2

It is easy to see that I' F ¢ iff there exists a derivation of ¢ from I'. So
rules like (Weakening) or (Cut) from the definition of derivability relation
are never used in a derivation itself.

Definition 2.2 An interpretation (of the infon language) is a pair I = (A, v)
where A = (3*, 7,1, 7, enc, dec, E) is an infon algebra and v: AtU{T} — ¥* is
a total evaluation that assigns binary strings to atomic infons and to constant
T, v(T) € E. We assume that v is extended as follows:

v(pr A pa) = m(v(pr), vlpa)), v(pr = @2) = enc(v(pr), v(2)),

o(l) ={v(p) [p €T}

A model is a pair (I, M) where [is an interpretation and M C ¥* is a closed
set.

In the paper [4] it is established that P is sound and complete with respect
to quasi-boolean semantics. A quasi-boolean model is a validity relation =
that enjoys the following properties:

o =T,
e 1 ANpy & @ and | o,
o = :>):<P1—>p<ﬂ2a

e w1 o2 = FEpror g

An infon ¢ is derivable in the infon logic P from the context I' iff = I implies
= ¢ for all quasi-boolean models |=.

It can be seen that the definition of a quasi-boolean model is essentially a
special case of Definition 2.2l Indeed, suppose that atomic infons are words
in the unary alphabet {|}. Then all infons turn out to be words in some
finite alphabet 3. Consider a translation "-7: X8 — {0,1}* that maps all
elements of ¥y into distinct binary strings of the same length, "A™" = A for
the empty word A and "ay...a,'="ay' ..., fora;...,a, € .

The corresponding infon algebra 4 and the evaluation v can be defined
as follows: v(a) ="a fora € AtU{T},

m(z,y) ="Tx™Ny "), enc(r,y) =T(Tet=pTy ") E={TTT (3)

Projections and the decryption function can be found from () and (2]). Note
that for this interpretation the equality v(¢) = "¢ holds for every infon ¢.

Consider a quasi-boolean model . Let M be the closure of the set
My ={"¢" |E ¢}, i.e. the least closed extension of Mj.

6

Lemma 2.3 = ¢ iff v(p) € M.

Proof. It is sufficient to prove that the set M \ M, does not contain words
of the form v(¢). Any element b € M \ M, can be obtained from some
elements of M by a finite sequence of steps 1,2,3 that correspond to closure
conditions:

1. x7y|_>l—(—lxl—/\—lyl—)—l; I—(—le—/\—lyl—>—l|_>x; I—(—le—/\—lyl—>—l'_>y;
2‘ x, l_(—lxi__)pjy[_)j — Y;
3. Y — I—(—le—_>p—lyl—>—l.

The history of this process is a derivation of b from M, with 1,2,3 treated
as inference rules. Let b = v(y) and by, ..., b, = b be the derivation. Consider
the (partial) top-down syntactic analysis of strings by, ..., b, using patterns

I—(—I . I—/\—I _I—)—I I—(—I . l—%p—l . I’)‘I’ I—|| ‘—I'

We replace all substrings that remain unparsed by v(a) where a = ||...| is
some fresh atomic infon. The resulting sequence cq,...,c, is also a deriva-
tion of b from M, because any string of the from (1)) has no unparsed
substrings. All its members have the form ¢; = v(g;) for some infons ;.
Moreover, ¢1,...,¢, is a derivation of ¢ = ¢, in P from the set of hy-
potheses I' = {p; | ¢; € My}. But = I' and P is sound with respect to
quasi-boolean models, so = ¢ and b = v(p) € My. Contradiction. m

Theorem 2.4 I' ¢ in P iff v(p) € M for every model (I, M) with v(I") C
M.

Proof. The theorem states that the infon logic P is sound and complete
with respect to the class of models introduced by Definition The sound-
ness can be proven by straightforward induction on the derivation of ¢ from
I'. The completeness follows from Lemma and the completeness result
for quasi-boolean models (see [4]).]

A set {v(v) | v € T} C ¥* will be called deductively closed if T + 1)
implies ¢ € T for all infons v, i.e. T" is deductively closed in P. In the proof

7

of Lemma [2.3] we actually establish that the particular interpretation (A, v)
is conservative in the following sense: the closure M of any deductively closed
set My C ¥* does not contain “new” strings of the form v(¢) & My. Tt is
also injective: v(p1) = v(p2) implies 1 = ¢o. An interpretation that enjoys
these two properties will be called plain.

Lemma 2.5 There exists a plain interpretation.
The completeness part of Theorem [2.4] can be strengthened.

Theorem 2.6 Let the interpretation I = (A, v) be plain. For any context T
there exists a model (I, M) with v(I") C M such that Tt/ ¢ implies v(p) & M
for all infons .

Proof. Let M be the closure of the set My = {v(¢)) | T' F ¢}. Then
v(I") € M. The set M, is deductively closed, so M \ M, does not contain
strings of the form wv(¢). Suppose I' i/ ¢. Then v(p) ¢ My because the
interpretation is injective. Thus v(y) & M.]

3 Constant 1 and backdoors

1 as superuser permissions

Infon logic P[L] is the extension of P by additional constant L that satisfies
the elimination rule

-1

— (LE).

ko

The corresponding changes in Definition 2.2 are as follows. We add to the

alphabet a new letter f ¢ ¥ and set X, = YU{f}, v(L) =f. Functions m, [,
r, enc, dec act on words from 3% but still satisfy the conditions (1), (2]). We
suppose them to preserve »*: the value should be a binary string provided
all arguments are. We also suppose that v(T) € E C ¥* and v(p) € ¥* for

@ € At and add new closure condition to Definition 2.1k
4. feM,ac¥] =acM.

Models for P[L] are all pairs (I, M) where [is an interpretation and M is a
closed set, both in the updated sense. The definition of plain interpretation
is just the same.

Constant | is some kind of root password that grants the superuser per-
missions to its owner. The owner has the direct access to all the information
available in the system without any communication or decryption. At the
same time | can be incorporated into some messages that will be used in
communication.

1 as universal key

The root password provides the direct access to all the information in the
system including private information of any agent that was never sent to
anybody else. It is also natural to consider a restricted form of superuser
permissions that protect the privacy of agents but provide the ability to
decrypt any available ciphertext. It can be simulated by infon logic P[L,]
with constant L treated as a universal key. The corresponding inference rule
is a weak form of (LF) rule,

THL The—,1
Tk

(LEW),

that has an additional premise I' = ¢ —, 9. So the owner of L can get an
infon only if she already has the same information as a ciphertext. The rule
(LE,) is really weaker than (LE) because ¢ —, ¢ is not derivable in P.

All definitions concerning models for P[L,,] are similar to the case of P[]
with closure condition 4 replaced by

4'. £ enc(a,b) € M =be M.

Essentially we extend the signature of infon algebras by additional (partial)
operation crack(z,y) that satisfies the equality

crack(f,enc(a,b)) =b (4)

and allow any agent to use it, so her local state satisfies the closure condi-
tion 4.

Lemma 3.1 There exist plain interpretations for P[L] and for P[L,].

Proof. We extend the example of plain interpretation for {T,A, —,}-
fragment from Section 2l (see ([B])). Set "L = f and extend the interpretation
in accordance with (B]). The resulting interpretation is plain in the sense of

9

P[L]. Indeed, it is injective because f ¢ ¥. It is also conservative. In order
to prove this we use the construction from Lemma [2.3]

Let the set My = {v(¢) | € T} C (XU {f})* be deductively closed and
M be its closure. Suppose v(p) € M \ M, for some infon ¢. Then b, = v(p)
has a derivation bq,...,b, from M, in the calculus with closure conditions
considered as inference rules:

1. T,y — [_(Tl;l_/_lyl_)—l; [_(Tl;l_/\—lyl_)—l — x; l_(_lx[_/\jyl_)—l — Y;
2. x, I—(—le—_>p—lyl—)—l'_>y;

3. Y — l_(—lxl__)p—lyl_)—l;

4. f— 2.
Consider the (partial) top-down syntactic analysis of strings by, ..., b, using
patterns
I—(—I . I—/\—I _I—)—l I—(—I . I—_>p—l . |—>—| |—|| ‘—I f

Replace all substrings that remain unparsed by v(a) where a = || .. .| is some
fresh atomic infon. The resulting sequence cq,...,c, is also a derivation of
v(p) from My because any string of the from v(¢) has no unparsed substrings.
All its members have the form ¢; = v(g;) for some infons p; and @1, ..., @,

is a derivation of ¢ = ¢, in P[L] from the set of hypotheses T'. But T is
deductively closed, so ¢ € M. Contradiction.
Now set

crack(z,y) == {

b, ifr=fandy="("a"—,'b")7,
undefined, otherwise.

It satisfies the condition (4)), so the interpretation for P[L,,] is defined. One
can prove in a similar way that the interpretation is plain (w.r.t. P[L,]). m

The completeness results from Section [2 hold for logics P[L] and P[L,]
too. The proofs are essentially the same with one difference: the quasi-

boolean semantics from [4] does not cover the case of P[L,]. Let L be one
of the logics P[] or P[L,].

Theorem 3.2 ' - ¢ in L iff v(p) € M for every model (I, M) of L with
(") C M.

10

Proof. The soundness part can be proven by straightforward induction on
the derivation of ¢ from I'. The completeness follows from Lemma [B.1] and
Theorem [3.3] n

Theorem 3.3 Let I be a plain interpretation of Li. For any context I' there
exists a model (I, M) of L with v(I') C M such that T't/ ¢ implies v(p) & M
for all infons .

Proof. Similar to Theorem =

4 Decision algorithm for P[1]

The derivability problems for infon logics P and P[L] are linear time decid-
able ([3], [4], [5]). We provide a decision algorithm for P[L,,] with the same
complexity bound.

Definition 4.1 (Positive atoms.) In what follows we assume that the lan-
guage of P also contains L, but it is an ordinary member of At without any
specific inference rule for it. Let

Att(p) ={p} for p € AtU{T, L},
At (p A1) = At (o) U AT (¥),
AtT (o =) = AtT(¥).

For a context I' set At*(I') = e At ().

Lemma 4.2 Let I' + L in P[L,]. Then I' b ¢ in P[L,] iff AtT(¢) C
AtH(T).

Proof. Suppose ' - . The inclusion At*(p) C At*(T') can be proved by
straightforward induction on the derivation of ¢ from I'.

Now suppose that T' - 1 and At (p) C AtT(['). By rules (A E;) and
(LE,) we prove that I' - ® for every infon ¢) € At*(I'). Then we derive
I'F ¢ by rules (A D), (— I). n

11

Lemma 4.3 IfT't/ L in P and '+ ¢ in P[L,] then I' ¢ in P.

Proof. I't/ L in P implies that I' t/ L in P[L,] because the shortest deriva-
tion of L from I' cannot use the (LE,) rule. So any derivation in P[L,]
from I' cannot use this rule. m

The decision algorithm for P[L,] consists of the following three steps:

1. Test whether I' F ¢ in P. If yes, then I' F ¢ in P[L,] too. Else go to
step 2.

2. Test whether T't/ L in P. If yes, then ' I/ ¢ in P[L,] by Lemma [£3]
Else go to step 3.

3. We have I' b L in P, so it is also true in P[L,]. Test the condition
Att(p) C AtT(T). If it is fulfilled then T’ F ¢ in P[L,]; otherwise

I't/ ¢ in P[L,,] (Lemma [A.2]).

Linear time complexity bounds for steps 1,2 follow from the linear bound
for P. In order to prove the same bound for step 3 we use the preprocessing
stage of the linear time decision algorithm from [5]. It deals with sequents
['F ¢ in a language that extends the language of P[L,]. The preprocessing
stage is purely syntactic, so it does not depend on the logic involved and can
be used for P[L,,] as well.

The algorithm constructs the parse tree for the sequent. Two nodes are
called homonyms if they represent two occurrences of the same infon. For
every homonymy class, the algorithm chooses a single element of it, the
homonymy leader, and labels all nodes with pointers that provide a constant
time access from a node to its homonymy leader. All this can be done in
linear time (see [9]).

Now it takes a single walk through the parse tree to mark by a special
flag all homonymy leaders that correspond to infons ¢» € At (I"). One more
walk is required to test whether all homonymy leaders that correspond to
1 € At*(p) already have this flag. Thus we have a linear time test for the
inclusion At™(p) C At (T).

Theorem 4.4 The derivability problem for infon logic P[L,] is linear time
decidable.

12

5 Primal disjunction and backdoor emulation

Primal infon logic with disjunction P[V] was studied in [4]. It is defined by
all rules of P and usual introduction and elimination rules for disjunction.
P[V] can emulate the classical propositional logic, so the derivability problem
for it is co-NP-complete.

Here we consider the logic P[V,], an efficient variant of P[V]. It was
mentioned in [4] and later was incorporated into Basic Propositional Primal
Infon Logic PPIL [5] as its purely propositional fragment without modalities.
In P[V,] the standard disjunction is replaced by a “primal” disjunction V,
with introduction rules

I'F
— (V1)) (1=1,2)
[@1 Vp e

and without elimination rules. It results in a linear-time complexity bound
for P[V,] (and for PPIL too, see [4],[5]).

When the primal implication is treated as encryption, the primal dis-
junction can be used as a method to construct group keys. An infon of the
form

(b1 Vpp2) —p ¥ (5)

represents a ciphertext that can be decrypted by anyone who has at least
one of the keys ¢, or ¢o. In P the same effect can be produced by the infon

(1 =5) A (g2 =5 ¥), (6)

but it requires two copies of ¥ to be encrypted. Moreover, a principal A
who does not know both keys ¢; and o fails to distinguish between (@)
and (p1 =, ¥1) A (p2 —p ¥2). If A receives (@) from some third party and
forwards it to some principals B and C, she will never be sure that B and C
will get the same plaintext after decryption. Group keys eliminate the length
growth and ambiguity.

An infon algebra for P[V,] has an additional total operation gr: (£*)* —
¥* for evaluation of primal disjunction: v(yp V,) = gr(v(y),v(v)). The
corresponding closure condition in Definition 2.1l will be

5. Ifae M,be¥X*orbe M, ac X then gr(a,b) € M.

All the results of Section [3] (Lemma 3.1, Theorems 3.2 B.3) hold for P[V,]
too. The proofs are essentially the same.

13

P[Ll,] is linear-time reducible to P[v,], so P[Vv,] and PPIL can emu-
late the backdoor based on a universal key. The reduction also gives another
proof for Theorem (.4l

Remember that in the language of P[V,] symbol L denotes some regular
atomic infon. Consider the following translation:

q*=q forqe AtU{T, L},

(P AY) =" Ay,

(p =p)" = (LVpp*) —=p ¥,
" ={¢"[peTh

The transformation of I', ¢ into I'*, ¢©* can be implemented in linear time.
Theorem 5.1 ' ¢ in P[L,] iff T F ¢* in P[V,].

Proof. Part “only if” can be proved by straightforward induction on the
derivation of ¢ from assumptions I" in P[L,,]. For any inference rule of P[L,],
its translation is derivable in P[V,]. For example, consider the elimination
rules for —, and L:

" -

LVpe® LVpe" =, ¥° LVoe® LVt =y Y7

¢* ¢*

Part “if”. Let I'" F ¢* in P[V,]. Note that P[Vv,] is the modal-free
fragment of PPIL and the shortest derivation of ¢* from assumptions ['* in
PPIL is also a derivation in P[V,]. Let D be this derivation.

It is proved in [5] that any shortest derivation is local. For the case
of P[V,] it means that all formulas from D are subformulas of I'*, ¢*. In
particular, V,, occurs in D only in subformulas of the form 1L Vv, 6*.

Case 1. Suppose that the (V,I;) rule is never used in D. Remove part
“1V,"” from every subformula of the form L V, v that occurs in D. The
result will be a derivation of ¢ from assumptions I in P. So I' F ¢ in P[L,]

too.
Case 2. Suppose that the (V,I;) rule is used in D. It has the form

I
1V, 0’

14

so D also contains a derivation of L. The corresponding subderivation is the
shortest one and does not use the (V, ;) rule. By applying the transformation
from Case 1 we prove that I'+ L in P and L € A¢tT ().

We extend Definition 1] with new item

AL (1 Vyp th2) = At (1) U AT (),

so At* (1) is defined for every 9 in the language of P[V,]. Moreover, At*(¢*) =
At*(p) and AtH(I*) = AtT(T'). We claim that At*(p*) C AtT(T™).

Indeed, consider D as a proof tree and its node ¢ with At™(¢) € At™(T™*)
whereas At™(¢') C At* (') holds for all predecessors ¢'. The only rule that
can produce this effect is (@), so ©» = LV, 0" for some 6 where all occurrences
of “new” atoms q € At*(¢) \ AtT(I'*) are inside 6*.

Consider the path from the node 1 to the root node * and the trace
of 1 along it. There is no elimination rule for Vv,, so ¢ cannot be broken
into pieces. All occurrences of positive atoms in #* will be positive in all
formulas along the trace. But V,, occurs in ¢* only in the premise of primal
implication, so the trace does not reach the root node. Thus, at some step
the formula containing 1 will be eliminated and “new” atoms from 6* will
never appear in At (¢*):

1L
1V, 0
mLVo 0] w8 oy
72
We have established that At*(¢) € AtT(I'). But I' F L in P and in
P[L,],so T F ¢ in P[L,] by Lemma 2] n

Comment. It is also possible to reduce P[L,] to P. The corresponding
reduction is two-step translation. One should convert ¢ into ¢* and then
replace all subformulas of the form (Bl) in it with (@). Unfortunately, the
second step results in the exponential growth of the length of a formula.

15

Acknowledgements

I would like to thank Yuri Gurevich, Andreas Blass and Lev Beklemishev for
valuable discussion, comments and suggestions.

The research described in this paper was partially supported by Microsoft

project DKAL and Russian Foundation for Basic Research (grant 11-01-
00281).

References

1]

Y. Gurevich and I. Neeman. DKAL: Distributed-Knowledge Authoriza-
tion Language. In Proc. of CSF 2008, pages 149-162. IEEE Computer
Society, 2008.

Y. Gurevich and I. Neeman. DKAL 2 — A Simplified and Improved
Authorization Language. Technical Report MSR-TR-~2009-11, Microsoft
Research, February 2009.

Y. Gurevich and I. Neeman. Logic of infons: the propositional case. ACM
Transactions on Computational Logic, 12(2), 2011.

L. Beklemishev and Y. Gurevich. Propositional primal logic with disjunc-
tion. J. of Logic and Computation 22 (2012), 26 pages.

C. Cotrini and Y. Gurevich. Basic primal infon logic. Microsoft Research
Technical Report MSR-TR~2012-88, Microsoft Research, August 2012.

A. Troelstra and H. Schwichtenberg. Basic proof theory, Cambridge
Tracts in Theoretical Computer Science, 43, Cambridge University Press,
Cambridge, 1996.

Oded Goldreich. Foundations of Cryptography: Volume 1, Basic Tools,
Cambridge University Press, Cambridge, 2001.

M. Blum. Coin Flipping by Telephone. Proceedings of CRYPTO 1981,
pp. 11-15

16

	1 Introduction
	2 Semantics for {,,p }-fragment
	3 Constant and backdoors
	4 Decision algorithm for P[w]
	5 Primal disjunction and backdoor emulation

