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Abstract. Dynamic programming is widely used for exact computations
based on tree decompositions of graphs. However, the space complexity is
usually exponential in the treewidth. We study the problem of designing effi-
cient dynamic programming algorithm based on tree decompositions in poly-
nomial space. We show how to construct a tree decomposition and extend
the algebraic techniques of Lokshtanov and Nederlof [18] such that the dy-
namic programming algorithm runs in time O∗(2h), where h is the maximum
number of vertices in the union of bags on the root to leaf paths on a given
tree decomposition, which is a parameter closely related to the tree-depth
of a graph [21]. We apply our algorithm to the problem of counting perfect
matchings on grids and show that it outperforms other polynomial-space so-
lutions. We also apply the algorithm to other set covering and partitioning
problems.

Keywords: Dynamic programming, tree decomposition, space-efficient algo-
rithm, exponential time algorithms, zeta transform

1 Introduction

Exact solutions to NP-hard problems typically adopt a branch-and-bound, inclu-
sion/exclusion or dynamic programming framework. While algorithms based on branch-
and-bound or inclusion/exclusion techniques [20] have shown to be both time and
space efficient, one problem with dynamic programming is that for many NP-hard
problems, it requires exponential space to store the computation table. As in practice
programs usually run out of space before they run out of time [27], an exponential-
space algorithm is considered not scalable. Lokshtanov and Nederlof [18] have re-
cently shown that algebraic tools like the zeta transform and Möbius inversion [22,23]
can be used to obtain space efficient dynamic programming under some circum-
stances. The idea is sometimes referred to as the coefficient extraction technique
which also appears in [15,16].

The principle of space saving is best illustrated with the better known Fourier
transform. Assume we want to compute a sequence of polynomial additions and
multiplications modulo xn − 1. We can either use a linear amount of storage and do
many complicated convolution operations throughout, or we can start and end with
the Fourier transforms and do the simpler component-wise operations in between.
Because we can handle one component after another, during the main computation,
very little space is needed. This principle works for the zeta transform and subset
convolution [3] as well.

In this paper, we study the problem of designing polynomial-space dynamic pro-
gramming algorithms based on tree decompositions. Lokshtanov et al. [17] have also
studied polynomial-space algorithms based on tree decomposition. They employ a
divide and conquer approach. For a general introduction of tree decomposition, see
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the survey [6]. It is well-known that dynamic programming has wide applications and
produces prominent results on efficient computations defined on path decomposition
or tree decomposition in general [4]. Tree decomposition is very useful on low degree
graphs as they are known to have a relatively low pathwidth [9]. For example, it is
known that any degree 3 graph of n vertices has a path decomposition of pathwidth
n
6 . As a consequence, the minimum dominating set problem can be solved in time

O∗(3n/6)1, which is the best running time in this case [26]. However, the algorithm
trades large space usage for fast running time.

To tackle the high space complexity issue, we extend the method of [18] in a novel
way to problems based on tree decompositions. In contrast to [18], here we do not
have a fixed ground set and cannot do the transformations only at the beginning
and the end of the computation. The underlying set changes continuously, therefore
a direct application on tree decomposition does not lead to an efficient algorithm.
We introduce the new concept of zeta transforms for dynamic sets. Guided by a
tree decomposition, the underlying set (of vertices in a bag) gradually changes. We
adapt the transform so that it always corresponds to the current set of vertices.
Herewith, we might greatly expand the applicability of the space saving method by
algebraization.

We broadly explore problems which fit into this framework. Especially, we analyze
the problem of counting perfect matchings on grids which is an interesting problem in
statistical physics [12]. There is no previous theoretical analysis on the performance
of any algorithm for counting perfect matchings on grids of dimension at least 3.
We analyze two other natural types of polynomial-space algorithms, the branching
algorithm and the dynamic programming algorithm based on path decomposition of
a subgraph [14]. We show that our algorithm outperforms these two approaches. Our
method is particularly useful when the treewidth of the graph is large. For example,
grids, k-nearest-neighbor graphs [19] and low degree graphs are important graphs in
practice with large treewidth. In these cases, the standard dynamic programming on
tree decompositions requires exponential space.

The paper is organized as follows. In Section 2, we summarize the basis of tree
decomposition and related techniques in [18]. In Section 3, we present the framework
of our algorithm. In Section 4, we study the problem of counting perfect matchings
on grids and extend our algorithmic framework to other problems.

2 Preliminaries

2.1 Saving space using algebraic transformations

Lokshtanov and Nederlof [18] introduce algebraic techniques to solve three types of
problems. The first technique is using discrete Fourier transforms (DFT) on problems
of very large domains, e.g., for the subset sum problem. The second one is using
Möbius and zeta transforms when recurrences used in dynamic programming can
be formulated as subset convolutions, e.g., for the unweighted Steiner tree problem.
The third one is to solve the minimization version of the second type of problems
by combining the above transforms, e.g., for the traveling salesman problem. To the
interest of this paper, we explain the techniques used in the second type of problems.

Given a universe V , let R be a ring and consider functions from 2V to R. Denote
the collection of such functions by R[2V ]. A singleton fA[X] is an element of R[2V ]
which is zero unless X = A. The operator ⊕ is the pointwise addition and the

1 O∗ notation hides the polynomial factors of the expression.
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operator � is the pointwise multiplication. We first define some useful algebraic
transforms.

The zeta transform of a function f ∈ R[2V ] is defined to be

ζf [Y ] =
∑
X⊆Y

f [X]. (1)

The Möbius transform/inversion [22,23] of f is defined to be

µf [Y ] =
∑
X⊆Y

(−1)|Y \X|f [X]. (2)

The Möbius transform is the inverse transform of the zeta transform, as they
have the following relation [22,23]:

µ(ζf)[X] = f [X]. (3)

The high level idea of [18] is that, rather than directly computing f [V ] by storing
exponentially many intermediate results {f [S]}S⊆V , they compute the zeta transform
of f [S] using only polynomial space. f [V ] can be obtained by Möbius inversion (2)
as f [V ] =

∑
X⊆V (−1)|V \X|(ζf)[X]. Problems which can be solved in this manner

have a common nature. They have recurrences which can be formulated by subset
convolutions. The subset convolution [3] is defined to be

f ∗R g[X] =
∑
X′⊆X

f(X ′)g(X \X ′). (4)

To apply the zeta transform to f ∗R g, we need the union product [3] which is
defined as

f ∗u g[X] =
∑

X1
⋃
X2=X

f(X1)g(X2). (5)

The relation between the union product and the zeta transform is as follows [3]:

ζ(f ∗u g)[X] = (ζf)� (ζg)[X]. (6)

In [18], functions over (R[2V ];⊕, ∗R) are modeled by arithmetic circuits. Such a
circuit is a directed acyclic graph where every node is either a singleton (constant
gate), a ⊕ gate or a ∗R gate. Given any circuit C over (R[2V ];⊕, ∗R) which outputs
f , every gate in C computing an output a from its inputs b, c is replaced by small

circuits computing a relaxation {ai}|V |i=1 of a from relaxations {bi}|V |i=1 and {ci}|V |i=1 of
b and c respectively. (A relaxation of a function f ∈ R[2V ] is a sequence of functions
{f i : f i ∈ R[2V ], 0 ≤ i ≤ |V |}, such that ∀i,X ⊆ V , f i[X] = f [X] if i = |X|,
f i[X] = 0 if i < |X|, and f i[X] is an arbitrary value if i > |X|.) For a ⊕ gate, replace
a = b ⊕ c by ai = bi ⊕ ci, for 0 ≤ i ≤ |V |. For a ∗R gate, replace a = b ∗R c by

ai =
∑i
j=0 b

j ∗uci−j , for 0 ≤ i ≤ |V |. This new circuit C1 over (R[2V ];⊕, ∗u) is of size
O(|C| · |V |) and outputs f|V |[V ]. The next step is to replace every ∗u gate by a gate �
and every constant gate a by ζa. It turns C1 to a circuit C2 over (R[2V ];⊕,�), such
that for every gate a ∈ C1, the corresponding gate in C2 outputs ζa. Since additions
and multiplications in C2 are pointwise, C2 can be viewed as 2|V | disjoint circuits
CY over (R[2V ]; +, ·) for every subset Y ⊆ V . The circuit CY outputs (ζf)[Y ]. It is
easy to see that the construction of every CY takes polynomial time.

As all problems of interest in this paper work on the integer domain Z, we con-
sider R = Z and replace ∗R by ∗ for simplicity. Assume 0 ≤ f [V ] < m for some
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integer m, we can view the computation as on the finite ring Zm. Additions and
multiplications can be implemented efficiently on Zm (e.g., using the fast algorithm
in [10] for multiplication).

Theorem 1 (Theorem 5.1 [18]). Let C be a circuit over (Z[2V ];⊕, ∗) which out-
puts f . Let all constants in C be singletons and let f [V ] < m for some integer m.
Then f [V ] can be computed in time O∗(2|V |) and space O(|V ||C| logm).

2.2 Tree decomposition

For any graph G = (V,E), a tree decomposition of G is a tree T = (VT , ET ) such
that every node x in VT is associated with a set Bx (called the bag of x) of vertices
in G and T has the following additional properties:

1. For any nodes x, y, and any node z belonging to the path connecting x and y
in T , Bx ∩By ⊆ Bz.

2. For any edge e = {u, v} ∈ E, there exists a node x such that u, v ∈ Bx.
3. ∪x∈VT Bx = V .
The width of a tree decomposition T is maxx∈VT |Bx| − 1. The treewidth of a

graph G is the minimum width over all tree decompositions of G. We reserve the
letter k for treewidth in the following context. Constructing a tree decomposition
with minimum treewidth is an NP-hard problem. If the treewidth of a graph is
bounded by a constant, a linear time algorithm for finding the minimum treewidth is
known [5]. An O(log n) approximation algorithm of the treewidth is given in [7]. The
result has been further improved to O(log k) in [8]. There are also a series of works
studying constant approximation of treewidth k with running time exponential in k,
see [5] and references therein.

To simplify the presentation of dynamic programming based on tree decompo-
sition, an arbitrary tree decomposition is usually transformed into a nice tree de-
composition which has the following additional properties. A node in a nice tree
decomposition has at most 2 children. Let c be the only child of x or let c1, c2 be the
two children of x. Any node x in a nice tree decomposition is of one of the following
five types:

1. An introduce vertex node (introduce vertex v), where Bx = Bc ∪ {v}.
2. An introduce edge node (introduce edge e = {u, v}), where u, v ∈ Bx and Bx =
Bc. We say that e is associated with x.

3. A forget vertex node (forget vertex v), where Bx = Bc \ {v}.
4. A join node, where x has two children and Bx = Bc1 = Bc2 .
5. A leaf node, a leaf of T .

For any tree decomposition, a nice tree decomposition with the same treewidth can
be constructed in polynomial time [13]. Notice that an introduce edge node is not a
type of nodes in a common definition of a nice tree decomposition. We can create an
introduce edge node after the two endpoints are introduced. We further transform
every leaf node and the root to a node with an empty bag by adding a series of
introduce nodes or forget nodes respectively.

3 Algorithmic framework

We explain the algorithmic framework using the problem of counting perfect match-
ings based on tree decomposition as an example to help understand the recurrences.
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The result can be easily applied to other problems. A perfect matching in a graph
G = (V,E) is a collection of |V |/2 edges such that every vertex in G belongs to
exactly one of these edges.

Consider a connected graph G and a nice tree decomposition T of treewidth k on
G. Consider a function f ∈ Z[2V ]. Assume that the recurrence for computing f on
a join node can be formulated as a subset convolution, while on other types of tree
nodes it is an addition or subtraction. We explain how to efficiently evaluate f [V ]
on a nice tree decomposition by dynamic programming in polynomial space. Let Tx
be the subtree rooted at x. Let Tx be the vertices contained in bags associated with
nodes in Tx which are not in Bx. For any X ⊆ Bx, let YX be the union of X and Tx.
For any X ⊆ Bx, let fx[X] be the number of perfect matchings in the subgraph YX
with edges introduced in Tx. As in the construction of Theorem 1, we first replace
fx by a relaxation {f ix}0≤i≤k+1 of f , where k is the treewidth. We then compute the
zeta transform of f ix, for 0 ≤ i ≤ k + 1. In the following context, we present only
recurrences of fx for all types of tree nodes except the join node where we need to
use the relaxations. The recurrences of fx based on fc can be directly applied to their
relaxations with the same index as in Theorem 1.

For any leaf node x, (ζfx)[∅] = fx[∅] is a problem-dependent constant. In the case
of the number of perfect matchings, fx[∅] = 1. For the root x, (ζfx)[∅] = fx[∅] =
f [V ] which is the value of interest. For the other cases, consider an arbitrary subset
X ⊆ Bx.

1. x is an introduce vertex node. If the introduced vertex v is not in X, fx[X] =
fc[X]. If v ∈ X, in the case of the number of perfect matchings, v has no adjacent
edges, hence fx[X] = 0 (for other problems, fx[X] may equal to fc[X], which implies a
similar recurrence). By definition of the zeta transform, if v ∈ X, we have (ζfx)[X] =∑
v∈X′⊆X fx[X ′] +

∑
v/∈X′⊆X fx[X ′] =

∑
v/∈X′⊆X fx[X ′]. Therefore,

(ζfx)[X] =

{
(ζfc)[X] v /∈ X
(ζfc)[X \ {v}] v ∈ X (7)

2. x is a forget vertex node. fx[X] = fc[X ∪ {v}] by definition.

(ζfx)[X] =
∑
X′⊆X

fx[X ′] =
∑
X′⊆X

fc[X
′ ∪ {v}]

= (ζfc)[X ∪ {v}]− (ζfc)[X]. (8)

3. x is a join node with two children. By assumption, the computation of fx on
a join node can be formulated as a subset convolution. We have

fx[X] =
∑
X′⊆X

fc1 [X ′]fc2 [X \X ′] = fc1 ∗ fc2 [X]. (9)

For the problem of counting perfect matchings, it is easy to verify that fx[X] can be

computed using (9). Let f ix =
∑i
j=0 f

j
c1 ∗u f

i−j
c2 . We can transform the computation

to

(ζf ix)[X] =

i∑
j=0

(ζf jc1)[X] · (ζf i−jc2 )[X], for 0 ≤ i ≤ k + 1. (10)

4. x is an introduce edge node introducing e = {u, v}. The recurrence of fx
with respect to fc is problem-dependent. Since the goal of the analysis of this case
is to explain why we need to modify the construction of an introduce edge node,
we consider only the recurrence for the counting perfect matchings problem. In this
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problem, if e * X, fx[X] = fc[X], then (ζfx)[X] = (ζfc)[X]. If e ⊆ X, we can match
u and v by e or not use e for matching, thus fx[X] = fc[X] + fc[X \ {u, v}]. In this
case, we have

(ζfx)[X] =
∑

e⊆X′⊆X

fx[X ′] +
∑

e*X′⊆X

fx[X ′] =
∑

e⊆X′⊆X

(fc[X
′] + fc[X

′ \ {u, v}])

+
∑

e*X′⊆X

fc[X
′] =

∑
X′⊆X

fc[X
′] +

∑
e⊆X′⊆X

f(X ′ \ {u, v}).

Hence,

(ζfx)[X] =

{
(ζfc)[X] e * X
(ζfc)[X] + (ζfc)[X \ {u, v}] e ⊆ X (11)

In cases 2 and 4, we see that the value of (ζfx)[X] depends on the values of ζfc
on two different subsets. We can visualize the computation along a path from a leaf
to the root as a computation tree. This computation tree branches on introduce edge
nodes and forget vertex nodes. Suppose along any path from the root to a leaf in
T , the maximum number of introduce edge nodes is m′ and the maximum number
of forget vertex nodes is h. To avoid exponentially large storage for keeping partial
results in this computation tree, we compute along every path from a leaf to the root
in this tree. This leads to an increase of the running time by a factor of O(2m

′+h),
but the computation is in polynomial space (explained in detail later). As m′ could
be Ω(n), this could contribute a factor of 2Ω(n) to the time complexity. To reduce the
running time, we eliminate the branching introduced by introduce edge nodes. On
the other hand, the branching introduced by forget vertex nodes seems inevitable.

For any introduce edge node x which introduces an edge e and has a child c in
the original nice tree decomposition T , we add an auxiliary child c′ of x, such that
Bc′ = Bx and introduce the edge e at c′. c′ is a special leaf which is not empty.
We assume the evaluation of ζf on c′ takes only polynomial time. For the counting
perfect matchings problem, fc′ [X] = 1 only when X = e or X = ∅, otherwise it is
equal to 0. Then (ζfc′)[X] = 2 if e ⊆ X, otherwise (ζfc′)[X] = 1. We will verify that
this assumption is valid for other problems considered in the following sections. We
call x a modified introduce edge node and c′ an auxiliary leaf. As the computation
on x is the same as that on a join node, we do not talk about the computation on
modified introduce edge nodes separately.

In cases 1 and 2, we observe that the addition operation is not a strictly point-
wise addition as in Theorem 1. This is because in a tree decomposition, the set of
vertices on every tree node might not be the same. However, there is a one-to-one
correspondence from a set X in node x to a set X ′ in its child c. We call it a relaxed
pointwise addition and denote it by ⊕′. Hence, f can be evaluated by a circuit C
over (Z[2V ];⊕′, ∗). We transform C to a circuit C1 over (Z[2V ];⊕′, ∗u), then to C2

over (Z[2V ];⊕′,�), following constructions in Theorem 1.
In Theorem 1, C2 can be viewed as 2|V | disjoint circuits. In the case of tree

decomposition, the computation makes branches on a forget node. Therefore, we
cannot take C2 as O(2k) disjoint circuits. Consider a subtree Tx of T where the root
x is the only join node in the subtree. Take an arbitrary path from x to a leaf l and
assume there are h′ forget nodes along this path. We compute along every path of
the computation tree expanded by the path from x to l, and sum up the result at
the top. There are 2h

′
computation paths which are independent. Hence we can view
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the computation as 2h
′

disjoint circuits on (Z; +, ·). Assume the maximum number
of forget nodes along any path from the root x to a leaf in Tx is h and there are nl
leaves, the total computation takes at most nl · 2h time and in polynomial space.

In general, we proceed the computation in an in-order depth-first traversal on
a tree decomposition T . Every time we hit a join node j, we need to complete all
computations in the subtree rooted at j before going up. Suppose j1, j2 are the closest
join nodes in two subtrees rooted at the children of j (if there is no other join node
consider j1 or j2 to be empty). Assume there are at most hj forget nodes between
j, j1 and j, j2. Let Tx be the time to complete the computation of (ζfx)[X] at node
x. We have Tj ≤ 2 · 2hj · max{Tj1 , Tj2}). The modified edge node is a special type
of join node. In this case, since one of its children c1 is always a leaf, the running
time only depends on the subtree rooted at c2, thus similar to an introduce vertex
node. Suppose there are nj join nodes and let h be the maximum number of forget
nodes along any path from the root to a leaf. By induction, it takes 2nj · 2h time
to complete the computation on T and in polynomial space. Notice that 2nj is the
number of leaves in T , hence 2nj = O(|V |+ |E|).

To summarize, we present the algorithm for the problem of counting perfect
matchings based on a modified nice tree decomposition T in Algorithm 1.

Algorithm 1 Counting perfect matchings on a modified nice tree decomposition

Input: a modified nice tree decomposition T with root r.
return (ζf)(r, ∅, 0).
procedure (ζf)(x, X,i). // (ζf)(x,X, i) represents (ζf i

x)[X].
if x is a leaf: return 1.
if x is an auxiliary leaf: return 2 when e ⊆ X, otherwise 1.
if x is an introduce vertex node: return (ζf)(c,X, i) when v /∈ X, or (ζf)(c,X−{v}, i)

when v ∈ X.
if x is a forget vertex node: return (ζf)(c,X ∪ {v}, i)− (ζf)(c,X, i).
if x is a join node: return

∑i
j=0(ζf)(c1, X, j) · (ζf)(c2, X, i− j).

end procedure

For any tree decomposition T of a graph G, we can transform it to a modified nice
tree decomposition T ′ with the convention that the root has an empty bag. In this
way, the parameter h, the maximum number of forget nodes along any path from the
root to a leaf in T ′ is equal to the maximum size of the union of all bags along any
path from the root to a leaf in T . We directly tie this number h to the complexity of
our algorithm. Let hm(G) be the minimum value of h for all tree decompositions of
G. We show that hm(G) is closely related to a well-known parameter, the tree-depth
of a graph [21].

Definition 1 (tree-depth [21]). Given a rooted tree T with vertex set V , a closure
of T , clos(T ) is a graph G with the same vertex V , and for any two vertices x, y ∈ V
such that x is an ancestor of y in T , there is a corresponding edge (x, y) in G. The
tree-depth of T is the height of T . The tree-depth of a graph G, td(G) is the minimum
height of trees T such that G ⊆ clos(T ).

Proposition 1 For any connected graph G, hm(G) = td(G).

Proof. For any tree decomposition of G, we first transform it to a modified nice
tree decomposition T . We contract T by deleting all nodes except the forget nodes.
Let Tf be this contracted tree such that for every forget node in T which forgets a
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vertex x in G, the corresponding vertex in Tf is x. We have G ⊆ clos(Tf ). Therefore,
td(G) ≤ h, here h is the maximum number of forget nodes along any path from the
root to a leaf in T .

For any tree T such that G ⊆ clos(T ), we construct a corresponding tree decom-
position T of G such that, T is initialized to be T and every bag associated with
the vertex x of T contains the vertex itself. For every vertex x ∈ T , we also put all
ancestors of x in T into the bag associated with x. It is easy to verify that it is a
valid tree decomposition of G. Therefore, the tree-depth of T , td(T ) ≥ hm(G). �

In the following context, we also call the parameter h, the maximum size of the
union of all bags along any path from the root to a leaf in a tree decomposition T ,
the tree-depth of T . Let k be the treewidth of G, it is shown in [21] that td(G) ≤
(k+1) log |V |. Therefore, we also have hm(G) ≤ (k+1) log |V |. Moreover, it is obvious
to have hm(G) ≥ k + 1.

Finally, we summarize the main result of this section in the following theorem.

Theorem 2. Given any graph G = (V,E) and tree decomposition T on G. Let f be
a function evaluated by a circuit C over (Z[2V ];⊕′, ∗) with constants being singletons.
Assume f [V ] < m for integer m. We can compute f [V ] in time O∗((|V | + |E|)2h)
and in space O(|V ||C| logm). Here h is the maximum size of the union of all bags
along any path from the root to a leaf in T .

4 Counting perfect matchings

The problem of counting perfect matchings is ]P-complete. It has long been known
that in a bipartite graph of size 2n, counting perfect matchings takes O∗(2n) time
using the inclusion and exclusion principle. A recent breakthrough [1] shows that the
same running time is achievable for general graphs. For low degree graphs, improved
results based on dynamic programming on path decomposition on a sufficiently large
subgraph are known [2].

Counting perfect matchings on grids is an interesting problem in statistical physics
[12]. The more generalized problem is the Monomer-Dimer problem [12], which es-
sentially asks to compute the number of matchings of a specific size. We model
the Monomer-Dimer problem as computing the matching polynomial problem . For
grids in dimension 2, the pure Dimer (perfect matching) problem is polynomial-time
tractable and an explicit expression of the solution is known [24]. We consider the
problem of counting perfect matchings in cube/hypercube in Section 4.1. Results on
counting perfect matchings in more general grids, computing the matching polyno-
mial and applications to other set covering and partitioning problems are presented
in Section 4.2.

4.1 Counting perfect matchings on cube/hypercube

We consider the case of counting perfect matchings on grids of dimension d, where
d ≥ 3 and the length of the grid is n in each dimension. We denote this grid by
Gd(n). To apply Algorithm 1, we first construct a balanced tree decomposition on
Gd(n) with the help of balanced separators. The balanced tree decomposition can
easily be transformed into a modified nice tree decomposition.

Tree decomposition using balanced vertex separators. We first explain
how to construct a balanced tree decomposition using vertex separators of general
graphs. An α-balanced vertex separator of a graph/subgraph G is a set of vertices
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S ⊆ G, such that after removing S, G is separated into two disjoint parts A and
B with no edge between A and B, and |A|, |B| ≤ α|G|, where α is a constant in
(0, 1). Suppose we have an oracle to find an α-balanced vertex separator of a graph.
We begin with creating the root of a tree decomposition T and associate the vertex
separator S of the whole graph with the root. Consider a subtree Tx in T with the
root x associated with a bag Bx. Denote the vertices belonging to nodes in Tx by
Vx. Initially, Vx = V and x is the root of T . Suppose we have a vertex separator
Sx which partitions Vx into two disjoint parts Vc1 and Vc2 . We create two children
c1, c2 of x, such that the set of vertices belonging to Tci is Sx ∪ Vci . Denote the set
of vertices belonging to nodes in the path from x to the root of T by Ux, we define
the bag Bci to be Sx ∪ (Vci ∩ Ux), for i = 1, 2. It is easy to verify that this is a valid
tree decomposition. Since Vx decreases by a factor of at least 1−α in each partition,
the height of the tree is at most log 1

1−α
n. To transform this decomposition into a

modified nice tree decomposition, we only need to add a series of introduce vertex
nodes, forget vertex nodes or modified introduce edge nodes between two originally
adjacent nodes. We call this tree decomposition algorithm Algorithm 2.

We observe that after the transformation, the number of forget nodes from Bci to
Bx is the size of the balanced vertex separator of Vx, i.e. |Sx|. Therefore, the number
of forget nodes from the root to a leaf is the sum of the sizes of the balanced vertex
separators used to construct this path in the tree decomposition.

A grid graph Gd(n) has a nice symmetric structure. Denote the d dimensions by
x1, x2, ..., xd and consider an arbitrary subgrid G′d of Gd(n) with length n′i in dimen-
sion xi. The hyperplane in G′d which is perpendicular to xi and cuts G′d into halves
can be used as a 1/2-balanced vertex separator. We always cut the dimension with
the longest length. If n′i = n′i+1, we choose to first cut the dimension xi, then xi+1.
We illustrate the construction of the 2-dimensional case in the following example.

Example 1 (Balanced tree decomposition on G2(n)). The left picture is a partitioning
on a 2-dimensional grid. We always bipartition the longer side of the grid/subgrid.
The right picture is the corresponding balanced tree decomposition on this grid. The
same letters on both sides represent the same set of nodes. Pi represent a balanced
vertex separator. We denote the left/top half of Pi by Pi1, and the right/bottom part
by Pi2 (see Figure 1). The treewidth of this decomposition is 3

2n.

To run Algorithm 2 on Gd(n), we cut dimensions x1, x2, ..., xd consecutively with
separators of size 1

2i−1n
d−1, for i = 1, 2..., d. Then we proceed with subgrids of length

n/2 in every dimension. It is easy to see that the treewidth of this tree decomposition

is 3
2n

d−1. The tree-depth h of this tree decomposition is at most
∑∞
j=0

∑d−1
i=0

1
2i ·

( 1
2j n)d−1, which is 2d−1

2d−1−1n
d−1.

Lemma 1. The treewidth of the tree decomposition T on Gd(n) obtained by Algo-

rithm 2 is 3
2n

d−1. The tree-depth of T is at most 2d−1
2d−1−1n

d−1.

To apply Algorithm 1 to the problem of counting perfect matchings, we verify
that f [S] ≤

( |E|
|V |/2

)
≤ |E||V |/2 and all constants are singletons.

Theorem 3. The problem of counting perfect matchings on grids of dimension d and

uniform length n can be solved in time O∗(2
2d−1

2d−1−1
nd−1

) and in polynomial space.

To the best of our knowledge, there is no rigorous time complexity analysis of the
counting perfect matchings problem in grids in the literature. To demonstrate the
efficiency of Algorithm 1, we compare it to three other natural algorithms.
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P1

P2

P3

P4

P1

P2, P1

P3, P2, P11 P3,   P12

P3,   P22,    P11, P4

......

Partition on 2-Dim Grid Tree decomposition on 2-Dim Grid

P21,  P3

P112, P22  , P32, P4 P111,  P31, P4

Fig. 1. An illustrative figure for balanced tree decomposition on G2(n).

1. Dynamic programming based on path decomposition. A path decom-
position is a special tree decomposition where the underlying tree is a path. A path
decomposition with width 2nd−1 is obtained by putting all vertices with x1 coor-
dinate equal to j and j + 1 into the bag of node j, for j = 0, 1, ..., n − 1. A path
decomposition with a smaller pathwidth of nd−1 can be obtained as follows. Con-
struct n nodes {p1, p2, ..., pn} associated with a bag of vertices with x1 coordinate
equal to j, for j = 0, 1, ..., n − 1. For any pj , pj+1, start from pj , add a sequence of
nodes by alternating between adding a vertex of x1 = j+ 1 and deleting its neighbor
with x1 = j. The number of nodes increases by a factor of nd−1 than the first path
decomposition. We run the standard dynamic programming on the second path de-

composition. This algorithm runs in time O∗(2n
d−1

), however the space complexity

is O∗(2n
d−1

). It is of no surprise that it has a better running time than Algorithm
1 due to an extra space usage. We remark that van Rooij et al. [25] give a dynamic
programming algorithm for the counting perfect matching problem on any tree de-
composition of treewidth k with running time O∗(2k) and space exponential to k.

2. Dynamic programming based on path decomposition on a subgrid.
One way to obtain a polynomial space dynamic programming is to construct a low
pathwidth decomposition on a sufficiently large subgraph. One can then run dy-
namic programming on this path decomposition and do an exhaustive enumeration
on the remaining graph in a similar way as in [2]. To extract from Gd(n) a subgrid
of pathwidth O(log n) (notice that this is the maximum pathwidth for a polynomial
space dynamic programming algorithm), we can delete a portion of vertices from
Gd(n) to turn a ”cube”-shaped grid into a long ”stripe” with O(log n) cross-section

area. It is sufficient to remove O( nd

(logn)1/(d−1) ) vertices. This leads to a polynomial-

space algorithm with running time 2
O( nd

(logn)1/(d−1)
)
, which is worse than Algorithm 1.

3. Branching algorithm. A naive branching algorithm starting from any ver-

tex in the grid could have time complexity 2O(nd) in the worst case. We analyze
a branching algorithm with a careful selection of the starting point. The branch-
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ing algorithm works by first finding a balanced separator S and partitioning the
graph into A ∪ S ∪ B. The algorithm enumerates every subset X ⊆ S. A vertex
in X either matches to vertices in A or to vertices in B while vertices in S \ X
are matched within S. Then the algorithm recurses on A and B. Let Td(n) be
the running time of this branching algorithm on Gd(n). We use the same bal-
anced separator as in Algorithm 2. We have an upper bound of the running time

as, Td(n) ≤ 2Td(
n−|S|

2 )
∑
X⊆S 2|X|Td−1(|S \X|). We can use any polynomial space

algorithm to count perfect matchings on S \ X. For example using Algorithm 1,

since the separator is of size O(nd−1), we have Td−1(|S \X|) = 2O(nd−2). Therefore,

Td(n) ≤ 2Td(
n
2 )·2o(nd−1)

∑|S|
i=0

(|S|
i

)
2i = 2Td(

n
2 )·2o(nd−1)3|S|. We get Td(n) = O∗(3h),

i.e. O∗(3
2d−1

2d−1−1
nd−1

), which is worse than Algorithm 1. We remark that this branch-
ing algorithm can be viewed as a divide and conquer algorithm on balanced tree
decomposition, which is similar as in [17].

4.2 Extensions

Counting perfect matchings on general grids. Consider more general grids of
dimension d with each dimension of length ni, 1 ≤ i ≤ d, which is at most nm. We
use Algorithm 2 to construct a balanced tree decomposition T of a general grid and
obtain an upper bound of the tree-depth h of T .

Lemma 2. Given any grid of dimension d and volume V. Using Algorithm 2, the
tree-depth of this tree decomposition is at most 3dV

nm
.

Proof. Assume that 2qi−1ni+1 < ni ≤ 2qini+1 for some integer qi ≥ 0 and i =
1, 2, ..., d − 1. Let h(q1, ..., qd−1) be the maximum number of forget nodes from the
root to a leaf in this case. We can think of the whole construction as in d phases (the
algorithm might do nothing in some phases).

In Phase 1, the grid/subgrid is halved in dimension x1 in qi times. For i =
2, ..., d, suppose the lengths of dimension x1, x2, ..., xi−1, xi are n′1, n

′
2, ..., n

′
i−1, n

′
i = ni

respectively, we have n′i/2 < n′1 ≤ n′2 ≤ · · · ≤ n′i−1 ≤ n′i. For any 1 ≤ j ≤ i − 1, if
n′j = n′j+1, Algorithm 2 will first cut dimension xj then xj+1. If n′j < n′j+1, Algorithm
2 will first cut dimension xj+1 then xj . In this way, we obtain a new partition
order x′1, ..., x

′
i which is a permutation of x1, ..., xi. In Phase i for i ≤ d − 1, the

grid/subgrid is halved in dimension x′1, x
′
2, ..., x

′
i consecutively in qi rounds. In Phase

d, the algorithm repeats bipartitioning dimension x′1, x
′
2, ..., x

′
d until the construction

is completed. We denote the maximum number of forget nodes from the root to a
leaf created in Phase i by hi.

i = 1. h1 = q1V
n1

. Notice that n1 = 2q1+···qd−1( V
2q1+2q2+···+(d−1)qd−1

)1/d, h1 is maxi-

mized when q1 = 1
ln 2 ·

d
d−1 and q2 = ... = qd−1 = 0. We have h1 ≤ 3V

n1
.

i = 2. If n1 = 2q1n2, h2 = V
n1
·(1+ 1

2 +· · ·+ 1
2q2−1 )+ V

n2
·( 1

2q1+1 + 1
2q1+2 +· · ·+ 1

2q1+q2
),

i.e. h2 = V
n1
· 2

2−1
2−1 · (1−

1
2(2−1)q2

) ≤ 3V
n1

.
If n1 < 2q1n2, Algorithm 2 will alternate to cut the x2 dimension and x1 dimension

in q2 rounds. h2 = V
n1
· ( 1

2 + · · · + 1
2q2 ) + V

n2
· ( 1

2q1 + 1
2q1+1 + · · · + 1

2q1+q2−1 ). Since

2q1n2 > n1, h2 <
V
n1
· (

1
2 (1−

1
2q2

)

1−1/2 +
1− 1

2q2

1−1/2 ) < 3V
n1

.

In general, for any 2 ≤ i ≤ d− 1, we can bound hi as hi ≤ V
2q2+2q3+···+(i−2)qi−1n1

·
(1 + 1

2 + · · ·+ 1
2i−1 ) · (1 + 1

2i−1 + · · ·+ 1
2(i−1)(qi−1) ). Hence, hi ≤ V

2q2+2q3+···+(i−2)qi−1n1
·

2i−1
2i−1−1 · (1−

1
2(i−1)qi

), which is at most 3V
n1

.
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i = d. hd ≤ 2d−1
2d−1−1 ( V

2q1+2q2+···+(d−1)qd−1
)1−1/d ≤ 3V

n1
.

Hence, h(q1, ..., qd−1) = h1 + h2 + · · ·+ hd ≤ 3dV
n1

. �

Based on Lemma 2, we give time complexity results of algorithms discussed in
Section 4.1. First, h is the only parameter to the running time of Algorithm 1 and the

branching algorithm. Algorithm 1 runs in time O∗(2
3dV
nm ) and the branching algorithm

runs in time O∗(3
3dV
nm ). The dynamic programming algorithm based on path decom-

position on a subgrid has a running time 2
O( V

(lognm)1/(d−1)
)
. Those three algorithms

have polynomial space complexity. For constant d, Algorithm 1 has the best time
complexity. For the dynamic programming algorithm based on path decomposition,

it runs in time O∗(2
V
nm ) but in exponential space.

The result can easily be generalized to the k-nearest-neighbor (kNN) graphs and
their subgraphs in d-dimensional space, as it is known that there exists a vertex
separator of size O(k1/dn1−1/d) which splits the kNN graph into two disjoint parts
with size at most d+1

d+2n [19]. More generally, we know that a nontrivial result can
be obtained by Algorithm 1 if there exists a balanced separator of the graph G
with the following property. Let s(n′) be the size of a balanced separator S on
any subgraph G′ of G of size n′ ≤ n. S partitions the subgraph into two disjoint
parts G′1, G

′
2, such that S ∪ G′i is of size at most cn′, for some constant c ∈ (0, 1),

i = 1, 2. If there exists a constant γ < 1, such that for every n′ ≤ n, s(cn′) ≤ γs(n′),
then the number of forget nodes along any path from the root to a leaf is at most

s(n) + γs(n) + γ2s(n) + · · · ≤ s(n)
1−γ . In this case, the tree decomposition of treewidth

k constructed by Algorithm 2 has the tree-depth h = Θ(k). For k = Ω(log n), Algo-
rithm 1 has a similar running time as the standard dynamic programming algorithm
but with much better space complexity.

Computing the matching polynomial. The matching polynomial of a graph

G is defined to be m[G,λ] =
∑|G|/2
i=0 mi[G]λi, where mi[G] is the number of matchings

of size i in graph G. We put the coefficients of m[G,λ] into a vector m[G]. The
problem is essentially to compute the coefficient vector m[G].

For every node x in a tree decomposition, let vector mx[X] be the coefficient
vector of the matching polynomial defined on YX . Notice that every entry of mx[X]
is at most |E||V |/2 and all constants are singletons. m0

x[X] = 1 and mi
x[X] = 0 for

i > |X|/2. The case of x being a forget vertex node follows exactly from Algorithm
1. For any type of tree node x,

- x is a leaf node. mi
x[∅] = 1 if i = 0, or 0 otherwise.

- x is an introduce vertex node. If v ∈ X, mi
x[X] = mi

c[X\{v}]. Hence (ζmi
x)[X] =

2(ζmi
c)[X \ {v}] if v ∈ X, or (ζmi

x)[X] = (ζmi
c)[X] otherwise.

- x is an auxiliary leaf of a modified introduce edge node. mi
x[X] = 1 only when

u, v ∈ X and i = 1, or i = 0. Otherwise it is 0.
- x is a join node. mi

x[X] =
∑
X′⊆X

∑i
j=0 mj

c1 [X ′]mi−j
c2 [X \X ′].

Counting l-packings. Given a universe U of elements and a collection of subsets
S on U , an l-packing is a collection of l disjoint sets. The l-packings problem can
be solved in a similar way as computing the matching polynomial. Packing problems
can be viewed as matching problems on hypergraphs. Tree decomposition on graphs
can be generalized to tree decomposition on hypergraph, where we require every
hyperedge to be assigned to a specific bag [11]. A hyperedge is introduced after all
vertices covered by this edge are introduced.
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Counting dominating sets, counting set covers. The set cover problem is
given a universe U of elements and a collection of sets S on U , find a subcollection
of sets from S which covers the entire universe U . The dominating set problem is
defined on a graph G = (V,E). Let U = V , S = {N [v]}v∈V , where N [v] is the union
of the neighbors of v and v itself. The dominating set problem is to find a subset of
vertices S from V such that

⋃
v∈S N [v] covers V .

The set cover problem can be viewed as a covering problem on a hypergraph,
where one selects a collection of hyperedges which cover all vertices. The dominating
set problem is then a special case of the set cover problem. If S is closed under
subsets, a set cover can be viewed as a disjoint cover. We only consider the counting
set covers problem. For any subset X ⊆ Bx, we define hx[X] to be the number of
set covers of YX . We have hx[X] ≤ |U ||S|, and all constants are singletons. We omit
the recurrence for forget vertex nodes as we can directly apply recurrence (8) in
Algorithm 1. For any node x, hx[∅] = 1.

- x is a leaf node. hx[∅] = 1.
- x is an introduce vertex node. If v ∈ X, hx[X] = 0. If v /∈ X, hx[X] = hc[X].
- x is an auxiliary leaf of a modified introduce hyperedge node. hx[X] = 1 when

X ⊆ e, and hx[X] = 0 otherwise.
- x is a join node. hx[X] =

∑
X′⊆X hc1 [X ′]hc2 [X −X ′].

Finally, we point out that our framework has its limitations. First, it cannot be
applied to problems where the computation on a join node cannot be formalized as
a convolution. The maximum independent set problem is an example. Also it is not
known if there is a way to adopt the framework to the Hamiltonian path problem, the
counting l-path problems, and the unweighted Steiner tree problem. It seems that
for theses problems we need a large storage space to record intermediate results. It
is interesting to find more problems which fit in our framework.

5 Conclusion

We study the problem of designing efficient dynamic programming algorithms based
on tree decompositions in polynomial space. We show how to construct a modified
nice tree decomposition T and extend the algebraic techniques in [18] to dynamic
sets such that we can run the dynamic programming algorithm in time O∗(2h) and
in polynomial space, with h being the maximum size of the union of bags along any
path from the root to a leaf of T , a parameter closely related to the tree-depth of a
graph [21]. We apply our algorithm to many problems. It is interesting to find more
natural graphs with nontrivial modified nice tree decompositions, and to find more
problems which fit in our framework.

References

1. Andreas Björklund. Counting perfect matchings as fast as Ryser. In SODA, pages
914–921, 2012.

2. Andreas Björklund and Thore Husfeldt. Exact algorithms for exact satisfiability and
number of perfect matchings. Algorithmica, 52(2):226–249, August 2008.

3. Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Fourier meets
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