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Fast branching algorithm for Cluster Vertex Deletion∗

Anudhyan Boral† Marek Cygan‡ Tomasz Kociumaka§ Marcin Pilipczuk¶

Abstract

In the family of clustering problems, we are given a set of objects (vertices of the graph), together
with some observed pairwise similarities (edges). The goal is to identify clusters of similar objects
by slightly modifying the graph to obtain a cluster graph (disjoint union of cliques).

Hüffner et al. [Theory Comput. Syst. 2010] initiated the parameterized study of Cluster

Vertex Deletion, where the allowed modification is vertex deletion, and presented an elegant
O(2kk9 + nm)-time fixed-parameter algorithm, parameterized by the solution size. In our work, we
pick up this line of research and present an O(1.9102k(n+m))-time branching algorithm.

1 Introduction

The problem to cluster objects based on their pairwise similarities has arisen from applications both in
computational biology [6] and machine learning [5]. In the language of graph theory, as an input we are
given a graph where vertices correspond to objects, and two objects are connected by an edge if they
are observed to be similar. The goal is to transform the graph into a cluster graph (a disjoint union of
cliques) using a minimum number of modifications.

The set of allowed modifications depends on a particular problem and an application considered.
Probably the most studied variant is the Cluster Editing problem, known also as Correlation

Clustering, where we seek for a minimal number of edge editions to obtain a cluster graph. The study
of Cluster Editing include [3, 4, 13, 18, 28] and, from the parameterized perspective, [7, 8, 9, 10, 11,
14, 15, 17, 20, 21, 22, 24, 25, 26].

The main principle of the parameterized complexity is that we seek for algorithms that are efficient if
the considered parameter is small. However, the distance measure in Cluster Editing, the number of
edge editions, may be quite large in practical instances, and, in the light of recent lower bounds refuting
the existence of subexponential FPT algorithms for Cluster Editing [17, 24], it seems reasonable
to look for other distance measures (see e.g. Komusiewicz’s PhD thesis [24]) and/or different problem
formulations.

In 2008, Hüffner et al. [23] initiated the parameterized study of the Cluster Vertex Deletion

problem (ClusterVD for short). Here, the allowed modification is a vertex deletion.

Cluster Vertex Deletion (ClusterVD) Parameter: k
Input: An undirected graph G and an integer k.
Question: Does there exist a set S of at most k vertices of G such that G \ S is a cluster graph,
i.e., a disjoint union of cliques?

In terms of motivation, we want to refute as few objects as possible to make the set of observations
completely consistent. As a vertex deletion removes as well all its incident edges, we may expect that
this new editing measure may be significantly smaller in practical applications than the edge-edition
distance.

As ClusterVD can be equivalently stated as the problem of hitting, with minimum number of
vertices, all induced P3s (paths on 3 vertices) in the input graph, ClusterVD can be solved in O(3k(n+
m)) time by a straightforward branching algorithm [12], where n and m denote the number of vertices
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and edges of G, respectively. The dependency on k can be improved by considering more elaborate case
distinction in the branching algorithm, either directly [19], or via a general algorithm for 3-Hitting

Set [29]. Hüffner et al. [23] provided an elegant O(2kk9 + nm)-time algorithm, using the iterative
compression principle [27] and a reduction to the weighted maximum matching problem.

In our work we pick up this line of research and obtain the fastest algorithm for (unweighted) Clus-

terVD.

Theorem 1. Cluster Vertex Deletion can be solved in O(1.9102k(n + m)) time and polynomial

space on an input (G, k) with |V (G)| = n and |E(G)| = m.

Contrary to the algorithm of [23], our algorithm is a typical branching algorithm, where a number
of branches and reductions is presented, and the complexity is analysed through (sometimes long) case
analysis and branching vectors. The advantage of this approach is that we obtain a linear dependency
on the graph size in the running time.

The main observation in the proof of Theorem 1 is that, if, for some vertex v, we know that there
exists a solution S not containing v, in the neighbourhood of v the ClusterVD problem reduces to
Vertex Cover. More precisely, define N1 and N2 to be the vertices within distance 1 and 2 from v,
respectively, and define the auxiliary graph Hv to be a graph on N1∪N2 having and edge for each edge of
G between N1 and N2 and for each non-edge inside N1 in G. In other words, two vertices are connected
by an edge in Hv iff, together with v, they form a P3 in G. We observe that a solution S not containing
v needs to contain a vertex cover of Hv. Moreover, one can show that we may greedily take as much as
possible (inclusion-wise) vertices from N2 into the aforementioned vertex cover, as these vertices would
help us resolve the remaining part of the graph.

We note that a similar observation has been already used in [23] to cope with a variant of ClusterVD

where we restrict the number of clusters in the resulting graph.
Branching to find the ‘correct’ vertex cover of Hv is a very efficient branching, with worst-case (1, 2)

(i.e., golden-ratio) branching vector. However, we do not have the vertex v beforehand, and branching
to obtain such a vertex may be quite costly. Thus, our approach is to get as much gain as possible from
the vertex cover-style branching on the auxiliary graph Hv, to be able to balance the loss from some
inefficient branches used to obtain the vertex v to start with. Consequently, we employ quite involved
analysis of properties and branching algorithms for the auxiliary graph Hv.

The paper is organised as follows. We give some preliminary definitions and notation in Section 2. In
Section 3 we analyse the auxiliary graph Hv and show a branching algorithm finding all relevant vertex
covers of Hv. Then, in Section 4 we prove Theorem 1. Section 5 concludes the paper.

2 Preliminaries

We use standard graph notation. All our graphs are undirected and simple. For a graph G, by V (G) and
E(G) we denote its vertex- and edge-set, respectively. For v ∈ V (G), the set NG(v) = {u|uv ∈ E(G)} is
the neighbourhood of v in G and NG[v] = NG(v) ∪ {v} is the closed neighbourhood. We extend these
notions to sets of vertices X ⊆ V (G) by NG[X ] =

⋃
v∈X NG[v] and NG(X) = NG[X ] \X . We omit the

subscript if it is clear from the context. For a set X ⊆ V (G) we also define G[X ] to be the subgraph
induced by X and G \X is a shorthand for G[V (G) \X ]. A set X ⊆ V (G) is called a vertex cover of G
if G \X is edgeless. By MinVC(G) we denote the size of the minimum vertex cover of G.

In all further sections, we assume we are given an instance (G, k) of Cluster Vertex Deletion,
where G = (V,E). That is, we use V and E to denote the vertex- and edge-set of the input instance G.

A P3 is an ordered set of 3 vertices (u, v, w) such that uv, vw ∈ E and uw /∈ E. A graph is a cluster
graph iff it does not contain any P3; hence, in ClusterVD we seek for a set of at most k vertices that
hits all P3s.

If at some point a vertex v is fixed in the graph G, we define sets N1 = N1(v) and N2 = N2(v) as
follows: N1 = NG(v) and N2 = NG(NG[v]). That is, N1 and N2 are sets of vertices within distance 1
and 2 from v, respectively. For a fixed v ∈ V , we define an auxiliary graph Hv with V (Hv) = N1 ∪N2

and
E(Hv) = {uw|u,w ∈ N1, uw /∈ E} ∪ {uw|u ∈ N1, w ∈ N2, uw ∈ E}.

Thus, Hv consists of the vertices in N1 and N2 along with non-edges among vertices of N1 and edges
between N1 and N2. Observe the following.
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Lemma 2. For u,w ∈ N1 ∪N2, we have uw ∈ E(Hv) iff u, w and v form a P3 in G.

Proof. For every uw ∈ E(Hv) with u,w ∈ N1, (u, v, w) is a P3 in G. For uw ∈ E(Hv) with u ∈ N1 and
w ∈ N2, (v, u, w) forms a P3 in G. In the other direction, for any P3 in G of the form (u, v, w) we have
u,w ∈ N1 and uw /∈ E, thus uw ∈ E(Hv). Finally, for any P3 in G of the form (v, u, w) we have u ∈ N1,
w ∈ N2 and uw ∈ E, hence uw ∈ E(Hv).

We call a subset S ⊆ V a modulator when G \ S is a cluster graph, that is, a collection of cliques. A
modulator with minimal cardinality is called a solution.

Our algorithm is a typical branching algorithm, that is, it consists of a number of branching steps. In
a step (A1, A2, . . . , Ar), A1, A2, . . . , Ar ⊆ V , we independently consider r subcases. In the i-th subcase
we look for a solution S containing Ai: we delete Ai from the graph and decrease the parameter k by
|Ai|. If k becomes negative, we terminate the current branch and return a negative answer from the
current subcase. For brevity, we sometimes write in the branching step w instead of {w} if Ai = {w} for
some i.

The branching vector for a step (A1, A2, . . . , Ar) is the vector (|A1|, |A2|, . . . , |Ar|). It is well-known
(see e.g. [16]) that the number of final subcases of a branching algorithm is bounded by O(ck), where c
is the largest positive root of an equation 1 =

∑r

i=1
x−|Ai| among all branching steps (A1, A2, . . . , Ar) in

the algorithm.

3 The auxiliary graph Hv

In this section we investigate properties of the auxiliary graphHv. Hence, we assume that a ClusterVD

input (G, k) is given with G = (V,E), and a vertex v ∈ V is fixed. We first start with a few basic
properties and then we build on them an efficient branching algorithm for ClusterVD, if we know
there exists a solution not containing v.

3.1 Basic properties

Lemma 3. Let G be a connected graph which is not a clique. Then, for every v ∈ V (G), there is a P3

containing v.

Proof. Consider N(v). If there exist vertices u,w ∈ N(v) such that uw /∈ E(G) then we have a P3

(u, v, w). Otherwise, since N [v] induces a clique, we must have w ∈ N(N [v]) such that uw ∈ E(G) for
some u ∈ N(v). Thus we have a P3, (v, u, w) involving v.

Lemma 4. Let S be a modulator such that v /∈ S. Then S contains a vertex cover of Hv.

Proof. Observe that if S is a modulator, then G \ S does not contain a P3. By Lemma 2, if v /∈ S, no
edge may remain in Hv \ S and the lemma follows.

Lemma 5. Let X be a vertex cover of Hv. Then, in G \X, the connected component of v is a clique.

Proof. Suppose the connected component of v in G \ X is not a clique. Then by Lemma 3, there is a
P3 involving v. Such a P3 is also present in G. However, by Lemma 2, as X is a vertex cover of Hv, X
intersects such a P3, a contradiction.

Lemma 6. Let S be a modulator such that v /∈ S. Denote by X the set S ∩ V (Hv). Let Y be a vertex

cover of Hv. Suppose that X ∩N2 ⊆ Y ∩N2. Then T , (S \X) ∪ Y is also a modulator.

Proof. Since Y (and hence, T ∩ V (Hv)) is a vertex cover of Hv and v /∈ T , we know by Lemma 5 that
the connected component of v in G \ T is a clique. If T is not a modulator, then there must be a P3

contained in Z \ T , where Z = V \ ({v} ∪N1). But since S ∩ Z ⊆ T ∩ Z, G \ S would also contain such
a P3.

For vertex covers of Hv, X and Y , we say X dominates Y if |X | ≤ |Y |, X ∩ N2 ⊇ Y ∩ N2 and
at least one of these inequalities is sharp. Two vertex covers X and Y are said to be equivalent if
X ∩N2 = Y ∩N2 and |X ∩N1| = |Y ∩N1|. We note that the first aforementioned relation is transitive
and strongly anti-symmetric, whereas the second is an equivalence relation.

As a corollary of Lemma 6, we have:
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Corollary 7. Let S be a modulator such that v /∈ S. Suppose Y is a vertex cover of Hv which either

dominates or is equivalent to the vertex cover X = S∩V (Hv). Then T , (S \X)∪Y is also a modulator

with |T | ≤ |S|.

3.2 Branching algorithm

We are now ready to develop a branching algorithm that guesses the ‘correct’ vertex cover of Hv. Recall
that we are working in the setting where we look for a solution to ClusterVD on (G, k) not containing
v, thus, by Lemma 4, containing a vertex cover of Hv. Our goal is to branch into a number of subcases,
in each subcase picking a vertex cover of Hv. By Corollary 7, our branching algorithm, to be correct,
needs only to generate at least one element from each equivalence class of the ‘equivalent’ relation, among
maximal elements in the ‘dominate’ relation.

The algorithm consists of a number of branching steps; in each subcase of each step we take a number
of vertices into the constructed vertex cover of Hv and, consequently, into the constructed solution to
ClusterVD on G. At any point, the first applicable rule is applied.

First, we disregard isolated vertices in Hv. Second, we take care of large-degree vertices.

Rule 1. If there is a vertex u ∈ V (Hv) with degree at least 3 in Hv, include either u or NHv
(u) into the

vertex cover. That is, use the branching step (u,NHv
(u)).

Note that Rule 1 yields a branching vector (1, d), where d ≥ 3 is the degree of u in Hv.
Henceforth, we can assume that vertices have degree 1 or 2 in Hv. Assume there exists u ∈ N1 of

degree 1, with uw ∈ E(Hv). Moreover, assume there exists a solution S containing u. If w ∈ S, then,
by Lemma 6, S \ {u} is also a modulator, a contradiction. Otherwise, if w ∈ N2, then (S \ {u}) ∪ {w}
dominates S. Finally, if w ∈ N1, then (S \ {u}) ∪ {w} is equivalent to S. Hence, we infer the following
greedy rule.

Rule 2. If there is a vertex u ∈ N1 of degree 1 in Hv, include NHv
(u) into the vertex cover. That is,

use the branching step (NHv
(u)).

Now we assume vertices in N1 are of degree exactly 2 in Hv. Suppose we have vertices u,w ∈ N1 with
uw ∈ E(Hv). We would like to branch on u as in Rule 1, including either u or NHv

(u) into the vertex
cover. However, note that in the case where u is deleted, Rule 2 is triggered on w and consequently the
other neighbour of w is deleted. Hence, we infer the following rule.

Rule 3. If there are vertices u,w ∈ N1, uw ∈ E(Hv) then include either NHv
(w) or NHv

(u) into the
vertex cover. That is, use the branching step (NHv

(w), NHv
(u)).

Note that Rule 3 yields the branching vector (2, 2).
We are left with the case where the maximum degree of Hv is 2, there are no edges with both

endpoints in N1, and no vertices of degree one in N1. Hence Hv must be a collection of even cycles and
paths (recall that N2 is an independent set in Hv). On each such cycle C, of 2l vertices, the vertices of
N1 and N2 alternate. Note that we must use at least l vertices for the vertex cover of C. By Lemma 6
it is optimal to greedily select the l vertices in C ∩N2.

Rule 4. If there is an even cycle C in Hv with every second vertex in N2, include C ∩N2 into the vertex
cover. That is, use the branching step (C ∩N2).

For an even path P of length 2l, we have two choices. If we are allowed to use l + 1 vertices in the
vertex cover of P , then, by Lemma 6, we may greedily take P ∩N2. If we may use only l vertices, the
minimum possible number, we need to choose P ∩N1, as it is the unique vertex cover of size l of such
path. Hence, we have an (l, l+ 1) branch with our last rule.

Rule 5. Take the longest possible even path P in Hv and either include P ∩ N1 or P ∩ N2 into the
vertex cover. That is, use the branching step (P ∩N1, P ∩N2).

In Rule 5, we pick the longest possible path to avoid the branching vector (1, 2) as long as possible;
this is the worst branching vector in the algorithm of this section.

When we are forced to use the (1, 2) branch, we exploit a very specific structure of Hv. A seagull is
a connected component of Hv that is isomorphic to a P3 with middle vertex in N1 and endpoints in N2.
The graph Hv is called an s-skein if it is a disjoint union of s seagulls and some isolated vertices. The
following observation is straightforward from the above analysis.
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Lemma 8. If the algorithm of Section 3.2 may only use a branch with the branching vector (1, 2), then
Hv is an s-skein for some s ≥ 1.

We conclude this section with a note on how fast a single branching step may be executed. Note that,
as Hv contains parts of the complement of G, it may have size superlinear in the size of G. However, it is
easy to see that the following oracle procedure suffices to find and execute the lowest-numbered available
branching step in the graph Hv.

Lemma 9. Given a designated vertex v ∈ V , one can in linear time either compute a vertex w of degree

at least 3 in Hv, together with its neighbourhood in Hv, or explicitely construct the graph Hv.

Proof. First, mark vertices of N1 and N2. Second, for each vertex of G compute its number of neighbours
in N1 and N2. This information, together with |N1|, suffices to compute degrees of vertices in Hv. Hence,
we may identify a vertex of degree at least 3 in Hv, if it exists. For such a vertex w, computing NHv

(w)
takes time linear in the size of G. If no such vertex w exists, the complement of G[N1] has size linear in
|N1| and we may construct Hv in linear time in a straightforward manner.

4 Algorithm

In this section we show our algorithm for ClusterVD, proving Theorem 1. The algorithm is a typical
branching algorithm, where at each step we choose one branching rule and apply it. In each subcase,
a number of vertices is deleted, and the parameter k drops by this number. If k becomes negative, the
current subcase is terminated with a negative answer. On the other hand, if k is nonnegative and G is
a cluster graph, the vertices deleted in this subcase form a modulator of size at most k.

4.1 Preprocessing

At each step, we first preprocess simple connected components of G.

Lemma 10. In linear time, we can for each connected component C of G:

1. conclude that C is a clique; or

2. conclude that C is not a clique, but identify a vertex w such that C \ {w} is a cluster graph; or

3. conclude that none of the above holds.

Proof. On each connected component C, we perform a depth-first search. At every stage, we ensure that
the set of already marked vertices induces a clique.

When we enter a new vertex, w, adjacent to a marked vertex v, we attempt to maintain this invariant.
We check if the number of marked vertices is equal to the number neighbours of w which are marked;
if so then the new vertex w is marked. Since w is adjacent to every marked vertex, the set of marked
vertices remains a clique. Otherwise, there is a marked vertex u such that uw /∈ E(G), and we may
discover it by iterating once again over edges incident to w. In this case, we have discovered a P3 (u, v, w)
and C is not a clique. At least one of u, v, w must be deleted to make C into a cluster graph. We delete
each one of them, and repeat the algorithm (without further recursion) to check if the remaining graph
is a cluster graph. If one of the three possibilities returns a cluster graph, then (2) holds. Otherwise, (3)
holds.

If we have marked all vertices in a component C while maintaining the invariant that marked vertices
form a clique, then the current component C is a clique.

For each connected component C that is a clique, we disregard C. For each connected component C
that is not a clique, but C \ {w} is a cluster graph for some w, we may greedily delete w from G: we
need to delete at least one vertex from C, and w hits all P3s in C. Thus, henceforth we assume that
for each connected component C of G and for each v ∈ V (C), C \ {v} is not a cluster graph. In other
words, we assume that we need to delete at least two vertices to solve each connected component of G.

5



4.2 Studying Hv

Once preprocessing is no longer possible, we fix an arbitrary vertex v in G, and let C be its connected
component. Our goal is to ‘resolve’ the neighbourhood of v: either decide to delete v, or guess the
‘correct’ vertex cover of Hv. However, if we implement this in a straightforward manner, we do not get
the time bound promised by Theorem 1. To achieve this bound, we carefully study the cases where Hv

has small vertex cover or has special structure, and discover some possible greedy decisions that can be
made.

We would like to make decision depending on the size of the minimum vertex cover of Hv. As C is
not a clique, by Lemma 3 Hv contains at least one edge, thus MinVC(G) ≥ 1. We first note that we can
make a distinction on small vertex covers of G in linear time.

Lemma 11. In linear time, we can determine whether Hv has minimum vertex cover of size 1, of size

2, or of size at least 3. Moreover, in the first two cases we can find the vertex cover in the same time

bound.

Proof. We use Lemma 9 on to find, in linear time, a vertex w with degree at least 3, or generate Hv

explicitly.
In the latter case, Hv has vertices of degree at most 2. Then, Hv consists of paths and cycles and we

can find the size of the minimum vertex cover in linear time. We use the fact that paths with l vertices
require at least ⌊ l

2
⌋ vertices, and cycles with l vertices require ⌈ l

2
⌉ vertices in the vertex cover.

If we find a vertex w of degree at least 3 in Hv, then w must be in any vertex cover of size at most
2. Otherwise, N(w) must be in the vertex cover but |N(w)| ≥ 3. We proceed to delete w and restart
the algorithm of Lemma 9 on the remaining graph to check if it has a vertex cover of size 0 or 1. We
perform at most 2 such restarts. Finally, if we do not find a vertex cover of size at most 2, it must be
the case that the minimum vertex cover contains at least 3 vertices.

We now make a few important observations about Hv that will enable us to do some greedy choices
in the future.

Lemma 12. Suppose X is a vertex cover of Hv. Then there is a solution S such that either v /∈ S or

|X \ S| ≥ 2.

Proof. Suppose S is a solution such that v ∈ S and |X \ S| ≤ 1. Consider T , (S \ {v}) ∪X . Clearly,
|T | ≤ |S|. Since T contains X , a vertex cover, by Lemma 5, the connected component of v in G \ T is a
clique. Thus, there is no P3 containing v. Since, any P3 in G \ T which does not include v must also be
contained in G \ S, contradicting the fact that S is a modulator, we obtain that T is also a modulator.
Hence, T is a solution.

Corollary 13. If MinVC(Hv) = 1 then there is a solution S not containing v.

Proof. Let X be a minimum vertex cover of Hv, and let S be a solution promised by Lemma 12 for the
vertex cover X . Then v /∈ S, as |X \ S| ≤ |X | = 1.

Lemma 14. Suppose that C \{v} is not a cluster graph, where C is the connected component containing

v. Suppose further that X = {w1, w2} is a minimum vertex cover of Hv. Then in G \ {v}, either the

connected component containing w1 is not a clique, or the connected component containing w2 is not a

clique.

Proof. Assume the contrary. Consider a component Ĉ of C \ {v} which is not a clique. Since v must be

adjacent to each connected component of C \ {v}, Ĉ ∩N1 must be non-empty. For any w ∈ Ĉ ∩N1, we
have that w1, w2 6= w and ww1, ww2 /∈ E, since otherwise the result follows. If uw ∈ E with u ∈ N2,
then, as {w1, w2} is a vertex cover we must have u = w1 or u = w2, We would then have w1 or w2

contained in a non-clique Ĉ, contradicting our assumption. Hence uw ∈ E ⇒ u ∈ N1. Thus Ĉ ⊆ N1.
As w1 and w2 are not contained in Ĉ and they cover all edges in Hv, Ĉ must be an independent set in
Hv. In G \ {v}, therefore, Ĉ must be a clique, a contradiction.

Lemma 15. Let v ∈ V . Suppose that Hv is an s-skein. Then there is a solution S such that v /∈ S.
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Proof. Let Hv consist of seaguls (x1, y1, z1), (x2, y2, z2), . . . , (xs, ys, zs). That is, the middle vertices yi’s
are in N1, while the endpoints xi’s and zi’s are in N2. If s = 1, {y1} is a vertex cover of Hv and
Corollary 13 yields the result. Henceforth, we assume s ≥ 2.

As X consider the set N1 with all the vertices isolated in Hv removed. Clearly X is a vertex cover
of Hv, thus we may use X as in Lemma 12 and obtain a solution S. If v /∈ S we are done, so let us
assume |X \ S| ≥ 2. Take arbitrary i such that yi ∈ X \ S. As |X \ S| ≥ 2, we may pick another j 6= i,
yj ∈ X \ S. The crucial observation from the definition of Hv is that (yj , yi, xi) and (yj , yi, zi) are P3s
in G. As yi, yj /∈ S, we have xi, zi ∈ S. Hence, since the choice of i was arbitrary, we infer that for each
1 ≤ i ≤ s either yi ∈ S or xi, zi ∈ S, and, consequently, S contains a vertex cover of Hv. By Lemma 5,
S \ {v} is also a modulator in G, a contradiction.

4.3 Branching steps

We are now ready to present the branching steps of our algorithm. We assume the preprocessing
(Lemma 10) is done and a vertex v is picked. We first run the algorithm of Lemma 11 to determine if
Hv has a small minimum vertex cover. Second, we run the algorithm of Lemma 9 to check if Hv is not
an s-skein for some s.

We consider the following cases.

1. MinVC(Hv) = 1 or Hv is an s-skein for some s. Then, by Corollary 13 and Lemma 15, we know
there exists a solution not containing v. Hence, we run the algorithm of Section 3.2 on Hv.

2. MinVC(Hv) = 2 and Hv is not a 2-skein. Assume the application of Lemma 11 returned a vertex
cover X = {w1, w2} of Hv. By Lemma 12, we may branch into the following two subcases: in the
first we look for solutions containing v and disjoint with X , and in the second, for solutions not
containing v.

In the first case, we first delete v from the graph and decrease k by one. Then we check whether the
connected component containing w1 or w2 is not a clique; By Lemma 14, for some w ∈ {w1, w2},
the connected component of G\{v} containing w is not a clique; finding such w clearly takes linear
time. We invoke the algorithm of Section 3.2 on Hw.

In the second case, we invoke the algorithm of Section 3.2 on Hv.

3. MinVC(Hv) ≥ 3 and Hv is not an s-skein for some s ≥ 3. We branch into two cases: we look
for a solution containing v or not containing v. In the first branch, we simply delete v and decrease
k by one. In the second branch, we invoke the algorithm of Section 3.2 on Hv.

4.4 Complexity analysis

In the previous discussion we have argued that invoking each branching step takes linear time. As in
each branch we decrease the parameter k by at least one, the depth of the recursion is at most k. In this
section we analyse branching vectors occuring in our algorithm. To finish the proof of Theorem 1 we
need to show that the largest positive root of the equation 1 =

∑r
i=1

x−ai among all possible branching
vectors (a1, a2, . . . , ar) is strictly less than 1.9102.

As the number of resulting branching vectors in the analysis is rather large, we use a Python script
for automated analysis (attached in the appendix). The main reason for a large number of branching
vectors is that we need to analyse branchings on the graph Hv in case when we consider v not to be
included in the vertex cover. Let us now proceed with formal arguments.

In a few places, the algorithm of Section 3.2 is invoked on the graphHv and we know that MinVC(Hv) ≥
h for some integer h. Consider the branching tree T of this algorithm. For a node x ∈ V (T), the depth

of x is the number of vertices of Hv deleted on the path from x to the root. We mark some nodes of T.
Each node of depth less than h is marked. Moreover, if a node x is of depth d < h and the branching
step at node x has branching vector (1, 2), we infer that graph Hv at this node is an s-skein for some
s ≥ h− d, all descendants of x in V (T) are also nodes with branching steps with vectors (1, 2). In this
case, we mark all descendants of x that are within distance (in T) less than h− d. Note that in this way
we may mark some descendants of x of depth equal or larger than h.

We split the analysis of an application of the algorithm of Section 3.2 into two phases: the first one
contains all branching steps performed on marked nodes, and the second on the remaining nodes. In the
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second phase, we simply observe that each branching step has branching vector not worse than (1, 2). In
the first phase, we aim to write a single branching vector summarizing the phase, so that with its help
we can balance the loss from other branches when v is deleted from the graph.

The main property of the marked nodes in T is that their existence is granted by the assumption
MinVC(Hv) ≥ h. That is, each leaf of T has depth at least h, and, if at some node x of depth d < h the
graph Hv is an s-skein, we infer that s ≥ h − d (as the size of minimum vertex cover of an s-skein is
s) and the algorithm performs s independent branching steps with branching vectors (1, 2) in this case.
Overall, no leaf of T is marked.

To analyse such branchings for h = 2 and h = 3 we employ the Python script, supplied in the
appendix. The procedure branch Hv generates all possible branching vectors for the first branch, assum-
ing the algorithm of Section 3.2 is allowed to pick branching vectors (1), (1, 3), (2, 2) or (1, 2) (option
allow skein enables/disables the use of the (1, 2) vector in the first branch). Note that all other vec-
tors described in Section 3.2 may be simulated by applying a number of vectors (1) after one of the
aforementioned branching vectors.

Let us now move to the analysis of the algorithm of Section 4.3.
In Case 1 the algorithm of Section 3.2 performs branchings with vectors not worse than (1, 2).
Consider now Case 2. If v is deleted, we apply the algorithm of Section 3.2 to Hw, yielding at least

one branching step (as the connected component with w is not a clique). Hence, after this first branching
step, we have either one subcase with parameter drop at least 2, or two subcases with parameter drops
at least 2 and at least 3. Clearly, the second case yields worse branching vector.

If v is not deleted, the algorithm of Section 3.2 is applied to Hv. The script invokes the procedure
branch Hv on h = 2 and allow skein=False to obtain a list of possible branching vectors. For each
such vector, we append entries (2, 3) from the subcase when v is deleted.

Case 3 is analysed analogously. The script invokes the procedure branch Hv on h = 3 and allow skein=False

to obtain a list of possible branching vectors. For each such vector, we append the entry (1) from the
subcase when v is deleted.

We infer that the largest root of the equation 1 =
∑r

i=1
x−ai occurs for branching vector (1, 3, 3, 4, 4, 5)

and is less than 1.9102. This branching vector corresponds to Case 3 and the algorithm of Section 3.2,
invoked on Hv, first performs a branching step with the vector (1, 3) and in the branch with 1 deleted
vertex, finds Hv to be a 2-skein and performs two independent branching steps with vectors (1, 2).

This analysis concludes the proof of Theorem 1.

5 Conclusions and open problems

We have presented a new branching algorithm for Cluster Vertex Deletion. We hope our work will
trigger a race for faster FPT algorithms for ClusterVD, as it was in the case of the famous Vertex

Cover problem.
Repeating after Hüffner et al. [23], we would like to re-pose here the question for a linear vertex-

kernel for ClusterVD. As ClusterVD is a special case of the 3-Hitting Set problem, it admits
an O(k2)-vertex kernel in the unweighted case and an O(k3)-vertex kernel in the weighted one [1, 2].
However, Cluster Editing is known to admit a much smaller 2k-vertex kernel, so there is a hope for
a similar result for ClusterVD.
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[23] F. Hüffner, C. Komusiewicz, H. Moser, and R. Niedermeier. Fixed-parameter algorithms for cluster vertex
deletion. Theory Comput. Syst., 47(1):196–217, 2010.

[24] C. Komusiewicz. Parameterized Algorithmics for Network Analysis: Cluster-
ing & Querying. PhD thesis, Technische Universität Berlin, 2011. Available at
http://fpt.akt.tu-berlin.de/publications/diss-komusiewicz.pdf.

[25] C. Komusiewicz and J. Uhlmann. Alternative parameterizations for cluster editing. In Proceedings of the
37th International Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM
2011), volume 6543 of Lecture Notes in Computer Science, pages 344–355. Springer, 2011.

[26] F. Protti, M. D. da Silva, and J. L. Szwarcfiter. Applying modular decomposition to parameterized cluster
editing problems. Theory of Computing Systems, 44(1):91–104, 2009.

[27] B. A. Reed, K. Smith, and A. Vetta. Finding odd cycle transversals. Oper. Res. Lett., 32(4):299–301, 2004.

[28] R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification problems. Discrete Applied Mathematics,
144(1-2):173–182, 2004.

[29] M. Wahlström. Algorithms, measures, and upper bounds for satisfiability and related prob-
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Python script automating complexity analysis1

import scipy.optimize

def value(vector):

"""compute the value of a branching vector"""
def h(x):

return sum([x**(-v) for v in vector])-1
return scipy.optimize.brenth(h,1, 100)

def join(first, then):

"""peform ’then’ in each branch after the execution of ’first’ """
return [x+y for x in first for y in then]

def add(a, vector):

"""add a to each element of a vector"""
return join([a], vector)

golden_branch = [1,2] # golden-ratio branch, worst branch in Hv

def skein_vector(s):
"""returns branching vector from s-skein"""

if s == 0:
return [0]

else:

return join(skein_vector(s-1), golden_branch)

Hv_branches = dict()

def branch_Hv(h, allow_skein=True):
"""return list of possible branching vectors on Hv, where each subcase

deletes at least h vertices; if allow_skein=False, ignore the case when
Hv is a skein"""

if h <= 0:
return [[0]]

# Memoize for speed-up

if Hv_branches.has_key((h, allow_skein)):
return Hv_branches[(h, allow_skein)]

res = []
# If skein is allowed, add appriopriate vector.
if allow_skein:

res.append(skein_vector(h))
# Greedy step.

# Can be applied multiple times to simulate larger drop.
res += [add(1, v) for v in branch_Hv(h-1)]

# Rule 1: (1,3) branch.
# Branches (1,d) for d>3 may be simulated by subsequent greedy steps
res += [add(1, v1) + add(3, v2) for v1 in branch_Hv(h-1) for v2 in branch_Hv(h-3)]

# Rule 3: (2,2) branch
res += [add(2, v1) + add(2, v2) for v1 in branch_Hv(h-2) for v2 in branch_Hv(h-2)]

# Rule 5, if Hv is not a skein, yields (2,3) branch which can be simulated
# by (2,2) branch + greedy step in one branch, so we omit it here.
Hv_branches[(h, allow_skein)] = res

return res

vectors = [] # all branching vectors

# (1,2) vector from standard branching on Hv
vectors.append(golden_branch)

# Case: MinVC(Hv) = 2, Hv is not a 2-skein

vectors += [add(1, golden_branch) + v for v in branch_Hv(2, allow_skein=False)]

# Case: MinVC(Hv) >= 3, Hv is not a skein

vectors += [[1] + v for v in branch_Hv(3, allow_skein=False)]

for v in vectors:
print ("%.11f : " % value(v)), v

print "Largest root: %.11f" % max([value(v) for v in vectors])

1 Also available at www.mimuw.edu.pl/~malcin/research/cvd
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