Skip to main content

Constant Rounds Almost Linear Complexity Multi-party Computation for Prefix Sum

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8469))

Abstract

One of research goals on multi-party computation (MPC) is to achieve both perfectly secure and efficient protocols for basic functions or operations (e.g., equality, comparison, bit decomposition, and modular exponentiation). Recently, for many basic operations, MPC protocols with constant rounds and linear communication cost (in the input size) are proposed. In this paper, we propose the first MPC protocol for prefix sum in general semigroups with constant 2d + 2dc rounds and almost linear O(l log*(c) l) communication complexity, where c is a constant, d is the round complexity of subroutine protocol used in the MPC protocol, l is the input size, and log*(c) is the iterated logarithm function. The prefix sum protocol can be seen as a generalization of the postfix comparison protocol proposed by Toft. Moreover, as an application of the prefix sum protocol, we construct the first bit addition protocol with constant rounds and almost linear communication complexity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bar-Ilan, J., Beaver, D.: Non-Cryptographic Fault-Tolerant Computing in Constant Number of Rounds of Interaction. In: PODC 1989, pp. 201–209 (1989)

    Google Scholar 

  2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation. In: STOC 1988, pp. 1–10 (1988)

    Google Scholar 

  3. Blelloch, G.E.: Prefix sums and their applications. In: Reif, J.H. (ed.) Synthesis of Parallel Algorithms. Morgan Kaufmann (1991)

    Google Scholar 

  4. Chandra, A.K., Fortune, S., Lipton, R.J.: Unbounded fan-in circuits and associative functions. In: STOC 1983, pp. 52–60 (1983)

    Google Scholar 

  5. Chaum, D., Crépeau, C., Damgård, I.: Multiparty Unconditionally Secure Protocols (Extended Abstract). In: STOC 1988, pp. 11–19 (1988)

    Google Scholar 

  6. Damgård, I.B., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally Secure Constant-Rounds Multi-party Computation for Equality, Comparison, Bits and Exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game or A Completeness Theorem for Protocols with Honest Majority. In: STOC 1987, pp. 218–229 (1987)

    Google Scholar 

  8. Ning, C., Xu, Q.: Multiparty Computation for Modulo Reduction without Bit-Decomposition and a Generalization to Bit-Decomposition. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 483–500. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Ning, C., Xu, Q.: Constant-Rounds, Linear Multi-party Computation for Exponentiation and Modulo Reduction with Perfect Security. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 572–589. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Nishide, T., Ohta, K.: Multiparty Computation for Interval, Equality, and Comparison Without Bit-Decomposition Protocol. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 343–360. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Toft, T.: Primitives and Applications for Multi-party Computation. PhD thesis, University of Aarhus (2007)

    Google Scholar 

  12. Toft, T.: Constant-Rounds, Almost-Linear Bit-Decomposition of Secret Shared Values. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 357–371. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Yao, A.C.-C.: Protocols for Secure Computations (Extended Abstract). In: FOCS 1982, pp. 160–164 (1982)

    Google Scholar 

  14. Yao, A.C.-C.: How to Generate and Exchange Secrets (Extended Abstract). In: FOCS 1986, pp. 162–167 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ohara, K., Ohta, K., Suzuki, K., Yoneyama, K. (2014). Constant Rounds Almost Linear Complexity Multi-party Computation for Prefix Sum. In: Pointcheval, D., Vergnaud, D. (eds) Progress in Cryptology – AFRICACRYPT 2014. AFRICACRYPT 2014. Lecture Notes in Computer Science, vol 8469. Springer, Cham. https://doi.org/10.1007/978-3-319-06734-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06734-6_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06733-9

  • Online ISBN: 978-3-319-06734-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics