
Privacy by Design:
From Technologies to Architectures

(Position Paper)?

Thibaud Antignac and Daniel Le Métayer

Inria, Université de Lyon
thibaud.antignac@inria.fr/daniel.le-metayer@inria.fr

Abstract. Existing work on privacy by design mostly focus on tech-
nologies rather than methodologies and on components rather than ar-
chitectures. In this paper, we advocate the idea that privacy by design
should also be addressed at the architectural level and be associated with
suitable methodologies. Among other benefits, architectural descriptions
enable a more systematic exploration of the design space. In addition,
because privacy is intrinsically a complex notion that can be in tension
with other requirements, we believe that formal methods should play a
key role in this area. After presenting our position, we provide some hints
on how our approach can turn into practice based on ongoing work on a
privacy by design environment.

1 Introduction

Privacy by design is often held up as a necessary step to improve privacy pro-
tection in the digital society [32,50]. It will even become a legal obligation in the
European Community1 if the current draft of Data Protection Regulation [15]
eventually gets adopted. The fact that future regulatory frameworks promote
or impose privacy by design is definitely a positive step but their adoption will
take time, they are unlikely to be applicable in all regions of the world and
the interpretation of the principle itself may vary greatly2 among jurisdictions.
Therefore, the possible adoption of privacy by design laws should obviously not
be seen as the end of the story: the extent to which a true privacy by design will
actually turn to reality will also depend on other factors such as social demand,
economic conditions and of course the availability of technical solutions. Even
though all these dimensions are essential and all possible means should be used

? The final publication is available at link.springer.com (http://link.springer.com/
chapter/10.1007/978-3-319-06749-0_1).

1 And also “a prerequisite for public procurement tenders according to the Directive
of the European Parliament and of the Council on public procurement as well as
according to the Directive of the European Parliament and of the Council on pro-
curement by entities operating in the water, energy, transport and postal services
sector.”

2 And it is obviously out of question to define it very precisely in a legal document.

ar
X

iv
:1

41
0.

00
30

v1
 [

cs
.C

R
]

 3
0

Se
p

20
14

http://link.springer.com/chapter/10.1007/978-3-319-06749-0_1
http://link.springer.com/chapter/10.1007/978-3-319-06749-0_1

to foster the adoption of privacy by design, we choose to focus on the technical
issues in this paper.

As discussed by several authors [12,21,28,19], a range of privacy enhancing
technologies (PETs) are now available, which can provide strong privacy guar-
antees in a variety of contexts. Even if more research on PETs will always be
needed, a question that arises at this stage is how to favor the uptake of these
technologies. The position that we want to promote and bring forward for dis-
cussion in this paper is threefold:

1. Existing work in this area mostly focus on technologies rather than method-
ologies and on components rather than architectures. We advocate the idea
that privacy by design should also be addressed at the architectural level
and be associated with suitable methodologies. Among other benefits, ar-
chitectural descriptions enable a more systematic exploration of the design
space.

2. Because privacy is intrinsically a complex notion, which, in addition, often
turns out to be (or seems to be) in tension with other requirements, formal
methods should play a key role in this area. Among other benefits, formal
descriptions make it possible to define precisely the concepts at hand and the
guarantees provided by a solution, to reason about the design choices and
ultimately to justify them rigorously, hence contributing also to accountabil-
ity.

3. Because designers are generally not experts in formal methods, dedicated
frameworks and user-friendly interfaces should be designed to hide the com-
plexities of the models and make them usable in this context. Such frame-
works should allow designers to express their requirements and to interact
with the system to refine or adapt them until a satisfactory architecture is
obtained.

The paper is organized as follows: We present our position and discuss it
in more detail in Section 2. In order to illustrate this position, we proceed in
Section 3 with an example of formal privacy logic which is applied in Section 4
to the design of smart metering systems. Section 5 discusses related work and
Section 6 outlines directions for further research.

2 Position

A wide array of techniques have been proposed or applied to the definition of new
PETs during the last decades [11,18,28,52], including zero-knowledge proofs, se-
cure multi-party computation, homomorphic encryption, commitments, private
information retrieval (PIR), anonymous credentials, anonymous communication
channels, or trusted platform modules (TPM). These PETs have been used to
provide strong privacy guarantees in a variety of contexts such as smart meter-
ing [17,33,53], electronic traffic pricing [4,27,49]), ubiquitous computing [32] or
location based services [9,29,30]. Even if more techniques will always be needed
to defeat new attacks in this eternal game between cops and robbers, there is

now a need for serious thinking about the conditions for the adoption of exist-
ing PETs by industry. This reflection has started with convincing cases for the
development of appropriate methodologies [12,21,58] or development tools [28]
for privacy by design. In this paper, we pursue this line of thought in arguing
that privacy by design should also (and firstly) be considered at the architecture
level and should be supported by appropriate reasoning tools relying on formal
models.

Let us consider the case for architectures first. Many definitions of archi-
tectures have been proposed in the literature. In this paper, we will adopt a
definition inspired by [6]3: The architecture of a system is the set of structures
needed to reason about the system, which comprise software and hardware ele-
ments, relations among them and properties of both. The atomic components of
an architecture are coarse-grain entities such as modules, components or con-
nectors. In the context of privacy, as suggested in Section 3, the components
are typically the PETs themselves and the purpose of the architecture is their
combination to achieve the privacy requirements of the system. Therefore, an
architecture is foremost an abstraction and “this abstraction is essential to tam-
ing the complexity of a system – we simply cannot, and do not want to, deal
with all the complexity all the time” [6].

Most of the reasons identified in [6] to explain why architectures matter are
very relevant for privacy by design:

– The architecture is a carrier of the earliest and hence most fundamental
hardest-to-change design decisions: overlooking architectural choices may
thus seriously hamper the integration of privacy requirements in the design
of a system.

– Architectures channel the creativity of developers, reducing design and sys-
tem complexity: because they make it possible to abstract away unnecessary
details and to focus on critical issues, architectures can help privacy design-
ers reason about privacy requirements and the combination of PETs which
could be used to meet them.

– A documented architecture enhances communication among stakeholders:
documenting the design choices is especially important in the context of
privacy to meet the obligations arising from Privacy Impact Assessments
(PIA) and accountability (which are emphasized in the Data Protection
Regulation draft [15]).

– An architecture can be created as a transferable, reusable model: architec-
tures can therefore play a key role to increase the reusability of privacy
friendly solutions, which could lead to significant cost reductions and better
dissemination of knowledge and expertise among developers. Being able to
go beyond case-by-case strategies and to factorize efforts is a key step for
privacy by design to move from craft to industry.

If the choice is made to work at the architectural level, the next question
to be answered is: “how to define, represent and use architectures ?” In prac-

3 This definition is a generalization (to system architectures) of the definition of soft-
ware architectures proposed in [6].

tice, architectures are often described in a pictorial way, using different kinds of
graphs with legends defining the meaning of nodes and vertices, or semi-formal
representations such as UML diagrams (class diagrams, use case diagrams, se-
quence diagrams, communication diagrams, etc.). The second point we want
to make here is that, even though such pictorial representations can be very
useful (especially when their use is standardized), reasoning about privacy re-
quirements is such a subtle and complex issue that the architecture language
used for this purpose must be defined in a formal way. By formal, we mean that
the properties of the architectures must be defined in a mathematical logic and
reasoning about these properties must be supported by a formal proof or veri-
fication system. Reasoning about privacy is complex for different reasons: first,
it is a multi-faceted notion stemming from a variety of principles which are not
defined very precisely. It is therefore of prime importance to circumscribe the
problem, to define precisely the aspects of privacy which are taken into account
and how they are interpreted in the design choices. The fact that not all aspects
of privacy are susceptible to formalization is not a daunting obstacle to the use
of formal methods in this context: the key point is to build appropriate models
for the aspects of privacy (such as data minimization) which are prone to for-
malization and involve complex reasoning. Another source of complexity in this
context is the fact that privacy often seems to conflict with other requirements
such as guarantees of authenticity or correctness, efficiency, usability, etc. To
summarize, formal methods should:

– Make it possible to define precisely the concepts at hand (requirements,
assumptions, guarantees, etc.).

– Help designers to explore the design space and to reason about the possible
choices. Indeed, privacy by design is often a matter of choice [36]: multiple
options are generally available to achieve a given set of functionalities, some
of them being privacy friendly, others less, and a major challenge for the
designer is to understand all these options, their strengths and weaknesses.

– Provide a documented and rigorous justification of the design choices, which
would be a significant contribution to the accountability requirement. Ac-
countability is defined in Article 22 of the current draft of the future Data
Protection Regulation [15] as the following obligation for data collectors:
“The controller shall adopt appropriate policies and implement appropriate
and demonstrable technical and organizational measures to ensure and be
able to demonstrate in a transparent manner that the processing of personal
data is performed in compliance with this Regulation...”

It should be clear however, that designers are generally not experts in formal
methods and appropriate tools and user-friendly interfaces have to be made
available to hide the complexities of the models. Such frameworks should allow
designers to express their requirements, to get understandable representations
(or views) of the architectural options, to navigate in these views, and to refine
or adapt them until a satisfactory architecture is obtained.

Considering all these requirements, it should be clear that specific, dedicated
formal frameworks have to be devised to support privacy by design. To make the

discussion more concrete, we provide in the following sections some hints about
such a framework and its application to a real case study.

3 Example of Formal Model

As an illustration of the position advocated in the previous section, we present
now a subset of a privacy logic to reason about two key properties: the minimiza-
tion (of the collection of personal data) and the accuracy (of the computations)
. Indeed, the tension between data minimization and accuracy is one of the del-
icate issues to be solved in many systems involving personal data. For example,
electronic traffic payment systems [4,27,49] have to guarantee both the correct-
ness of the computation of the fee and the limitation of the collection of location
data; smart metering systems [17,33,53] have also to ensure the correct computa-
tions of the fees and to limit the collection of consumption data; recommendation
systems [42] need to achieve both the accuracy of the recommendations while
minimizing the disclosure of personal preferences; electric vehicle charging sys-
tems [22] also need to guarantee the accuracy of the bills and the protection of
the location information of the vehicles.

3.1 Excerpt of a Privacy Epistemic Logic

Because privacy is closely connected with the notion of knowledge, epistemic
logics form an ideal basis to reason about privacy properties. Epistemic logics [16]
are a family of modal logics using a knowledge modality usually denoted by
Ki (φ) to express the fact that agent i knows the property φ. However standard
epistemic logics based on possible worlds semantics suffer from a weakness which
makes them unsuitable in the context of privacy: this problem is often referred
to as “logical omniscience” [20]. It stems from the fact that agents know all the
logical consequences of their knowledge (because these consequences hold in all
possible worlds). An undesirable outcome of logical omniscience would be that,
for example, an agent knowing the commitment C (v) (or hash) of a value v
would also know v (or the possible values of v). This is obviously not the intent
in a formal model of privacy where commitments are precisely used to hide the
original values to the recipients. This issue is related to the fact that standard
epistemic logics do not account for limitations of computational power.

Therefore it is necessary to define dedicated epistemic logics to deal with
different aspects of privacy and to model the variety of notions and techniques
at hand (e.g. knowledge, zero-knowledge proof, trust, etc.). Let us consider for
the sake of illustration the following excerpt of a privacy epistemic logic:

φ ::=φ0 (1)

| ¬φ (2)

|φ ∧ φ′ (3)

|Ki (φ0) (4)

|Xi (φ0) (5)

φ0 ::= receivei,j (x) (6)

| receivei,j (prim) (7)

| trusti,j (8)

| computei (x = t) (9)

| checki (eq) (10)

|hasi (x) (11)

|prim | p | φ0 ∧ φ′0 (12)

prim ::= proofi,j (p) | att | prim ∧ prim′ (13)

p ::= att | eq | p ∧ p′ (14)

att ::= attesti (eq) (15)

eq ::= t rel t′ (16)

rel ::= = |< |> | ≤ |≥ (17)

t ::= c | x | F (t1, . . . , tn) (18)

This logic involves only two modalities: the usual knowledge operator Ki

and the “algorithmic knowledge” [16,51] denoted by Xi, which represents the
knowledge that an agent i can actually build. Properties φ0 include both the
basic properties p on variables of the system and properties used to characterize
the architecture itself. More precisely, receivei,j (x) means that agent j can send
the variable x to agent i, receivei,j (prim) means that agent j can send the
property prim to agent i where prim can be a combination of (non interactive)
zero-knowledge proofs and attestations. An attestation attesti (eq) is a simple
declaration by agent i that property eq holds. This declaration is of no use to
agent j unless j trusts i, which is expressed by trustj,i. The primitive proofi,j (p)
means that agent i can make a proof of property p which can be checked by agent
j4. The properties computei (x = t) and checki (p) are used to express the fact
that an agent i can respectively compute a variable x defined by the equation
x = t or check a property p. Symbol F stands for the available basic operations
(e.g. hash, homomorphic hash, encryption, random value generation, arithmetic
operations, etc.), c stands for constants, and x for variables. Last but not least,

4 In general a proof could be checked by several agents, which could be expressed
using a set of agents names as second index.

hasi (x) is the property that agent i can get the value of variable x (which does
not, in itself, provide any guarantee about the correctness of this value).

3.2 Semantics and Axiomatization

The semantics of this logic can be defined using an augmented Kripke model
M = (Arch, π,D1, . . . ,Dn) where:

– Arch is a set of possible architectures (generally called worlds) of the system
under consideration. In our setting, an architecture is defined as a property
φ0 which characterizes all the operations available to the agents.

– π is an interpretation for the primitives prim and the relations eq.
– D1, . . . ,Dn are the deductive systems associated with agents 1, . . . , n.

The deductive system associated with an agent i makes it possible to de-
fine the semantics of the Xi operator (knowledge built by agent i). In other
words, each agent i can apply rules .i to derive new knowledge. Typical rules of
deductive systems include:

– receivei,j (prim) .i prim
– attestj (eq) , trusti,j .i eq
– proofj,i (p) .i p
– checki (eq) .i p
– computei (x = t) .i x = t
– hash (x1) = hash (x2) .i x1 = x2
– hhash (x) = hhash (x1)⊗ hhash (x2) .i x = x1 + x2
– receivei,j (x) .i hasi (x)
– computei (x = t) .i hasi (x)
– hasi (x1) , . . . ,hasi (xm) ,dep (x, {x1, . . . , xm}) .i hasi (x)

with dep (x, {x1, . . . , xm}) a dependence relationship known by i stating that
x can be derived from x1, . . . , xm.

In order to reason about architectures, we can use an axiomatization in the
style of previous work on deductive algorithmic knowledge [16,51]. Typical ex-
amples of axioms and inference rules include:

TAUT: All instances of propositional tautologies. (19)

MP: From φ and φ→ ψ infer ψ (20)

Gen: From φ infer Ki (φ) (21)

K: Ki (φ→ ψ)→ (Ki (φ)→ Ki (ψ)) (22)

T: Ki (φ)→ φ (23)

KC: Ki (φ ∧ ψ)→ (Ki (φ) ∧Ki (ψ)) (24)

XD: From Xi(φ1), . . . , Xi(φn) and φ1, . . . , φn .i φ infer Xi(φ) (25)

XT: Xi (φ)→ φ (26)

XC: Xi (φ ∧ ψ)→ (Xi (φ) ∧Xi (ψ)) (27)

A key difference between the properties ofKi andXi is the lack of counterpart
of axioms Gen and K for Xi, which makes it possible to avoid the omniscience
problem. In contrast, the knowledge built by an agent i depends on the associated
deductive system .i as expressed by rule XD. Rules T and XT express the fact
that an agent cannot derive false properties.

The axiomatization outlined in this section forms the basis for an inference
algorithm which makes it possible to prove properties of architectures (expressed
as φ0 properties) as discussed in the next subsection.

3.3 Use of the Formal Model

The first functionality of a design environment is to make it possible for the
designer to express the requirements that apply to the system and, optionally,
the design choices which have already been made (or which are imposed by the
environment or the client) as well as the possible trust assumptions.

Formally speaking, the requirements are made of three components:

– Functional requirements: the purpose of the system, which is expressed as a
set of equations x = t.

– Privacy and knowledge requirements: values that should not (respectively
should) be known by certain actors, which is expressed by properties ¬hasi (x)
(respectively hasi (x)).

– Correctness (integrity) requirements: the possibility for certain actors to en-
sure that certain values are correct, which is expressed as Xi (eq).

Generally speaking, other non-functional requirements could also be considered
but the combination of privacy and correctness already provides a degree of
complexity which is sufficient to illustrate the approach.

The design choices, which add further requirements on the architecture, can
be defined as φ0 properties. They can express, for example, the fact that commu-
nication links are (or are not) available between specific components or certain
computations (zero-knowledge, homomorphic hash, etc.) can (or cannot) be per-
formed by certain components.

Several situations are possible when the designer has entered this first batch
of information:

1. The requirements may be contradictory, for example because privacy re-
quirements conflict with knowledge or architectural requirements or because
architectural requirements themselves are not consistent (operations com-
puted by components which cannot get access to the necessary parameters,
checks which cannot be carried out because some values are not available
to the component, etc.). The system returns the identified contradictions,
which may provide some hints to the designer to modify his initial input.

2. The requirements may be consistent but not precise enough to characterize
a unique architecture. In this case, the system can use a library of existing
PETs to provide suggestions to the user. The user can then decide to apply a
given PET (which is expressed formally by the addition of a new assumption,

e.g. receivei,j
(
proofj,i (p)

)
for a zero-knowledge proof of property p sent by

agent j to agent i.

3. The requirements may be precise enough to specify a unique (and correct
architecture).

The first two cases lead to a new iteration of the procedure. In the last case,
the designer has obtained a satisfactory architecture (which does not prevent him
from performing a new iteration with different assumptions to further explore
the design space).

4 Example of Application

Let us now illustrate the framework outlined in the previous section with a small
smart metering case study. Privacy friendly smart grids and smart metering
systems have been studied extensively [17,25,26,53]. Our purpose here is neither
to present a new solution nor to provide a comprehensive study of smart-metering
systems but to show how a formal framework can help a designer to find his way
among the possible options. We focus here on the billing functionality and the
potential tensions between the privacy requirements of the clients and the need
for the operator to ensure the correctness of the computation of the fee.

Let us assume in the first instance that the system is made of three compo-
nents: the back-end system of the operator o, the computer of the user (customer)
u and the meter m. The requirements for this case study are the following:

– Functional requirements: the purpose of the system is the computation of
the fee which is expressed as the equation Fee =

∑n
i=1(P (Ci)) where Ci are

the actual consumption values for the considered period of time (i ∈ [1, n])
and P is the cost function.

– Privacy and knowledge requirements: ¬haso (Ci) and haso (Fee) respectively,
to express the fact that the operator o should not obtain the individual
consumption values Ci but should get the fee.

– Correctness (integrity) requirements: the operator must be sure that the fee
is correct: Xo (Fee =

∑n
i=1(P (Ci))).

Let us assume in a first scenario that the designer considered a direct com-
munication link between the meter and the operator, which means that the
architecture would include the property receiveo,m (Ci). This possibility would
obviously conflict with the privacy requirement since receiveo,m (Ci).i haso (Ci).
Two communication links are therefore necessary: from m to u and from u to o.

The next question is where the computation of P should take place: generally
speaking, this could be at the back-office of the operator, on the meter, or on the
computer of the user. Depending on his initial ideas about the architecture and
the constraints imposed by the hardware, the designer can either enter directly
the appropriate computeo, computem or computeu property. Otherwise these
options would be suggested in turn by the system.

– The first option turns out to conflict with the privacy requirements (because
the operator would need the input values Ci to compute Fee) unless homo-
morphic encryption can be used to allow the operator to compute Fee on
encrypted values.

– The second option can be further explored if it does not incur inaccept-
able additional costs on the meters. However, the system would then iden-
tify a trust requirement (which may or may not have been foreseen by the
designer): the operator must trust the meter (trusto,m) because the only
information received by the operator would be an attestation of the me-
ter (attestm (Fee =

∑n
i=1 (P (Ci)))) and an attestation can turn into a true

guarantee only in conjunction with a trust assumption (as expressed by the
rule attestj (eq) , trusti,j .i eq).

– The third option will be more appealing if the role of the meters has to
be confined to the delivery of the consumption measures. But this choice
leads to another requirement: either the user can be trusted by the oper-
ator (which is excluded by assumption) or he has to be able to provide
to the operator a proof of correctness of the computation of the fee [53]
(receiveo,u

(
proofu,o (Fee =

∑n
i=1 (P (Ci)))

)
).

If none of these options is available, further actors need to be considered and
involved in the computation of the fee. In general, these actors can either be
pairs or trusted third parties. In both cases, further requirements would arise: a
secure multi-party computation scheme would be necessary to ensure that the
pairs do not learn each other’s consumptions and trust assumptions would be
necessary to ensure that computations can be delegated to the third party.

As discussed in Section 2, designers are usually not experts in formal meth-
ods. As a result, a design environment should provide alternative modes of inter-
action hiding the complexities of the formal model. Considering that designers
are used to graphical notations, we have chosen to represent the different views
of the architecture as annotated graphs. The interested reader can find in An-
nex 1 the “location views” showing, for the two successful scenarios described
above, the architectures obtained at the end of the interaction process.

5 Related Work

This position paper stands at the crossroads of at least three different areas:
software architectures, formal models for privacy and engineering of privacy by
design.

Software architectures have been an active research topic for several decades
[54] but they are usually defined using purely graphical, informal means [6] or
within semi-formal [8] frameworks. Formal frameworks have been proposed to
define software architectures [2,23,34,48] but they are usually based on pro-
cess algebras or graph grammars and they are not designed to express privacy
properties. One exception is the framework introduced in [37] which defines the
meaning of the available operations in a (trace-based) operational semantics and

proposes an inference system to derive properties of the architectures. The in-
ference system is applied to the proof of properties related to the use of spot
checks in electronic traffic pricing systems. Even though the goal of [37] is to deal
with architectures, it remains at a lower level of abstraction than the framework
sketched here (because of its operational underpinning, which contrasts with the
epistemic logic used here) and can hardly be extended to other privacy mecha-
nisms.

On the other hand, dedicated languages have been proposed to specify pri-
vacy properties [3,5,7,24,35,38,45,59] but the policies expressed in these lan-
guages are usually more fine-grained than the properties considered here because
they are not intended to be used at the architectural level. Similarly, process
calculi such as the applied pi-calculus [1] have been applied to define privacy
protocols [10]. Because process calculi are general frameworks to model concur-
rent systems, they are more powerful than dedicated frameworks. The downside
is that protocols in these languages are expressed at a lower level and the tasks
of specifying a protocol and its expected properties are more complex. Again,
the main departure of the approach advocated in this paper with respect to this
trend of work is that we reason at the level of architectures, providing ways to
express properties without entering into the details of specific protocols.

Notions such as k -anonymity [39,56], l-diversity [40] or ε-differential pri-
vacy [13,14] have also been proposed as ways to measure the level of privacy
provided by an algorithm. Differential privacy provides strong privacy guaran-
tees independently of the background knowledge of the adversary: the main idea
behind ε-differential privacy is that the presence (or the absence) of an item in
a database (such as the record of a particular individual) should not change in
a significant way the probability of obtaining a certain answer for a given query.
Methods [14,41,43] have been proposed to design algorithms achieving privacy
metrics or to verify that a system achieves a given level of privacy [57]. These
contributions on privacy metrics are complementary to the work described in
this paper. We follow a logical (or qualitative) approach here, proving that a
given privacy property is met (or not) by an architecture. As suggested in the
next section, an avenue for further research would be to cope with quantitative
reasoning as well, using inference systems to derive properties expressed in terms
of privacy metrics.

As far as the engineering of privacy is concerned, several authors [12,21,28,46,55]
have already pointed out the complexity of problem as well as the “richness of
the data space”[12], calling for the development of more general and system-
atic methodologies for privacy by design. [21] has used design patterns to define
eight privacy strategies5 called respectively: Minimise, Hide, Separate, Aggre-
gate, Inform, Control, Enforce and Demonstrate. As far as privacy mechanisms
are concerned, [28] points out the complexity of their implementation and the
large number of options that designers have to face. To address this issue and

5 Strategies are defined as follows in [21]: “A design strategy describes a fundamental
approach to achieve a certain design goal. It has certain properties that allow it to
be distinguished from other (fundamental) approaches that achieve the same goal.”

favor the adoption of these tools, [28] proposes a number of guidelines for the
design of compilers for secure computation and zero-knowledge proofs. In a dif-
ferent context (designing information systems for the cloud), [44] also proposes
implementation techniques to make it easier for developers to take into account
privacy and security requirements. In the same spirit, [47] proposes a decision
support tool based on design patterns to help software engineers to take into
account privacy guidelines in the early stage of development.

A recent proposal ([31]) also points out the importance of architectures for
privacy by design. [31] proposes a design methodology for privacy (inspired by
[6]) based on tactics for privacy quality attributes (such as minimization, en-
forcement or accountability) and privacy patterns (such as data confinement,
isolation or Hippocratic management). The work described in [31] is comple-
mentary to the approach presented here: [31] does not consider formal aspects
while this paper does not address the tactics for privacy by design.

Finally, even though we decided to focus on one (important) aspect of pri-
vacy by design here, namely data minimization, other aspects also deserve more
attention, in particular the design of appropriate interfaces to allow users to take
more informed decisions about their personal data [46].

6 Directions for further work

The basic idea put forward in this paper is that privacy by design should be
addressed at the architecture level and this should be done, at least for critical
aspects such as minimization, in a formal way. As stated in Section 1, some
aspects of privacy (such as proportionality or purpose) may be more difficult
to formalize or impossible to formalize entirely. This should not be an obstacle
to the use of formal methods for other aspects of privacy. Generally speaking,
architectures are made of different views [6]: some of them can be described in-
formally or in a purely pictorial way while others are based on a formal model.
In any case, working at the architectural level is a key success factor for privacy
by design because architectures carry “the earliest and hence most fundamen-
tal hardest-to-change design decisions”[6]. They should also play a key role to
support accountability requirements because they can provide evidence that ap-
propriate decisions have been taken and the reasons for taking them.

Obviously the design of an architecture meeting all privacy requirements is
not the end of the story: because an architecture is set, by definition, at a fairly
high level of abstraction, the remaining task is to use or devise appropriate
mechanisms to implement it. In some sense, the architecture defines precise re-
quirements on the techniques (PETs) to be used in the implementation. The
approach presented here is therefore complementary to the work done on the
improvement of the implementation of privacy mechanisms [28]. It is also com-
plementary to the ongoing work on the conception of new PETs. In practice, a
design environment should include a library of available PETs with their associ-
ated guarantees (in the privacy logic) and this library should follow the progress
of the technologies. One challenge to this respect will be to ensure that the

logical framework is general and versatile enough to allow the description of fu-
ture mechanisms. We believe that epistemic logics provide a well-established and
suitable framework to this aim but this claim has to be confirmed in practice.

As far as the formal framework itself is concerned, we have suggested a “log-
ical” (or qualitative) approach in this paper. An avenue for further research in
this area would be to study the integration of quantitative measures of privacy
(such as differential privacy) into the framework. This extension would be re-
quired to deal with the (numerous) situations in which data cannot be classified
into two categories (can or cannot be disclosed) but can be disclosed provided a
sufficiently robust sanitization algorithm is applied. Further work on this issue
will benefit from existing results [14,41,43] on the design of mechanisms achieving
differential privacy.

In this paper we provided some hints on how our approach can turn into
practice based on ongoing work on a privacy by design environment. Needless to
say, more work has to be done on the HCI front, to improve the interactions with
designers. As suggested in Section 3, graphical means can be used to convey the
essence of the properties in the logic and the architecture under construction, for
example to picture data flows, the locations of the computations and the trust
relationships. A key concept to this respect is the notion of view in software
architectures. More experience is needed, however, to understand what will be
the most useful views for a designer.

Last but not least, another interesting avenue for further research would be
to apply this approach to other aspects of privacy (using combinations of formal
and semi-formal methods) and to establish a link with the coarse-grain strategies
defined in [21] to drive the interactions with the system.

Acknowledgement. This work was partially funded by the European project
PRIPARE / FP7-ICT-2013-1.5, the ANR project BIOPRIV, and the Inria Project
Lab CAPPRIS (Collaborative Action on the Protection of Privacy Rights in the
Information Society.)

References

1. M. Abadi, and C. Fournet. Mobile Values, New Names, and Secure Communica-
tion. Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 104–115, 2001.

2. R. Allen, and D. Garlan. Formalizing Architectural Connection. Proc. 16th Int’l
Conf. Software Eng., pages 71–80, May 1994.

3. M. Backes, M. Dürmuth, and G. Karjoth. Unification in privacy policy evaluation
- translating EPAL into Prolog. In POLICY, pages 185–188, 2004.

4. J. Balasch, A. Rial, C. Troncoso, B. Preneel, I. Verbauwhede, and C. Geuens.
PrETP: Privacy-preserving electronic toll pricing. In USENIX Security Symposium,
pages 63–78, 2010.

5. A. Barth, A. Datta, J. C. Mitchell, and H. Nissenbaum. Privacy and contextual
integrity: Framework and applications. In IEEE Symposium on Security and Privacy,
pages 184–198, 2006.

6. L. Bass, P. Clements, and R. Kazman. Software architecture in practice (3d edition).
SEI Series in Software Engineering, Addison Wesley, 2013.

7. M. Y. Becker, A. Malkis, and L. Bussard. A practical generic privacy language. In
ICISS, pages 125–139, 2010.

8. G. Booch, I. Jacobson, and J. Rumbaugh. The Unified Modeling Language Reference
Manual (2nd Edition) Addison Wesley Professional, 2004.

9. M. L. Damiani, E. Bertino, and C. Silvestri. The probe framework for the personal-
ized cloaking of private locations. Transactions on Data Privacy 3(2), pages 123–148,
2010.

10. S. Delaune, S. Kremer, and M. D. Ryan. Verifying Privacy-type Properties of
Electronic Voting Protocols. Journal of Computer Security 17(4), pages 435-487,
2009.

11. Y. Deswarte and C. A. Melchor. Current and future privacy enhancing technologies
for the internet. Annals of Telecommunications 61(3), pages 399–417, 2006.

12. S. F. Gürses, C. Troncoso, and C. Diaz. Engineering privacy by design. In Com-
puters, Privacy & Data Protection, (2011).

13. C. Dwork. Differential privacy. In ICALP (2), pages 1–12, 2006.
14. C. Dwork. A firm foundation for private data analysis. Commun. ACM 54(1),

pages 86–95, 2011.
15. E.C. European Commission. Regulation of the European Parliament and of the

Council on the protection of individuals with regard to the processing of personal
data and on the free movement of such data (General Data Protection Regulation).
inofficial consolidated version after LIBE Commitee vote provided by the rapporteur,
22 October 2013.

16. R. Fagin, J. Y. Halpern, Y. Moses, M. Vardi. Reasoning About Knowledge. A
Bradford Book; 1st MIT Press Paperback Ed edition (January 9, 2004).

17. F. D. Garcia and B. Jacobs. Privacy-friendly energy-metering via homomorphic
encryption. In STM’10 Proceedings of the 6th international conference on Security
and trust management, pages 226–238. Springer, 2010.

18. I. Goldberg. Privacy-enhancing technologies for the internet III: ten years later. In
Digital Privacy: Theory, Technologies, and Practices, pages 84–89. TeX Users Group,
December 2007.

19. M. Hafiz. A Pattern Language for Developing Privacy Enhancing Technologies.
Foftware — Practice and Experience 43(7), pages 769–787, 2013.

20. J. Y. Halpern, R. Pucella. Dealing with logical omniscience: Expressiveness and
pragmatics. Artif. Intell. 175(1), pages 220–235, 2011.

21. J.-H. Hoepman. Privacy Design Strategies. CoRR 2013.
22. C. Höfer, J. Petit, R. Schmidt, and F. Kargl. 2013. POPCORN: privacy-preserving

charging for e-mobility. In Proceedings of the 2013 ACM workshop on Security, pri-
vacy & dependability for cyber vehicles (CyCAR ’13). ACM, New York, NY, USA,
pages 37–48, 2013.

23. P. Inverardi, and A. Wolf. Formal specification and analysis of software architec-
tures using the chemical abstract machine model. IEEE Transactions on Software
Engineering 21(4), pages 373–386. Special Issue on Software Architectures, 1995.

24. M. Jafari, P. W. L. Fong, R. Safavi-Naini, K. Barker, and N. P. Sheppard. Towards
defining semantic foundations for purpose-based privacy policies. In CODASPY,
pages 213–224, 2011.

25. M. Jawurek, M. Johns, F. Kerschbaum. Plug-In Privacy for Smart Metering Billing.
Privacy Enhancing Technologies Symposium (PETS’11), pages 192–210, 2011.

26. M. Jawurek, F. Kerschbaum, and G. Danezis. Privacy Technologies for Smart Grids
- A Survey of Options. MSR-TR-2012-119. Nov. 2012.

27. W. D. Jonge and B. Jacobs. Privacy-friendly electronic traffic pricing via commits.
In Proceedings of the Workshop of Formal Aspects of Securiy and Trust, pages 132–
137. Springer, LNCS 5491, 2009.

28. F. Kerschbaum. Privacy-Preserving Computation (Position Paper). Annual Pri-
vacy Forum (APF’12), Cyprus, 2012.

29. E. Kosta, J. Zibuschka, T. Scherner, and J. Dumortier. Legal considerations on
privacy-enhancing location based services using PRIME technology. Computer Law
and Security Report, 4: pages 139–146, 2008.

30. J. Krumm. A survey of computational location privacy. Pers Ubiquit Comput, 13,
pages 391–399, 2008.

31. A. Kung. PEARs: Privacy Enhancing ARchitectures. Annual Privacy Forum
(APF’14), Greece, 2014.

32. M. Langheinrich. Privacy by design - principles of privacy aware ubiquitous sys-
tems. In Proceedings of the Ubicomp Conference, Springer, LNCS 2201, pages 273–
291, 2001.

33. M. LeMay, G. Gross, C. A. Gunter, and S. Garg. Unified architecture for large-scale
attested metering. In HICSS, pages 115–124, 2007.

34. D. Le Métayer. Software Architecture Styles As Graph Grammars. ACM SIGSOFT
Software Eng. Notes, Nov. 1996.

35. D. Le Métayer. A formal privacy management framework. In FAST (Formal
Aspects of Security and Trust), Springer, LNCS 5491,pages 161–176, 2009.

36. D. Le Métayer. Privacy by design: a matter of choice. In Data Protection in a
Profiled World, Springer Verlag, pages 323–334, 2010.

37. D. Le Métayer. Privacy by design: a formal framework for the analysis of architec-
tural choices. CODASPY’13, pages 95–104, 2013

38. N. Li, T. Yu, and A. I. Antón. A semantics based approach to privacy languages.
Comput. Syst. Sci. Eng., 21(5), 2006.

39. N. Li, W. H. Qardaji, and D. Su. Provably private data anonymization: Or, k-
anonymity meets differential privacy. CoRR, abs/1101.2604, 2011.

40. A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam. l-diversity:
Privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1) Article 3, March
2007.

41. F. McSherry. Privacy integrated queries: an extensible platform for privacy-
preserving data analysis. Commun. ACM, 53(9), pages 89–97, 2010.

42. F. McSherry and I. Mironov. 2009. Differentially private recommender systems:
building privacy into the net. In Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining (KDD ’09). ACM, New York,
NY, USA, pages 627–636, 2009.

43. F. McSherry and K. Talwar. Mechanism design via differential privacy. In FOCS,
pages 94–103, 2007.

44. V. Manousakis, C. Kalloniatis, E. Kavakli, S. Gritzalis. Privacy in the Cloud:
Bridging the Gap between Design and Implementation. Proceedings of the WISSE
2013 3rd International Workshop on Information Systems Security Engineering, in
conjunction with CAiSE 2013 25th International Conference on Advanced Informa-
tion Systems Engineering, X. Franch and P. Soffer (Eds.), Valencia, Spain, Springer
Lecture Notes in Business Information Processing 148, Jun. 2013.

45. M. J. May, C. A. Gunter, and I. Lee. Privacy APIs: Access control techniques to
analyze and verify legal privacy policies. In CSFW, pages 85–97, 2006.

46. D. K. Mulligan, and J. King. Bridging the Gap between Privacy and Design. Uni-
versity of Pennsylvania Journal of Constitutional Law, (14)4, 2012.

47. S. Pearson and A. Benameur. A Decision Support System for Design for Privacy.
Privacy and Identity, IFIP AICT 352, pp. 283–296, 2011.

48. D. E. Perry and A. L. Wolf. Foundations for the study of software architecture.
ACM SIGSOFT Software Eng. Notes, Oct. 1992.

49. R. A. Popa, H. Balakrishnan, and A. J. Blumberg. Vpriv: Protecting privacy in
location-based vehicular services. In USENIX Security Symposium, pages 335–350,
2009.

50. Y. Poullet. About the e-privacy directive, towards a third generation of data
protection legislations. In Data Protection in a Profile World, pages 3–29. Springer,
2010.

51. R. Pucella. Deductive Algorithmic Knowledge. Journal of Logic and Computation
16 (2), pages 287–309, 2006.

52. A. Rezgui, A. Bouguettaya, and M. Y. Eltoweissy. Privacy on the web: facts,
challenges, and solutions. IEEE Security and Privacy, pages 40–49, 2003.

53. A. Rial and G. Danezis. Privacy-preserving smart metering. In Proceedings of the
2011 ACM Workshop on Privacy in the Electronic Society, WPES 2011. ACM, 2011.

54. M. Shaw, and P. Clements. The Golden Age of Software Architecture: A Com-
prehensive Survey. Research Report CMU-ISRI-06-101. Carnegie Mellon University,
2006.

55. S. Spiekermann and L. F. Cranor. Engineering Privacy. IEEE Transactions on
Software Engineering 35(1), 2009.

56. L. Sweeney. k-anonymity: A model for protecting privacy. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5), pages 557–570, 2002.

57. M. C. Tschantz, D. K. Kaynar, and A. Datta. Formal verification of differential
privacy for interactive systems. CoRR, abs/1101.2819, 2011.

58. M. C. Tschantz and J. M. Wing. Formal methods for privacy. In Proceedings of
the 2nd World Congress on Formal Methods (FM’09), pages 1–15, 2009.

59. T. Yu, N. Li, and A. I. Antón. A formal semantics for P3P. In In Proceedings of
the 2004 workshop on Secure web service (SWS ’04), pages 1–8, 2004.

Annex 1

Meter

User Operator

Environment
Ci

Fee
attestm(Fee = Σi (P (Ci)))

computem(ci = Ci)
computem(pi = P (ci))
computem(Fee = Σi (pi))

trusto,m

Fig. 1. Option 2 of Section 4: The meter computes the fee and has just to be trusted
by the operator. Ci are the actual consumptions and ci the values actually used by the
meter.

Meter

User Operator

Environment
Ci

computem(ci = Ci)
computem(cci = hash (ci))

ci
cci
attestm(cci = hash (Ci))

checku(cci = hash (ci))
computeu(pi = P (ci))
computeu(Fee = Σi (pi))
computeu(hcpi = hhash (pi))

Fee
cci

hcpi
attestm(cci = hash (Ci))
proofu,o (cci = hash (ci))

proofu,o (hcpi = hhash (pi))
proofu,o (pi = (P (ci)))

computeo(hcFee = hhash (Fee))
checko(hcFee = Πi (hcpi))

trusto,m

Fig. 2. Option 3 of Section 4: The user computes the fee and the operator has to trust
the meter (for using the right value ci). hhash is a homomorphic hash function which
allows the operator to check that the hash of the global fee Fee is consistent with the
hashes hcpi of individual fees pi. This architecture is an abstraction of the solution
proposed by [53].

	Privacy by Design: From Technologies to Architectures

