
A final coalgebra for k-regular sequences

Helle Hvid Hansen1,3, Clemens Kupke2,
Jan Rutten1,3 and Joost Winter3

1 Radboud University Nijmegen
2 University of Strathclyde

3 CWI Amsterdam

Abstract. We study k-regular sequences from a coalgebraic perspective.
Building on the observation that the set of streams over a semiring S
can be turned into a final coalgebra, we obtain characterizations of k-
regular sequences in terms of finite weighted automata, finite systems
of behavioral differential equations, and recognizable power series. The
latter characterization is obtained via an isomorphism of final coalgebras
based on the k-adic numeration system.

Dedication

It is our greatest pleasure to dedicate this article to Prakash Panangaden
on the occasion of his 60th birthday. There are not many subjects in our
own research that have not been influenced by his work and ideas. Before
the notion of finality in semantics became prominent in the early nineties
of the previous century, Prakash was already writing [14] about infinite
objects requiring “ . . . a limit construction and a final object . . . ”. An-
other early reference that is of direct relevance for the present paper is
[16], published as a report in 1985, in which streams and stream func-
tions play a key role. For these and many other similar such inspiring
examples, we are immensely grateful.

1 Introduction

Infinite sequences, or streams, are much studied in the fields of number theory,
analysis, combinatorics, formal languages and many more. Streams are also one
of the best known examples of a final coalgebra [18]. Of particular interest is
the classification of streams in terms of certain finite automata, or alternatively,
stream differential equations of a certain form. The simplest such class consists
of all eventually periodic streams (over a set S). They are generated by finite
automata in which each state is assigned an output in S and a unique next state.
Let us call these deterministic 1-automata as they are deterministic automata on
a one-letter alphabet (with output in S). In terms of stream differential equations
(cf. [18]), eventually periodic streams are defined by simple systems of stream
differential equations such as x(0) = 0, x′ = y, y(0) = 1, y′ = y.

2 Helle Hvid Hansen, Clemens Kupke, Jan Rutten and Joost Winter

We consider two ways of generalizing deterministic 1-automata. One is by
going from deterministic to weighted transitions. In this setting we must assume
that the output set S has the structure of a semiring. The class of sequences
generated by finite weighted 1-automata is known to be the class of rational
power series on a 1-letter alphabet, or in the case that S is a field, the class
of rational streams (cf. [18]). In terms of stream differential equations, rational
streams are defined by equations such as x(0) = 0, x′ = x+y, y(0) = 1, y′ = 2x.

The other generalization is by going from a one-letter alphabet to a k-letter
alphabet, for k ∈ N. Here, finite deterministic k-automata generate exactly the
k-automatic sequences [2]. It was shown in [9, 12] that k-automatic sequences
are defined by systems of equations involving the stream operation zipk, such
as (for k = 2), x(0) = 1, x = zip2(x, y), y(0) = 2, y = zip2(y, y). (Note
that the left-hand sides are x and y, and not x′ and y′). These equations can
be expressed using the even and odd stream operations, such as x(0) = 1,
even(x) = y,odd(x) = y, y(0) = 2, even(y) = y,odd(y) = x. This approach
generalizes easily to arbitrary k ≥ 2.

In this paper we will show that (generalizing in both directions) finite weighted
k-automata generate exactly the k-regular sequences. On the side of equational
specification, we show that k-regular streams are defined by systems of lin-
ear zipk-behavioral differential equations, which are equations such as, e.g.,
x(0) = 0, x′ = zip(x + y, 2y), y(0) = 1, y′ = zip(2x, x + y). One way of
summarising our insights in a slogan would be: k-regular sequences are to k-
automatic sequences what rational streams are to eventually periodic ones. Our
main characterization results are stated in Theorem 14.

Our approach is coalgebraic, although we use the more familiar terminology
of automata. A seemingly small, technical difference with existing work is our use
of the bijective k-adic numeration system as opposed to the non-bijective stan-
dard base k numeration. The advantage of using the bijective numeration system
is that the automaton structure on streams obtained via the k-adic numeration
yields immediately a final k-automaton, rather than a relatively final one for
zero-consistent automata, as in [12]. Consequently, we obtain an isomorphism
between the final k-automaton of sequences and the (classic) final k-automaton
of formal power series, and this isomorphism restricts to one between k-regular
sequences and rational formal power series. We also obtain a characterization
of k-automatic sequences as those k-regular sequences that have finite output
range. Another generalization with respect to [1] is the assumption that S is just
a semiring, not a ring.

Finally, we provide a connection between our coalgebraic presentation of the
k-regular sequences, and sequences attainable by so-called divide-and-conquer
recurrences (see e.g. [10], [20]). We also note that linear zipk-behavioral differ-
ential equations give an easy way of specifying these sequences coinductively in
the functional programming language Haskell.

Related work. The k-regular sequences were introduced in [1] as generalizations
of k-automatic sequences, and are further treated in [3], Chapter 16 of [2], and
Chapter 5 of [6]. Some open questions posed in the original paper [1] were solved

A final coalgebra for k-regular sequences 3

in [5, 15]. The work in this article builds on existing coalgebraic approaches
to automatic sequences, which can be found in [12] and [9]. In particular, our
systems of linear zip-behavioral differential equations can be seen as a linear gen-
eralization of the zipk-specifications in [9]. The isomorphism of final coalgebras
presented in this paper is probably folklore, but we think its usefulness warrants
an explicit inclusion in our paper. Finally, we remark that the definitions and
results of section 3.2 on solutions to linear zipk-behavioral differential equations
can be seen as instances of more general concepts in the theory of bialgebra
(cf. [4]). Such an abstract presentation is, however, not necessary and would not
improve the results of the paper.

Acknowledgements. We would like to thank Alexandra Silva for helpful discus-
sions on weighted automata.

2 Preliminaries

2.1 Semirings and semimodules

Throughout this paper, S denotes a semiring. A semiring S = (S,+, ·, 0, 1)
consists of a commutative monoid (S,+, 0) and a monoid (S, ·, 1) such that the
following identities hold for all s, t, u in S: 0 · s = s ·0 = 0, s · (t+u) = s · t+ s ·u,
(s + t) · u = s · u + t · u. A left-semimodule over S is a commutative monoid
(M,+, 0) together with a left-action by S, i.e., a map S ×M → M , denoted
as scalar multiplication (s,m) 7→ sm for all s ∈ S,m ∈ M which satisfies:
(st)m = s(tm), s(m + n) = sm + sn, (s + t)m = sm + tm, 0m = 0, 1m = m.
A left-linear map between left-semimodules is a map f : M → N which respects
scalar multiplication and sum: f(sm) = sf(m) and f(m1 + m2) = f(m1) +
f(m2). Right-semimodules over S are defined similarly via a right action. If S
is commutative, i.e., the multiplicative monoid (S, ·, 1) is commutative, then left
and right semimodules are the same.

We will work in the setting of left-semimodules over S and left-linear maps,
which for simplicity we refer to as S-semimodules and linear maps. Note that S
is itself an S-semimodule with the left action given by multiplication in S.

2.2 Stream operations, zip and unzip

We will use some notation and terminology from coinductive stream calcu-
lus (see e.g. [18]). A stream (over the semiring S) is an (infinite) sequence
(σ(0), σ(1), σ(2), . . .) of elements from S, or more formally, a map σ : N → S,
also written σ ∈ SN. We will use the terminology of streams and sequences
interchangeably, and the notions can be regarded as synonymous.

The initial value and derivative of a stream σ ∈ SN are σ(0) and σ′, respec-
tively, where σ′(n) = σ(n + 1) for all n ∈ N. The initial value and derivative of
σ are also known as head(σ) and tail(σ).

4 Helle Hvid Hansen, Clemens Kupke, Jan Rutten and Joost Winter

The streams SN form an S-semimodule under pointwise addition and scalar
multiplication which are the unique stream operations that satisfy the following
stream differential equations (cf. [18]):

(σ + τ)(0) = σ(0) + τ(0), (σ + τ)′ = σ′ + τ ′,
(aσ)(0) = aσ(0), (aσ)′ = aσ′.

(1)

for all σ, τ ∈ SN and a ∈ S. Note that from the above equations it follows
immediately that head : SN → S and tail : SN → SN are linear.

The shift operation X is defined as Xσ = (0, σ(0), σ(1), . . .), or equivalently,
by the stream differential equation:

(Xσ)(0) = 0, (Xσ)′ = σ.

We will use the so-called fundamental theorem of stream calculus(cf. [18])4:

for all σ ∈ SN : σ = σ(0) + Xσ′ (2)

Of central importance to us are the k-ary operations zipk. For k ∈ N, zipk
zips together k streams σ0, . . . , σk−1 into one by taking elements in turn from its
arguments. Formally, for k ∈ N and streams σ0, . . . , σk−1 the stream operation
zipk is defined by

zipk(σ0, . . . , σk−1)(i+ nk) = σi(n) ∀n, i ∈ N, 0 ≤ i < k (3)

or equivalently, by the stream differential equation:

zipk(σ0, . . . , σk−1)(0) = σ0(0)
zipk(σ0, . . . , σk−1)′ = zipk(σ1, . . . , σk−1, σ

′
0).

(4)

For example, for k = 2, we have zip2(σ, τ) = (σ(0), τ(0), σ(1), τ(1), . . .).
Conversely, the unzipping operations are defined as follows for k, j ∈ N with

j < k:
unzipj,k(σ)(n) = σ(j + nk) ∀n ∈ N (5)

For k = 2, unzip0,2 and unzip1,2 are also known as even and odd:

unzip0,2(σ) = even(σ) = (σ(0), σ(2), σ(4), . . .)
unzip1,2(σ) = odd(σ) = (σ(1), σ(3), σ(5), . . .)

It can easily be verified that

zipk(unzip0,k(σ), . . . ,unzipk−1,k(σ)) = σ (6)

and conversely that (for i with 0 ≤ i < k)

unzipi,k(zipk(σ0, . . . , σk−1)) = σi. (7)

In other words, zipk : (SN)k → SN is a bijection with inverse

unzipk = (unzip0,k, . . . ,unzipk−1,k) : SN → (SN)k.

The unzip-operations relate to the more familiar notion of a k-kernel. The
k-kernel of a stream σ can be defined as the closure of the set {σ} under the
operations unzipj,k for 0 ≤ j < k.

4 Here σ(0) is overloaded as the stream (σ(0), 0, 0, . . .)

A final coalgebra for k-regular sequences 5

2.3 Automata as coalgebras

We briefly recall some basic definitions on (weighted) automata (with weights
in a semiring), and how these are modelled as coalgebras [17].

Automata and formal power series. Given a finite alphabet A and a semiring
S, a (linear) A-automaton (with output in S) is a triple (Q, o, δ), where Q is an
S-semimodule, o : Q→ S is a linear map assigning an output value o(q) to each
q ∈ Q, and δ : Q→ QA is a linear map assigning to each q ∈ Q and a ∈ A a next
state δ(q)(a) which we will also denote by qa and refer to as the a-derivative of
q. Note the absence of initial states or state vectors in this presentation. The
transition function δ can be extended to a map δ∗ : Q → QA

∗
in the usual

inductive manner: δ∗(q)(ε) = q and δ∗(q)(wa) = δ(δ∗(q)(w))(a).
The set S〈〈A〉〉 of formal power series over noncommuting variables from

A with outputs in S is the function space S〈〈A〉〉 = {ρ : A∗ → S} equipped
with pointwise S-semimodule structure. We note that a formal power series
ρ : A∗ → S can also be seen as an S-weighted language.5 The formal power series
generated by a state q ∈ Q in an A-automaton (Q, o, δ) is the map JqKL : A∗ → S
defined by JqKL(w) = o(δ∗(q)(w)).

An A-automaton is a coalgebra for the functor S × (−)A on the category
of S-semimodules and linear maps. The theory of universal coalgebra [17] now
directly yields an associated notion of homomorphism. Diagrammatically, given
A-automata (Q, oQ, δQ) and (R, oR, δR), a linear map h : Q→ R is a homomor-
phism iff it makes the diagram

Q

(oQ,δQ)

��

h // R

(oR,δR)

��
S ×QA 1S×hA

// S ×RA

commute, or equivalently, iff for all q ∈ Q, oQ(q) = oR(h(q)) and h(qa) = h(q)a
for all a ∈ A. An isomorphism of A-automata is a bijective homomorphism.

The set S〈〈A〉〉 of formal power series is itself an A-automaton

L = (S〈〈A〉〉, O,∆)

with O and ∆ defined by

O(ρ) = ρ(ε) and ∆(ρ)(a)(w) = ρ(aw).

In fact, (S〈〈A〉〉, O,∆) is known to be final in the category of A-automata (this
follows from [18, Theorem 9.1] combined with the fact that all final mappings
are linear). This means that given any A-automaton (Q, o, δ), there is a unique
homomorphism (Q, o, δ) → (S〈〈A〉〉, O,∆). This unique homomorphism is, in
fact, the function J−KL : Q→ S〈〈A〉〉 which maps q ∈ Q to the formal power series
generated by q. We note that final coalgebras are unique only up to isomorphism.

5 This explains our later use of L as subscript to indicate formal power series.

6 Helle Hvid Hansen, Clemens Kupke, Jan Rutten and Joost Winter

Recognizable formal power series are characterized in terms of weighted au-
tomata. We first introduce some notation. For a set X, we denote by SXω the
set of all functions φ : X → S with finite support, i.e., φ(x) 6= 0 for only
finitely many x ∈ X. Equivalently, such a φ can be seen as a linear combi-
nation a1x1 + · · · + anxn where ai = φ(xi), i = 1, . . . , n and φ(x) = 0 for all
x /∈ {x1, . . . , xn}. The set X is included into SXω via the map η : X ↪→ SXω
defined as η(x) = 1x. Importantly, by taking pointwise S-semimodule struc-
ture, SXω is the free S-semimodule over the set X, which means that for each
function f : X → M into some S-semimodule M , there is a unique linear map
f̂ : SXω →M extending f , i.e., f̂ ◦ η = f .

Weighted automata. An S-weighted A-automaton is a triple (X, o, δ) where X
is a set (of states), o : X → S is an output function, and δ : X → (SXω)A is
a transition function. In terms of weighted transitions, δ(x)(a)(y) ∈ S is the
weight of the a-transition from x to y. We say that (X, o, δ) is finite if X is
finite. An S-weighted A-automaton is a coalgebra for the functor S × (S−ω)A on
the category of sets and functions. We note that a nondeterministic automaton is
a 2-weighted automaton where 2 = ({⊥,>},∨,∧,⊥,>) is the Boolean semiring.

Determinization. Any S-weighted A-automaton (X, o, δ) can be determinized

to an A-automaton, by constructing an A automaton (SXω , ô, δ̂), where ô and δ̂
are the unique linear extensions of o and δ to the free semimodule SXω , i.e. the

unique linear mappings satisfying ô(η(x)) = o(x) and δ̂(η(x)) = δ(x).
This construction can be summarized in the following diagram:

X ⊂
η - SXω

J−KL - S〈〈A〉〉

S × (SXω)A

(o,δ)

?
1S×J−KL

A

-
�

(ô
,̂δ
)

S × S〈〈A〉〉A

(O,∆)

?

(8)

We say that a state x in an S-weighted A-automaton generates ρ ∈ S〈〈A〉〉 if
Jη(x)KL = ρ. When X is finite, the determinization has a finitely generated
S-semimodule SXω as its state space, but as a set SXω is generally infinite. For
further details on determinization and its categorical/coalgebraic setting we refer
to [19].

The above now yields the following definition of the recognizable power series.

Definition 1. A formal power series ρ ∈ S〈〈A〉〉 is recognizable if and only if
there is a finite S-weighted A-automaton (X, o, δ) such that ρ = JxKL for some
x ∈ X.

In other words, ρ is recognizable if and only if it is generated by some state
in a finite S-weighted A-automaton. This definition is easily seen to correspond
to the classic definition in e.g. [6].

A final coalgebra for k-regular sequences 7

2.4 Numeration systems

For any natural number k ∈ N with k ≥ 1, let Ak denote the alphabet of digits

Ak = {1, . . . , k}

We emphasize the use of the digits as alphabet symbols by writing them in a
fixed-width font. The map νk : A∗k → N, which assigns to each string of digits
the natural number it represents, is defined inductively by:

νk(ε) = 0 and νk(i · w) = i+ k · νk(w).

It is well-known and easy to see that νk is a bijection between natural num-
bers and their representation in the k-adic numeration system6, with the least
significant digit on the left. For example, the 2-adic numeration of the natural
numbers starts as follows: ε, 1, 2, 11, 21, 12, 22, 111, . . .

We contrast the bijective k-adic numeration system with the familiar (stan-
dard) base k numeration system which is defined as follows. The alphabet of
digits is

Bk = {0, . . . , k− 1}

and, whenever k ≥ 2, we can define a mapping ξk : B∗k → N inductively by

ξk(ε) = 0 and ξk(i · w) = i+ k · ξk(w)

This again gives us a presentation with the least significant digit on the left.7 For
example, standard base 2 is the reverse binary notation with zero represented
by ε, i.e., starting as ε, 1, 01, 10, 11, 001, 101, 011, 111, . . . The map ξk has the
property that for all w ∈ B∗k , ξ(w) = ξ(w · 0), and hence ξk is not bijective.

Finally, observe that, from the inductive definitions of the k-adic and stan-
dard base k numeration, we obtain that

νk(a0 . . . an) =

n∑
i=0

aik
i and ξk(b0 . . . bn) =

n∑
i=0

bik
i

for all ai ∈ Ak and bi ∈ Bk, which can be taken as alternative definitions of the
two numeration systems.

In most literature on k-automatic and k-regular sequences, the standard base
k numeration system is employed. However, we prefer the bijective k-adic nu-
meration system since it yields a bijective correspondence at the level of fi-
nal coalgebras. Moreover, unlike in the standard base k numeration, there is a
straightforward and intuitive bijective numeration for the case k = 1 given by
ε, 1, 11, 111, . . .

6 Unrelated to and not to be confused with the p-adic numbers
7 For a more standard presentation with the most significant digit on the left, switch

the inductive definition to ξk(w · i) = i+ k · ξk(w).

8 Helle Hvid Hansen, Clemens Kupke, Jan Rutten and Joost Winter

3 Characterizations of k-regular sequences

The notion of a k-regular sequence with values in a ring was introduced in [1].
The following definition is (roughly) a direct generalization to sequences with
values in a semiring. We discuss the more precise relationship in the remark
below.

Definition 2. A sequence σ ∈ SN is k-regular iff the k-kernel of σ is contained
in a finitely generated S-subsemimodule of SN, or equivalently, iff there is a finite
set of generators Σ = {σ0, . . . σn−1} with σ ∈ Σ, and an indexed family ah,i,j
for all h, i, j ∈ N with h < n, i < n, j < k, such that for all h < n and j < k

unzipj,k(σh) =
∑
i<n

ah,i,jσi

or equivalently, for all h < n:

σh = zipk

(∑
i<n

ah,i,0σi, . . . ,
∑
i<n

ah,i,kσi

)
. (9)

Remark 3. In [1], the definition of a k-regular sequence is as follows: Let R
be a ring and R′ a (commutative) Noetherian ring contained in R. A sequence
σ ∈ RN is (R′, k)-regular if each sequence in the k-kernel of σ is an R′-linear
combination of some finite set of sequences σ1, . . . , σn ∈ RN. In terms of modules,
this is equivalent with saying that the k-kernel of σ is contained in a finitely
generated R′-submodule of RN (viewed as an R′-module). Since R′ is assumed
to be Noetherian, this in turn is equivalent with the k-kernel itself being a finitely
generated R′-submodule of RN. For simplicity, we do not distinguish between the
semiring S of values and a subsemiring S′ ⊆ S from which linear coefficients may
be taken. Hence in the terminology of [1], our definition of k-regular could be
phrased as (S, k)-regular. If we assume that S is a Noetherian semiring (cf. [8]),
then our definition is equivalent to requiring that the k-kernel of σ is a finitely
generated S-subsemimodule of SN.

In this section we will give characterizations of k-regular sequences in terms
of finite weighted automata, finite systems of (certain) behavioral differential
equations, and recognizable formal power series.

3.1 An isomorphism between final Ak-automata

We start by defining an Ak-automaton S with state space SN as the composition
of bijections:

SN (head,tail)

∼=
// S × SN 1S×unzipk

∼=
// S × (SN)Ak

That is,
S := (SN,head,unzipk ◦ tail)

A final coalgebra for k-regular sequences 9

In [9, Proposition 26] it was observed that S is a final Ak-automaton. This result
will also follow from our Proposition 5 below, and the finality of L.

Given an Ak-automaton (Q, o, δ), we let J−KS : Q → SN denote the unique
mapping into the final Ak-automaton on SN:

Q

(o,δ)

��

J−KS // SN

(head,unzipk◦ tail)
��

S ×QAk
1S×J−KAk

S // S × (SN)Ak

(10)

The commutativity of the above diagram means that for all q ∈ Q:

o(q) = head(JqKS)

Jδ(q)(i)KS = JqiKS = unzipi−1,k(JqK′S) for all i ∈ Ak
(11)

or, equivalently, using the zipk-unzipk isomorphism (6),

JqKS(0) = o(q), JqK′S = zipk(Jδ(q)(1)KS , . . . , Jδ(q)(k)KS). (12)

We refer to JqKS as the stream semantics of q. Conversely, we will say that q
generates the stream JqKS .

As final coalgebras are unique up to isomorphism, it follows that S and
L = (S〈〈Ak〉〉, O,∆) are isomorphic. We will show that the unique isomorphism
between S and L is concretely given by k-adic numeration. First, we define a
map from sequences to formal power series.

Definition 4. We define the map hL : SN → S〈〈Ak〉〉 by

hL(σ)(w) = σ(νk(w)) for all w ∈ A∗k (13)

where νk : A∗k → N is the bijective k-adic numeration given in Section 2.4. For
σ ∈ SN we refer to hL(σ) as the formal power series corresponding to σ via
k-adic numeration.

Proposition 5. The map hL : SN → S〈〈Ak〉〉 is an isomorphism of Ak-automata
from S to L, i.e., the following diagram commutes (where hS = h−1L):

SN
hL -�
hS

S〈〈Ak〉〉

S × (SN)Ak

(head,unzipk◦ tail)

? 1S×hk
L-�

1S×hk
S

S × S〈〈Ak〉〉Ak

(O,∆)

?

Proof. We must show that hL is a bijective homomorphism. From the fact that
νk is a bijection it directly follows that hL is a bijection. It remains to show that
hL is a homomorphism of Ak-automata.

10 Helle Hvid Hansen, Clemens Kupke, Jan Rutten and Joost Winter

For this, we first have to prove that head(σ) = O(hL(σ)), which holds be-
cause

head(σ) = σ(0) = σ(νk(ε)) = hL(σ)(ε) = O(hL(σ)).

Now, we have to show that (hL(σ))i = hL(σi). This holds, because given
any w ∈ A∗k and i ∈ Ak, we have:

(hL(σ))i(w) = (hL(σ))(i · w)

= σ(νk(i · w))

= σ(i+ k · νk(w))

= σ′((i− 1) + k · νk(w))

= unzipi−1,k(σ′)(νk(w))

= hL((unzipi−1,k ◦ tail)(σ))(w)

= hL(σi)(w)

Finally, it can easily be verified that hL is linear using (1). ut

In combination with the fact that homomorphisms to final automata are
unique, this now directly leads to the following corollary:

Corollary 6. For any Ak-automaton (Q, o, δ), we have

hL ◦ J−KS = J−KL and hS ◦ J−KL = J−KS .

3.2 Systems of linear zip-behavioral differential equations

The finality of S gives rise to a coinduction principle for weighted automata.
Namely, by defining an S-weighted Ak-automaton (X, o, δ) we are defining the
streams Jη(x)KS ∈ SN for each x ∈ X, via determinization and finality as de-
scribed in the following diagram, which is the analogue of (8) only with S instead
of L.

X ⊂
η - SXω

J−KS - SN

S × (SXω)Ak

(o,δ)

?
1S×J−KS

Ak
-

�

(ô
,̂δ
)

S × (SN)Ak

(head,unzipk◦ tail)

?

(14)

The existence of J−KS and the commutativity of the above diagram immediately
tells us the following fact:

Lemma 7. A sequence σ is generated by a state in a finite weighted automaton
if and only if there is a finite set of sequences Σ = {σ0, . . . , σn−1} with σ ∈ Σ
such that for all j < k and i < n, unzipj,k(σ′i) is a linear combination of
elements from Σ.

A final coalgebra for k-regular sequences 11

We can formulate the uniqueness of J−KS and the commutativity of (14) in
terms of the zipk-operations by using the homomorphism condition (12).

Lemma 8. Given an S-weighted Ak-automaton (X, o, δ), J−KS is the unique
linear mapping SXω → SN satisfying, for each x ∈ X, the equations

Jη(x)KS(0) = o(x) Jη(x)K′S = zipk(Jδ(x)(1)KS , . . . , Jδ(x)(k)KS).

(Recall that η : X ↪→ SXω is the inclusion of states into the determinization.)

The above lemma justifies an alternative method of specifying streams via
equations involving the zipk-operation. A system of linear zipk-behavioral dif-
ferential equations over a set (of variables) X is a system of equations, one for
each x ∈ X, of the form,

x(0) = ax, x′ = zipk(αx,1, ..., αx,k) (15)

where ax ∈ S and αx,1, . . . , αx,k are S-linear combinations over X.
Linear zipk-behavioral differential equations and “plain” behavioral differ-

ential equations (using formal power series derivatives) both describe weighted
automata, but the use of linear zip-behavioral differential equations makes it
explicit that we intend to apply the finality of S (to obtain streams), rather
than the finality of L (to obtain formal power series). Explicitly, given a system
of linear zipk-behavioral differential equations as in (15), the corresponding S-
weighted Ak-automaton (X, o, δ) is given by o(x) = ax, and δ(x)(i) = αx,i for
all x ∈ X and i ∈ Ak.

We illustrate with a small example. The streams specified in derivative form
by the behavioral differential equations:

o(x) = 1, x1 = x+ y, x2 = 3x+ y
o(y) = 2, y1 = y, y2 = x+ 2y

are equivalently specified in terms of unzip0,2 ◦ tail and unzip1,2 ◦ tail, i.e., by
even ◦ tail and odd ◦ tail:

o(x) = 1, even(x′) = x+ y, odd(x′) = 3x+ y
o(y) = 2, even(y′) = y, odd(y′) = x+ 2y

and equivalently (via the zip-unzip isomorphism (6)), by the system of linear
zip2-behavioral differential equations:

o(x) = 1, x′ = zip2(x+ y, 3x+ y)
o(y) = 2, y′ = zip2(y, x+ 2y)

A solution to a system of linear zipk-behavioral differential equations over X
with components given as in (15), is a map f : X → SN such that for all x ∈ X,

f(x)(0) = ax, f(x)′ = zipk(f̂(αx,0), ..., f̂(αx,k−1)) (16)

where f̂ : SXω → SN is the linear extension of f with respect to the semimodule
structure on SN.

The basic fact that justifies viewing systems of linear zipk-behavioral differ-
ential equations as defining streams, is stated in the following lemma.

12 Helle Hvid Hansen, Clemens Kupke, Jan Rutten and Joost Winter

Lemma 9. Every system of linear zipk-behavioral differential equations has a
unique solution given by the final stream semantics J−KS ◦η of the corresponding
weighted automaton (X, o, δ).

Proof. By Lemma 8, the map J−KS ◦ η : X → SN is a solution, and it is unique
by uniqueness of J−KS . ut

We will say that a stream σ is defined by system of linear zipk-behavioral
differential equations over X if σ = Jη(x)KS for some x ∈ X in such a system.
In what follows, we will suppress η and simply write JxKS instead of Jη(x)KS .

3.3 Characterizations of k-regular sequences

We will now show that k-regular sequences are obtained precisely by the stream
semantics finite S-weighted Ak-automata. It will follow that k-regular sequences
are in bijective correspondence with recognizable formal power series via k-adic
numeration. This is an analogue of the result in [1] which shows that k-regular
sequences over the integers Z correspond to some Z-rational power series in
noncommuting variables {0, . . . , k− 1} via the standard base k numeration.

Proposition 10. Given any k ≥ 2, if σ ∈ SN is a k-regular sequence, then there
is a finite S-weighted Ak-automaton (X, o, δ) and an x ∈ X, such that JxKS = σ.

Proof. If σ is k-regular, there is a finite set of sequences Σ = {σ0, . . . , σn−1}
with σ ∈ Σ, and values ah and bh,i,j in S indexed over h < n, i < n, j < k, such
that for all h < n:

σh = zipk

(∑
i<n

ah,i,0σi, . . . ,
∑
i<n

ah,i,k−1σi

)
.

Taking the derivative and second derivative of each σh using (4), we obtain:

σ′h = zipk

(∑
i<n

ah,i,1σi, . . . ,
∑
i<n

ah,i,0σ
′
i

)

σ′′h = zipk

∑
i<n

ah,i,2σi, . . . ,
∑
i<n

ah,i,0σ
′
i,
∑
i≤n

ah,i,1σ
′
i


Hence, for each σ ∈ Σ+ := Σ ∪ {σ′ |σ ∈ Σ} and j < k, unzipj,k(σ′) is a

linear combination of elements from Σ+, and hence there is a finite S-weighted
Ak-automaton (X, o, δ) and an x ∈ X, such that JxKS = σ by Lemma 7. ut

Example 11. We illustrate Proposition 10 with a well-known 2-regular sequence,
which the composer Per Nørg̊ard used in a variety of his compositions, and which

A final coalgebra for k-regular sequences 13

he called the infinity sequence8 (A004718 on the Online Encyclopedia of Integer
Sequences9):

σ = (0, 1,−1, 2, 1, 0,−2, 3,−1, 2, 0, 1, 2, . . .) ∈ ZN

This sequence can be characterized uniquely by the following equations:

o(x) = 0 x = zip2(−x, x+ y)

o(y) = 1 y = zip2(y, y)

(with x denoting σ). The zip-equations on the right-hand side are a system in
the format of (9) and hence the sequence is 2-regular. Taking derivatives and
second derivatives of the zip-equations, we now get using (4):

x′ = zip2(x+ y,−x′) x′′ = zip2(−x′, x′ + y′)

y′ = zip2(y, y′) y′′ = zip2(y′, y′)

We can now compute the initial values of x′ and y′ as

o(x′) = o(zip2(x+ y,−x′)) = o(x+ y) = o(x) + o(y) = 1
o(y′) = o(zip2(y, y)) = o(y) = 1.

Introducing new variables z and w representing x′ and y′ respectively, we now
can specify a weighted automaton as the unique solution to the following system
of zip-equations:

o(x) = 0 x′ = zip2(x+ y,−z)
o(y) = 1 y′ = zip2(y, w)

o(z) = 1 z′ = zip2(−z, z + w)

o(w) = 1 w′ = zip2(w,w)

The final homomorphism J−KS maps x to Nørg̊ard’s infinity sequence:

JxKS = (0, 1,−1, 2, 1, 0,−2, 3,−1, 2, 0, 1, 2, . . .)

We remark, however, that this weighted automaton is not minimal, as y and w
both are mapped onto the constant sequence of ones.

Example 12. Another example, which can be constructed in the same manner
as the previous example, is given by the following N-weighted A2-automaton:

o(x) = 1 x′ = zip2(x, x)

o(y) = 1 y′ = zip2(2y, 2y + x)

o(z) = 1 z′ = zip2(z, x+ y)

8 http://pernoergaard.dk/eng/strukturer/uendelig/uindhold.html
9 http://oeis.org

14 Helle Hvid Hansen, Clemens Kupke, Jan Rutten and Joost Winter

Here, the final homomorphism J−KS maps x onto the constant stream of
ones, y onto the stream of natural numbers, and z onto Kimberling’s sequence
(A003602 on OEIS):

JzKS = (1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, . . .)

We now prove the converse of Proposition 10.

Proposition 13. Given any k ≥ 2, a finite S-weighted Ak-automaton (X, o, δ),
and a state x ∈ X, JxKS is k-regular.

Proof. By Lemma 8, we have

JxK′S = zipk(Jδ(x)(1)KS , . . . , Jδ(x)(k)KS)

and by (4) and (2) that

JxKS = zipk(o(x) + XJδ(x)(k)KS , Jδ(x)(1)KS , . . . , Jδ(x)(k-1)KS). (17)

Using the fact that (XJxKS)′ = JxKS , and applying again (4) and (2), we obtain:

XJxKS = zipk(XJδ(x)(k-1)KS , o(x) + XJδ(x)(k)KS , Jδ(x)(1)KS , . . . , Jδ(x)(k-2)KS)
(18)

By defining the set of generators

Σ = {JxKS |x ∈ X} ∪ {XJxKS |x ∈ X} ∪ {(1, 0, 0, . . .)}

the equations (17) and (18) show (via the zip-unzip isomorphism (6)) that for
each generator σ ∈ Σ and j < k, unzipj,k(σ) is a linear combination of the
generators. It follows from the definition that JxKS is k-regular for all x ∈ X. ut

We now can gather, from our previous results, the following equivalent char-
acterizations of k-regular sequences, arriving at our main theorem:

Theorem 14. The following are equivalent for any stream σ ∈ SN:

1. σ is k-regular.
2. σ is generated by a state in a finite weighted Ak-automaton.
3. σ is defined by a linear system of zipk-behavioral differential equations over

a finite set of variables.
4. hL(σ) ∈ S〈〈Ak〉〉 is a recognizable power series.

Proof. 1 ⇒ 2 is Proposition 10. 2 ⇒ 1 is Proposition 13. 2 ⇔ 3 follows from
Lemma 8 and Lemma 9. 2⇔ 4 follows from Proposition 5. ut

The equivalence 1⇔ 4 in the above theorem combined with the fact that hL
is a bijection with inverse hS directly yields the following corollary, establishing a
bijective correspondence between k-regular power series and recognizable power
series on the alphabet Ak:

A final coalgebra for k-regular sequences 15

Corollary 15. For all formal power series ρ ∈ S〈〈Ak〉〉 over variables Ak, we
have: ρ is recognizable if and only if the sequence hS(ρ) ∈ SN is k-regular.

The equivalence 1 ⇔ 4 of Theorem 14 is analogous to [1, Theorem 4.3],
which says that σ ∈ ZN is k-regular if and only if the formal power series∑
n<ω σ(n)ξ̄(n) is rational (or equivalently, recognizable), where ξ̄ : N→ B∗k\B∗k0

is the inverse of the bijection obtained by restricting the standard base k nu-
meration ξ : B∗k → N to words not ending in 0. In contrast with our results,
[1, Theorem 4.3] cannot be extended to a bijective correspondence between the
classes of k-regular sequences and rational power series over variables in Bk as
there are rational power series ρ ∈ S〈〈Bk〉〉 that do not correspond to any k-
regular sequence via standard base k numeration. In other words, there is no
analogue of our Corollary 15 in the presentation using standard base k numera-
tion from [1].

Zero-consistent automata. It is also possible to characterize k-regular sequences
by a class of weighted automata that read the numeration used in [1, Theorem
4.3] (standard base k backwards). This class of automata is provided by the so-
called zero-consistent S-weighted Bk-automata which are a mild generalisation
of the zero-consistent automata that have been described in [12].

The defining feature for zero-consistent automata is that the (immediate)
output of the automaton does not change when reading letter 0. Intuitively,
reading letter 0 corresponds to moving from a state generating stream σ to a state
that generates the stream unzip0,k(σ). Zero-consistency reflects the fact that
the head of any stream σ is equal to the head of the stream unzip0,k(σ). More
generally, reading a letter j with 0 ≤ j < k in this setting corresponds to moving
from a state that represents a stream σ to a state that represents the stream
unzipj,k(σ). As Definition 2 of k-regular sequences is based on the unzipk-
operations (and not on the unzipk ◦ tail-operations as used in the definition of
S) it is rather straightforward to prove that the k-regular sequences are precisely
the ones that can be generated using zero-consistent automata.

3.4 Connections to automatic sequences

All of the results that were presented earlier in this section can be seen as
generalizations of corresponding results about the k-automatic sequences. In this
subsection, we will state (without proofs, but with some explanations about the
relationships) the corresponding theorems. We remark that, unlike in the case
of k-regular sequences, the results for automatic sequences are, in this form,
well-known in the literature. The following definition is analogous to Definition
2, but uses the more restrictive condition that the k-kernel is finite, rather than
finitely generated:

Definition 16. A sequence σ ∈ SN is k-automatic iff the k-kernel of σ is finite,
or equivalently, iff there is a finite set of sequences Σ = {σ0, . . . σn−1} with
σ ∈ Σ, such that for all h, j ∈ N with h < n and j < k, unzipj,k(σh) ∈ Σ.

16 Helle Hvid Hansen, Clemens Kupke, Jan Rutten and Joost Winter

We can now obtain the following results, using essentially the same techniques
have been used in this paper for k-regular sequences:

– A sequence σ ∈ SN is k-automatic if and only if there is a finite Ak-
automaton (Q, o, δ) such that σ = JqKS for some q ∈ Q. (Equivalent to
[2, Theorem 5.2.7])

– A sequence σ is k-automatic iff it takes finitely many values v1, . . . , vn, and
for each vi, the language {w ∈ A∗k |hL(σ)(w) = vi} is regular. (Analogous to
[2, Lemma 5.2.6], with change from standard to bijective numeration)

4 Relation to divide and conquer recurrences

Divide and conquer recurrences, which have been considered for example in [10]
and [20], can somewhat informally be seen as—in the case of k = 2, to which we
will restrict ourselves in this section—sequences σ where σ(0) is given, and for
each n, σ(n) is defined in terms of σ(floor((n− 1)/2)), σ(ceil((n− 1)/2)), and
polynomials in n.

In this section, we will establish a close link between divide and conquer recur-
rences satisfying a number of ‘natural’ conditions, and the k-regular sequences,
by showing that their sequences occur as 2-regular sequences.

We will restrict ourselves to special (more precisely defined) restricted ver-
sions of divide and conquer recurrences. To be precise, we will consider recur-
rences of the form

σ(2n) = a2σ(n− 1) + a3σ(n) + τ1(n) σ(2n+ 1) = a1σ(n) + τ0(n)

where a1, a2, a3 are scalars from the semiring S, and τ1 and τ0 are themselves
2-regular sequences. We furthermore hold the assumption that σ(0) = 0 (we will
later see that this assumption can be relaxed).

Now observe that

σ(2n+ 2) = σ(2(n+ 1)) = a2σ(n) + a3σ(n+ 1) + τ ′1(n).

As a result of the equalities σ(2n + 1) = (even(σ′))(n) and σ(2n + 2) =
(odd(σ′))(n) we now derive

(even(σ′))(n) = (a1σ + τ0)(n)

and (odd(σ′))(n) = (a2σ + a3σ
′ + τ ′1)(n)

and hence also

even(σ′) = a1σ + τ0 odd(σ′) = a2σ + a3σ
′ + τ ′1.

A large number of combinatorial problems can be expressed by means of
divide and conquer recurrences of this type, and can be transformed using this
construction, including problems such as the Josephus problem, the sequence
of all numbers whose ternary representation does not contain the digit 1, or

A final coalgebra for k-regular sequences 17

does not contain the digit 2, counting of quicksort insertions, and a variety
of other combinatorial and graph-theoretic problems. An overview of many of
these examples can be found at http://oeis.org/somedcgf.html. One of the
questions asked here, is whether all the examples presented there are indeed
2-regular. We will soon see that this question can be answered positively.

Example 17. As an example illustrating the construction, the recurrence given
by

σ(0) = 0 σ(2n) = σ(n) + σ(n− 1) + 2n− 2 σ(2n+ 1) = 2σ(n) + 2n− 1

specifying the sorting numbers (OEIS A001855) can first be transformed into:

σ(0) = 0 σ(2n+ 1) = 2σ(n) + 2n− 1 σ(2n+ 2) = σ(n+ 1) + σ(n) + 2n

We can coinductively specify the streams ones and nats by

o(ones) = 1, even(ones′) = ones, odd(ones′) = ones
o(nats) = 1, even(nats′) = 2 · nats, odd(nats′) = 2 · nats + ones

and now we can transform the earlier recurrence into the behavioral differential
equation:

o(σ) = 0 even(σ′) = 2σ + 2 · nats− ones odd(σ′) = σ′ + σ + 2 · nats

We can now establish that σ is again 2-regular:

Proposition 18. Let τ0 and τ1 be 2-regular sequences over a semiring S, and let
a0, a1, a2, and a3 be elements of S. Then there is a unique sequence σ satisfying

σ(0) = a0 even(σ′) = a1σ + τ0 odd(σ′) = a2σ + a3σ
′ + τ1

which is again 2-regular.

Proof. If τ0 and τ1 are 2-regular, there are finite weighted automata (X0, o0, δ0)
and (X1, o1, δ1) with elements x0 ∈ X0, x1 ∈ X1 such that Jx0KS = τ0 and
Jx1KS = τ1.

Observe that, if σ satisfies the above equation, we can directly derive:

σ′(0) = a1a0 + o(τ0) even(σ′′) = a2σ + a3σ
′ + τ1 odd(σ′′) = a1σ

′ + τ ′0

We thus specify a system (X0 ∪ X1 ∪ {y, z}, o, δ) satisfying the behavioral
differential equations for X0 and X1 as before, and additionally:

o(y) = a0 even(y′) = a1y + o(x0) odd(y′) = a2y + a3z + x1
o(z) = a1a0 + o(x0) even(z′) = a2y + a3z + x1 odd(z′) = a1z + x′0

By Lemma 9, this system has a unique solution, in which JyKS satisfies the
equations for σ and JzKS = JyK′S . Because, given systems for τ0 and τ1, any
solution to the original equation for σ has to satisfy all equations in the composite
system, the solution for σ also is unique. ut

18 Helle Hvid Hansen, Clemens Kupke, Jan Rutten and Joost Winter

This construction now leads to a large collection of examples, directly deriv-
able from specifications of divide and conquer-recurrences. We have used the
overview on http://oeis.org/somedcgf.html as a basis for the examples that
follow. We will not explicitly specify the constructions used: however, all ex-
amples have been obtained by a combination of the constructions presented in
Propositions 10 and 18. All the examples that follow are 2-regular over the ring
Z.

Example 19. We can now specify a large amount of sequences as 2-regular se-
quences. In most cases, we just need the three variables x (over the ring Z, and
in cases where no negative coefficients occur also over the semiring N), nats and
ones, where x represents the sequence itself; in some cases we need a fourth
variable x′, but these cases still fit in the format of Proposition 18.

o(x) even(x′) odd(x′) OEIS
1 4x 4x+ ones A000695
0 2x+ 2 · nats− ones x+ x′ + 2 · nats A001855
0 2x+ 2 · nats x+ x′ + 2 · nats + ones A003314
1 −x x+ ones A004718
1 3x 3x+ ones A005836
1 2x− 1 x+ x′ A006165
0 x+ ones 0 A007814
1 −x ones− x A065359
0 2(x+ nats + ones) x+ x′ + 2(nats + ones) A067699
1 2x+ ones 2 · nats + ones A086799

Here, for example, A000695 is the Moser-de Bruijn sequence which is the
ordered sequence of all numbers that can be written as a sum of distinct powers
of 4; the nth element of A001855 is the maximal number of comparisons needed
to sort n elements by binary insertion; and A005836 is the ordered sequence
of all numbers whose base 3 representation contains no 2. For specifications of
the other examples, as well as a large amount of background information about
these sequences, we refer to the entries at the OEIS.

Remark 20. All the examples in this section can be easily implemented in the
functional programming language Haskell. Building on the existing work on
stream calculus in Haskell (e.g. [13], [11], [21]), the zip operation of arbitrary
arity can be specified in Haskell using the (behavioral differential) equation

xzip (s:t) = head s : xzip (t ++ [tail s])

allowing us to specify all of the above examples with a single line of Haskell code.
For example, the (tail of the) Nørg̊ard sequence can now be specified by:

n = 1 : xzip [-n, n + ones]

A final coalgebra for k-regular sequences 19

5 Conclusions and Future Work

We have given a coalgebraic (or automata-theoretic) as well as an algebraic
characterization of k-regular sequences: the k-regular sequences are exactly the
sequences that are generated by finite S-weighted automata over the k-letter
alphabet Ak. They are also exactly the sequences that can be defined by a finite
system of linear zip-behavioral differential equations. We also showed that there
is an isomorphism between the final Ak-automaton of formal power series and the
Ak-automaton of sequences (which is then also final). This isomorphism is given
by bijective k-adic numeration, and we derived from it directly that k-regular
sequences are in bijective correspondence with recognizable formal power series
over Ak.

The following table gives an overview of the classes of sequences and formal
power series that are generated by finite deterministic, respectively weighted,
automata with respect to three different final automata:

deterministic weighted
S semiring automata automata

1-letter eventually periodic recognizable
(SN,head, tail) (= 1-automatic) (= 1-regular)

k-letter S-simple recognizable
(S〈〈Ak〉〉, O,∆) power series power series

k-letter k-automatic k-regular
(SN,head,unzipk ◦ tail) sequences sequences

If S is finite, then the right-hand “weighted” column collapses and becomes equal
to the left-hand “deterministic” column. Hence every finite weighted automaton
with output in a finite S is equivalent to a finite deterministic automaton with
output in S.

Generalization to other numeration systems. The k-adic numeration system ap-
pears to be a ‘nice’ choice because it is bijective and hence gives a bijective
correspondence between k-regular sequences and recognizable series (which is
not the case with standard base k numeration). It may be interesting to in-
vestigate whether corresponding results can be obtained with respect to other
(bijective or not) numeration systems.

Relation to S-algebraic sequences. In [7], a coalgebraic characterization of alge-
braic power series, which generalizes context-free languages, was provided. Here,
(constructively) algebraic power series can be described using systems of behav-
ioral differential equations over a finite set X, where each derivative is given as
a polynomial over X with coefficients in S. As with weighted automata, such
a system can be determinized into an automaton whose states are polynomials
over X with coefficients in S.

It would be interesting to see if we can connect this notion of (constructive)
algebraicity to the existing notion of k-context-free sequences (see e.g. [15]),

20 Helle Hvid Hansen, Clemens Kupke, Jan Rutten and Joost Winter

using techniques analogous to the ones used in this paper to connect k-regular
sequences, recognizable sequences and power series. As a final remark, we note
that it is easily possible to use the isomorphism from Section 3.1 as the basis for
a definition of k-context-freeness, however, we note that the product inherited on
SN from the convolution product on S〈〈Ak〉〉 differs from the standard convolution
product on SN except for the case where k = 1.

References

1. Jean-Paul Allouche and Jeffrey O. Shallit. The ring of k-regular sequences. Theo-
retical Computer Science, 98:163–197, 1992.

2. Jean-Paul Allouche and Jeffrey O. Shallit. Automatic Sequences – Theory, Appli-
cations, Generalizations. Cambridge University Press, 2003.

3. Jean-Paul Allouche and Jeffrey O. Shallit. The ring of k-regular sequences, II.
Theoretical Computer Science, 307:3–29, 2003.

4. Falk Bartels. On Generalized Coinduction and Probabilistic Specification Formats.
PhD thesis, Vrije Universiteit Amsterdam, 2004.

5. Jason P. Bell. On the values attained by a k-regular sequence. Advances in Applied
Mathematics, 34:634–643, 2005.

6. Jean Berstel and Christophe Reutenauer. Noncommutative Rational Series with
Applications. Cambridge University Press, 2011.

7. Marcello M. Bonsangue, Jan Rutten, and Joost Winter. Defining context-free
power series coalgebraically. In Dirk Pattinson and Lutz Schröder, editors, Pro-
ceedings of Coalgebraic Methods in Computer Science (CMCS 2012), volume 7399
of LNCS, pages 20–39. Springer, 2012.

8. Zoltán Ésik and Andreas Maletti. The category of simulations for weighted tree
automata. International Journal of Foundations of Computer Science (IJFCS),
22(8):1845–1859, 2011.

9. Clemens Grabmayer, Jörg Endrullis, Dimitri Hendriks, Jan Willem Klop, and
Lawrence S. Moss. Automatic sequences and zip-specifications. In Proceedings
of Logic in Computer Science (LICS 2012), pages 335–344. IEEE Computer Soci-
ety Press, 2012.

10. Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics:
A Foundation for Computer Science. Addison-Wesley Longman Publishing Co.,
Inc., 2nd edition, 1994.

11. Ralf Hinze. Concrete stream calculus—an extended study. Journal of Functional
Programming, 20(5-6):463–535, 2011.

12. Clemens Kupke and Jan Rutten. On the final coalgebra of automatic sequences. In
Robert L. Constable and Alexandra Silva, editors, Logic and Program Semantics,
volume 7230 of LNCS, pages 149–164. Springer, 2012.

13. M. Douglas McIlroy. The music of streams. Information Processing Letters, 77(2-
4):189–195, 2001.

14. Nax P. Mendler, Prakash Panangaden, and Robert L. Constable. Infinite objects
in type theory. In Proceedings of Logic in Computer Science (LICS 1986), pages
249–255. IEEE Computer Society Press, 1986.

15. Yossi Moshe. On some questions regarding k-regular and k-context-free sequences.
Theoretical Computer Science, 400:62–69, 2008.

16. Sanjay V. Rajopadhye and Prakash Panangaden. Verification of systolic arrays:
A stream function approach. In International Conference on Parallel Processing
(ICPP’86), pages 773–775. IEEE Computer Society Press, 1986.

A final coalgebra for k-regular sequences 21

17. Jan Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Sci-
ence, 249(1):3–80, 2000.

18. Jan Rutten. Behavioural differential equations: a coinductive calculus of streams,
automata, and power series. Theoretical Computer Science, 308(1-3):1–53, 2003.

19. Alexandra Silva, Filippo Bonchi, Marcello Bonsangue, and Jan Rutten. General-
izing determinization from automata to coalgebras. Logical Methods in Computer
Science, 9(1), 2013.

20. Ralf Stephan. Divide-and-conquer generating functions. Part I. Elementary se-
quences. ArXiv Mathematics e-prints, July 2003.

21. Joost Winter. QStream: a suite of streams. In Reiko Heckel and Stefan Milius,
editors, Proceedings of Algebra and Coalgebra in Computer Science (CALCO 2013),
volume 8089 of LNCS, 2013.

