Skip to main content

The Impact of Geometrical Objects Generalization on the Query Execution Efficiency in Spatial Databases

  • Conference paper
Beyond Databases, Architectures, and Structures (BDAS 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 424))

Abstract

This paper presents the problem of geometrical objects generalization in relation to the geospatial queries efficiency. Authors in their research focused on a qualitative assessment of data, which are derived from the lossy generalization processes. Furthermore, they also attempted to determine the critical level of profitability of lossy generalization. There was also examined a correlation between the reduction of data details by removing vertices and a geospatial query execution speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. OGC - The Open Geospatial Consortium, http://www.opengeospatial.org/

  2. OpenGIS Implementation Specfication for Geographic information - Simple feature access - SQL option, http://www.opengeospatial.org/standards/sfs

  3. Augustyn, D.R.: The method of query selectivity estimation for selection conditions based on sum of sub-independent attributes. In: Gruca, D.A., Czachorski, T., Kozielski, S. (eds.) Man-Machine Interactions 3. AISC, vol. 242, pp. 601–609. Springer International Publishing, Switzerland (2014), http://dx.doi.org/10.1007/978-3-319-02309-0_65

  4. Bajerski, P.: Optimization of geofield queries. In: Proceedings of the 1st IEEE International Conference on Information Technology, pp. 1–4 (2008)

    Google Scholar 

  5. Bajerski, P.: How to efficiently generate pnr representation of a qualitative geofield. In: Cyran, K., Kozielski, S., Peters, J., Stanczyk, U., Wakulicz-Deja, A. (eds.) Man-Machine Interactions. AISC, vol. 59, pp. 595–603. Springer, Heidelberg (2009), http://dx.doi.org/10.1007/978-3-642-00563-3_62

    Chapter  Google Scholar 

  6. Bajerski, P., Kozielski, S.: Computational model for efficient processing of geofield queries. In: Cyran, K.A., Kozielski, S., Peters, J., Stanczyk, U., Wakulicz-Deja, A. (eds.) Man-Machine Interactions. AISC, vol. 59, pp. 573–583. Springer, Heidelberg (2009), http://dx.doi.org/10.1007/978-3-642-00563-3_60

    Chapter  Google Scholar 

  7. Chrobak, T.: Podstawy cyfrowej generalizacji kartograficznej. AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne (2007), http://books.google.pl/books?id=QfeVGAAACAAJ

  8. Chrobak, T., Koziol, K., Krawczyk, A., Lupa, M., Szombara, S.: Automatyzacja procesu generalizacji dla wielorozdzielczej bazy danych. AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne (2013)

    Google Scholar 

  9. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. The Canadian Cartographer 10(2), 112–122 (1973)

    Article  Google Scholar 

  10. International Organization For Standardization: ISO/IEC 13249-3:1999, Information technology - Database languages - SQL Multi-media and Application Packages - Part 3: Spatial (2000)

    Google Scholar 

  11. Jenks, G.F.: Lines, computers, and human frailties. Annals of the Association of American Geographers 71(1), 1–10 (1981)

    Article  Google Scholar 

  12. Koziol, K.: Comparison of selected simplification algorithms on the example of a representative test area. Annals of Geomatics 9, 49–57 (2011)

    Google Scholar 

  13. Koziol, K.: Generalisation operators of buildings layer. Annals of Geomatics 10, 45–57 (2012)

    Google Scholar 

  14. Kozioł, K., Szombara, S.: New method of creation data for natural objects in mrdb based on new simplification algorithm. In: 26th International Cartographic Conference. International Cartographic Association (2013)

    Google Scholar 

  15. Lang, T.: Rules for robot draughtsman. The Geographical Magazine 42, 50–51 (1969)

    Google Scholar 

  16. Lupa, M., Piorkowski, A.: Rule-based query optimizations in spatial databases. Studia Informatica 33, 105–115 (2012)

    Google Scholar 

  17. Lupa, M., Piorkowski, A.: Spatial query optimization based on transformation of constraints. In: Gruca, D.A., Czachorski, T., Kozielski, S. (eds.) Man-Machine Interactions 3. AISC, vol. 242, pp. 621–629. Springer International Publishing, Switzerland (2014), http://dx.doi.org/10.1007/978-3-319-02309-0_67

  18. McMaster, R.B.: Automated line generalization. Cartographica 24(2), 74–111 (1987)

    Article  MathSciNet  Google Scholar 

  19. Opheim, H.: Fast data reduction of a digitized curve. Geo-Processing (2), 33–40 (1982)

    Google Scholar 

  20. Papadias, D., Mamoulis, N., Theodoridis, Y.: Constraint-based processing of multiway spatial joins. Algorithmica 30(2), 188–215 (2001), http://dblp.uni-trier.de/db/journals/algorithmica/algorithmica30.html#PapadiasMT01

    Article  MATH  MathSciNet  Google Scholar 

  21. Park, H.H., Lee, Y.J., Chung, C.W.: Spatial query optimization utilizing early separated filter and refinement strategy. Information Systems 25(1), 1–22 (2000)

    Article  MATH  Google Scholar 

  22. Piorkowski, A., Krawczyk, A.: The problem of object generalization and query optimization in spatial databases. Studia Informatica 32, 119–129 (2011)

    Google Scholar 

  23. Pluciennik, T., Pluciennik-Psota, E.: Using graph database in spatial data generation. In: Gruca, D.A., Czachorski, T., Kozielski, S. (eds.) Man-Machine Interactions 3. AISC, vol. 242, pp. 643–650. Springer International Publishing, Switzerland (2014), http://dx.doi.org/10.1007/978-3-319-02309-0_69

  24. Robinson, A., Sales, R., Morrison, J., Ostrowski, W.: Podstawy kartografii. Państwowe Wydawnictwo Naukowe (1988), http://books.google.pl/books?id=nQE1AAAACAAJ

  25. Tobler, W.: Numerical Map Generalization: And, Notes on the Analysis of Geographical Distributions. Discussion paper series, Department of Geography, University of Michigan (1966), http://books.google.pl/books?id=MbUUnQEACAAJ

  26. Visvalingam, M., Whyatt, J.D.: Line generalisation by repeated elimination of points. The Cartographic Journal, 46–51 (June 1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Lupa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Lupa, M., Piórkowski, A. (2014). The Impact of Geometrical Objects Generalization on the Query Execution Efficiency in Spatial Databases. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures, and Structures. BDAS 2014. Communications in Computer and Information Science, vol 424. Springer, Cham. https://doi.org/10.1007/978-3-319-06932-6_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06932-6_44

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06931-9

  • Online ISBN: 978-3-319-06932-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics