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Abstract. In this paper, we propose adding enzymes to the propaga-
tion environment of a diffusive molecular communication system as a
strategy for mitigating intersymbol interference. The enzymes form reac-
tion intermediates with information molecules and then degrade them so
that they have a smaller chance of interfering with future transmissions.
We present the reaction-diffusion dynamics of this proposed system and
derive a lower bound expression for the expected number of molecules
observed at the receiver. We justify a particle-based simulation frame-
work, and present simulation results that show both the accuracy of
our expression and the potential for enzymes to improve communication
performance.
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1 Introduction

Molecular communication is the use of molecules emitted by a transmitter into
its surrounding environment to carry information to an intended receiver. This
strategy has recently emerged as a popular choice for the design of new com-
munication networks where devices with nanoscale components need to commu-
nicate with each other, i.e., nanonetworks. Molecular communication is suitable
because its inherent biocompatibility can facilitate implementation inside of a
living organism; many mechanisms in cells, organisms, and subcellular structures
already rely on the transmission of molecules for communication, as described
in [1, Ch. 16]. It is envisioned, as in [2, 3], that by using bio-hybrid components
(such as synthesized proteins or genetically-modified cells), we can take advan-
tage of these mechanisms for a range of applications that can include health
monitoring, targeted drug delivery, and nanotechnology in general.

The design of molecular communication systems should reflect both the lim-
ited capabilities of small individual transceivers and the physical environment
in which they operate. The state-of-the-art has only begun to take advantage of
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the unique characteristics of molecular communication systems and their oper-
ational environments. The simplest and arguably most popular molecular com-
munication scheme proposed has been communication via diffusion. Diffusion is
a naturally-occurring process where free molecules tend to disperse through a
medium over time. Diffusion requires no added energy and can be very fast over
short distances; bacterial cells, many of which are on the order of one micron in
diameter, can rely on diffusion for all of their internal transport requirements;
see [4, Ch. 4]. By adopting diffusion, network designers do not need to worry
about the development of the infrastructure required for active methods such as
the molecular motors described in [5].

The major drawbacks of using diffusion are the need for a large number of
information molecules to send a single message, long propagation times over
larger distances, and the intersymbol interference (ISI) due to molecules tak-
ing a long time to diffuse away. Fortunately, biological systems commonly store
large numbers of molecules for release at specific instances, such as the storage
of Calcium ions in cellular vesicles until they are needed for signalling or secre-
tion, as described in [1, Ch. 16]. Thus, delay and ISI become the performance
bottlenecks. Strategies in the literature for mitigating ISI have been limited
to making the transmitter wait sufficiently long for the presence of previously-
emitted molecules to become negligible, as in [6–8]. The primary drawback of
this strategy is a reduced transmission rate.

We propose adding reactive molecules to the propagation environment to
significantly decrease the ISI in a molecular communication link when a single
type of information molecule is used. The reactive molecules transform the infor-
mation molecules so that they are no longer recognized by the receiver. If using
chemical reactants, then they must be provided in stoichiometric excess rela-
tive to the information molecules, otherwise their capacity to transform those
molecules may be limited over time. However, a catalyst lowers the activation en-
ergy for a specific biochemical reaction but does not appear in the stoichiometric
expression of the complete reaction so (unlike a reactant) is not consumed.

An enzyme is a biomolecule that acts as a catalyst, often by providing an
active site (a groove or pocket) that encourages a particular molecular confor-
mation; see [1, Ch. 3]. Compared to catalysts in general, enzymes can have the
advantage of very high selectivity for their substrates. Thus, we are specifically
interested in enzymes as reactive molecules because a single enzyme can be recy-
cled to react many times. Enzymes play a key role in many essential biochemical
reactions. For example, acetylcholinesterase is an enzyme present in the neuro-
muscular junction that hydrolyzes diffusing acetylcholine to prevent continued
activation in the post-synaptic membrane because the receptor in the membrane
does not recognize acetate or choline, as described in [4, Ch. 12]. Acetylcholine
is called the substrate for acetylcholinesterase. The physical environment of the
neuromuscular junction is referred to as a reaction-diffusion system because reac-
tion and diffusion can take place simultaneously. From a purely communications
perspective, the enzyme in this example is reducing the ISI of the substrate.



Molecular Communication with Unanchored Enzymes 3

There are many potential benefits for using enzymes to aid in developing new
molecular communication systems. The reduction in ISI would enable transmit-
ters to release molecules more often, simultaneously increasing the data rate
and decreasing the probability of erroneous transmission. There would also be
less interference from neighbouring communication links, so independent sender-
receiver pairs could be placed closer together than in an environment dominated
by diffusion alone. These gains can be achieved with no additional complexity
at the sender or receiver, which is a very useful benefit for the case of individual
nanomachines with limited computational capabilities. The enzymatic reaction
mechanism could also be coupled to a mechanism that regenerates information
molecules once they are degraded so that they are returned to the sender for
future use (as is the case for acetylcholinesterase). Of course, it is necessary to
select an enzyme-substrate pair that would not otherwise damage the environ-
ment where the nanomachines are in operation.

Most existing work in molecular communications, including [9] and [10], have
considered enzymes only at the receiver as part of the reception mechanism. In
these cases, the ability for the enzymes to mitigate ISI is limited. Two works that
have considered information molecules reacting in the propagation environment
are [11, 12]. In [11], the spontaneous destruction and duplication of information
molecules are treated as noise sources, whereas in [12], information molecules
undergo exponential decay in an attempt to mitigate ISI. Papers that have con-
sidered reaction-diffusion systems with enzymes in the propagation environment
from a biological perspective, such as [13] and [14] for acetylcholinesterase, have
focussed on providing an accurate simulation model for specific biological pro-
cesses with a particular physical layout and not the manipulation of parameters
for the design of new communication systems.

In this paper, we present a model for the analysis of diffusion-based communi-
cation systems with enzymes that are present throughout the entire propagation
environment. We start with the fundamental dynamics of both diffusion and
enzyme kinetics to derive a bound on the expected number of molecules within
the volume of an isolated observer placed some distance from the transmitter.
In this context, we assume that the reader has a communications background
and is not familiar with reaction-diffusion dynamics. We justify a particle-based
simulation framework to assess the accuracy of our analytical results, and show
that adding enzymes drastically reduces the “tail” created by relying on diffusion
alone.

The rest of this paper is organized as follows. In Section 2, we introduce our
model for transmission between a single transmitter and receiver. This model
is based on both reaction and diffusion. In Section 3, we derive the number of
information molecules expected at the receiver. We present the simulation frame-
work in Section 4 before giving numerical and simulation results in Section 5. In
Section 6, we present conclusions and discuss the on-going and future direction
of our analysis.

Unless otherwise noted, we use meters (m) for distance, seconds (s) for time,
and molecules per m3 for concentrations (concentrations are typically given in
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Fig. 1. The Michaelis-Menten reaction mechanism. Substrate molecule A can react
with enzyme molecule E if they collide with sufficient energy and in the correct orien-
tation. The reaction produces an intermediate EA that can either return to its original
constituents or degrade particle A into AP . The enzyme is not degraded by this process
so it can react with multiple A molecules. An A molecule, once degraded, cannot be
returned to its original state via this mechanism.

moles per litre, but molecules per m3 makes our analysis easier to follow by
limiting the number of conversions).

2 System Model

We consider an unbounded 3-dimensional aqueous environment. There is a
sender fixed at the origin, treated analytically as a point source but as a sphere
in simulation. The receiver is a fixed spherical volume of radius robs and size Vobs,
centered at the point defined by ~r0 = {x0, y0, z0}. The receiver acts as a passive
observer by not disturbing the diffusion of any molecules in the environment.
This is not a strong assumption, since many small molecules are able to diffuse
freely through cells and other objects if the molecules are non-polar or if there
are protein channels specific to the molecules in the cell’s plasma membrane;
see [1, Ch. 12]. The immobility of both the sender and receiver is generally im-
practical at the nanoscale unless they are anchored to larger objects, but here
we assume immobility for ease of analysis.

Before describing our communication process, we must overview the environ-
ment’s chemical dynamics. There are three mobile species (types of molecules)
in the system that we are interested in: A molecules, E molecules, and EA
molecules. The number of molecules of species S is given by NS where S ∈
{A,E,EA}. A molecules are the information molecules that are released by the
sender. These molecules have a natural degradation rate that is negligible over
the time scale of interest, but they are able to act as substrates with enzyme
E molecules. We assume that A and E molecules react according to the follow-
ing Michaelis-Menten reaction mechanism (which is generally accepted as the
fundamental mechanism for enzymatic reactions; see [4, 15], and Fig. 1):

E +A
k1−→ EA, (1)

EA
k
−1

−−→ E +A, (2)

EA
k2−→ E +AP , (3)
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where EA is the intermediate formed by the binding of an A molecule to an
enzyme molecule, AP is the degraded A molecule, and k1, k−1, and k2 are the
reaction rates for the reactions as shown with units molecule−1m3 s−1, s−1, and
s−1, respectively. We see that A molecules are irreversibly degraded by reaction
(3) while the enzymes are released intact so that they can participate in fu-
ture reactions. We are not interested in the AP molecules once they are formed
because they cannot participate in future reactions.

We assume that every molecule of each species S diffuses independently of
all other molecules, unless they are bound together. We assume that all free
molecules are spherical in shape so that we can state that each molecule diffuses
with diffusion constant DS , found using the Einstein relation as [4, Eq. 4.16]

DS =
kBT

6πηRS
, (4)

where kB is the Boltzmann constant (kB = 1.38× 10−23 J/K), T is the temper-
ature in kelvin, η is the viscosity of the medium in which the particle is diffusing
(η ≈ 10−3 kgm−1s−1 for water at room temperature), and RS is the molecule
radius. Thus, the units for DS are m2/s. The diffusion of a single molecule along
one dimension has variance 2DSt, where t is the diffusing time [4, Eq. 4.6].

We note that reaction rate constants are experimentally measured for spe-
cific reactions under specific environmental conditions (i.e., temperature, pH,
etc.) using large populations of each reactant. By “large”, we mean sufficiently
large for the rate of change of species concentrations to be deterministic. Diffu-
sion also becomes deterministic with sufficiently large populations. We are not
interested in such large populations due to the size of our system. However, the
rate constants also describe the stochastic affinity of reactions in single-molecule
detail, as proven in [16]. It is impossible to precisely predict where a specific
molecule will diffuse and if or when it will react with other molecules, but the
diffusion and reaction rate constants will be used to generate random variables
when executing stochastic simulations of system behavior.

We can now describe the communication process. The sender emits impulses
of NA A molecules, which is a common emission scheme in the molecular com-
munication literature; see, for example, [6]. We deploy binary modulation with
constant bit interval TB, where NA molecules are released at the start of the
interval for binary 1 and no molecules are released for binary 0 (there have been
works studying the use of different TBs depending on the values of the current
and previous bit, as in [8], since, for example, consecutive 0s can be transmitted
with less risk of intersymbol interference). NE E molecules are randomly (uni-
formly) distributed throughout a finite cubic volume Venz that includes both
the sender (TX) and receiver (RX), as shown in Fig. 2. Venz is impermeable
to E molecules (so that we can simulate using a finite number of E molecules)
but not A molecules (in simulation, we make EA molecules decompose to their
constituents if they hit the boundary). Therefore, the total concentration of the
free and bound enzyme is constant. Venz is sufficiently large to assume that it
is infinite in size, such that there would be negligible change in observations at
the receiver if Venz were also impermeable to A molecules.
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Fig. 2. The bounded space Venz in 2-dimensions showing the initial uniform distribu-
tion of enzyme E. Venz inhibits the passage of E so that the total concentration of free
and bound E remains constant. A molecules can diffuse beyond Venz .

The receiver counts the number of free (unbound) Amolecules that are within
the receiver volume, without disturbing those molecules. For a practical bio-
hybrid system, the A molecules would need to bind to receptors on either the
receiver surface or within the receiver’s volume, but we assume perfect passive
counting in order to focus on the propagation environment. We also assume that
the degraded AP molecules were modified in such a way that they cannot be
detected by the receiver, so AP molecules can be ignored.

3 Observations at the Receiver

Generally, the spatial-temporal behavior of the three mobile species can be de-
scribed using a system of reaction-diffusion partial differential equations. Even
though these equations are deterministic, we noted in Section 2 that they will
enable stochastic simulation. In this section, we use the deterministic partial
differential equations to derive the expected number of information molecules at
the receiver.

3.1 Diffusion Only

For comparison, we first consider the dynamics when there is no enzyme present,
i.e., NE = 0. So, we only consider the diffusion of A molecules in the unbounded
environment. By Fick’s Second Law we have [4, Ch. 4]

∂CS(~r, t)

∂t
= DS∇

2CS(~r, t), (5)

where CS(~r, t) is the point concentration of species S at time t and location ~r.
Closed-form analytical solutions for partial differential equations are not always
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possible and depend on the boundary conditions that are imposed. Here, we
have no E molecules, so there are also no EA molecules, and we immediately
have CE(~r, t) = CEA(~r, t) = 0 ∀~r, t. Assuming that the A molecules are released
from the origin at t = 0, we then have [4, Eq. 4.28]

CA(~r, t) =
NA

(4πDAt)3/2
exp

(

−|~r|2

4DAt

)

. (6)

Eq. (6) is the form that is typically used in molecular communications to
describe the local concentration at the receiver; the receiver is assumed to be a
point observer, as in [7,17], or the concentration throughout the receiver volume
is assumed to be uniform and equal to that expected in the center, as in [6]. Eq.
(6) is the baseline against which we will evaluate our proposed system design.

It has been noted that Fick’s second law violates the theory of special relativ-
ity, since there is no bound on how far a single particle can travel within a given
time. A finite propagation speed can be added as a correction, as in [18], but we
assume that Fick’s second law is sufficiently accurate without this correction.

3.2 Reaction-Diffusion

We now include active enzymes in our analysis. If we write CS(~r, t) = CS ,
S ∈ {A,E,EA}, for compactness, then the general reaction-diffusion equation
is [19, Eq. 8.12.1]

∂CS

∂t
= DS∇

2CS + f (CS ,~r, t) , (7)

where f (·) is the reaction term. Using the principles of chemical kinetics (see [15,
Ch. 9]), we write the complete partial differential equations for the species in
our system as

∂CA

∂t
= DA∇

2CA − k1CACE + k−1CEA, (8)

∂CE

∂t
= DE∇

2CE − k1CACE + k−1CEA + k2CEA, (9)

∂CEA

∂t
= DA∇

2CEA + k1CACE − k−1CEA − k2CEA. (10)

This system of equations is highly coupled due to the reaction terms and
has no closed-form analytical solution under our boundary conditions. We seek
such a solution, so we must make some simplifying assumptions. We first note
that the total concentration of enzyme, both free and bound to A, over the
entire system is always constant CETot

= NE/Venz. A common next step for the
Michaelis-Menten mechanism in (1)-(3) is to assume that the amount of EA is
constant, i.e., ∂CEA

∂t = 0, in order to derive an expression for CEA; see [15, Ch.
10] and its use when considering enzymes at the receiver in [10]. We will use
a slightly different assumption to directly derive a lower bound expression. We
assume that both CE and CEA are not time-varying, i.e., CE and CEA are both
constants. It is then straightforward to show that, in our system, (8) has solution
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CA ≈
NA

(4πDAt)3/2
exp

(

−k1CEt−
|~r|2

4DAt

)

+ k−1CEAt, (11)

and we ignore (9) and (10). Next, we assume that the amount of EA at any
time is small, such that k−1CEA → 0. If CEA is small, then we can approximate
CE with its upper bound CETot

. All concentrations and rate constants must be
non-negative, so we can write the bound

CA ≥
NA

(4πDAt)3/2
exp

(

−k1CETot
t−

|~r|2

4DAt

)

, (12)

which is intuitively a lower bound because the actual degradation due to enzymes
can be no more than if all enzymes were always unbound. In other words, (12)
describes the point concentration of A molecules as k2 → ∞ and k−1 → 0.
A convenient property of this lower bound is that, while it loses accuracy as
EA is initially created (CE < CETot

), it eventually improves with time as all A
molecules are degraded and none remain to bind with the enzyme (CA, CEA → 0,
CE → CETot

, as t → ∞). We also note that, had we started with the ∂CEA

∂t = 0
assumption, then we would have arrived at a similar expression to (12), where
k1 is replaced with k1k2/ (k−1 + k2).

Eq. (12) can be directly compared with (6). The presence of enzyme results
in an additional decaying exponential term. This decaying exponential is what
will eliminate the “tail” that is observed under diffusion alone. It can be shown
that adding enzymes will always lead to a faster degradation of CA from its
maximum value for a given ~r than when not adding enzymes. Furthermore, the
maximum value is achieved sooner when enzymes are present, but this value is
smaller. These statements are apparent from the results in Section 5, and future
work will prove these statements analytically.

We have already established that the receiver is able to count the number of
free A molecules that are within the receiver volume. Eqs. (12) and (6) give us
the expected point concentrations with and without active enzymes, respectively.
We can readily convert these concentrations to the expected number of observed
A molecules, NAobs(t) = CA(~r0, t)Vobs, if we assume that the concentration
throughout the receiver is uniform, as in [6].

4 Simulation Framework

In the previous section, we derived (12) as a lower bound on the local con-
centration when enzymes are present throughout the propagation environment.
We now require an appropriate simulation framework to evaluate the accuracy
of (12). This framework will be used to perform stochastic simulations of the
system of equations described by (8)-(10).

4.1 Choice of Framework

Commonly used stochastic reaction-diffusion simulation platforms can be placed
into one of two categories. The first are subvolume-based methods, where the



Molecular Communication with Unanchored Enzymes 9

reaction environment is divided into one (if diffusion is ignored) or many well-
stirred subvolumes. By well-stirred, it is meant that molecules in a specific
subvolume are uniformly distributed throughout that subvolume, and that the
velocities of those molecules follow the Boltzmann distribution; see [16]. In
other words, every subvolume should have more nonreactive molecular collisions
than reactive collisions. Stochastic subvolume-based methods are based on the
stochastic simulation algorithm, which generates random numbers to determine
the time and type of the next reaction in the system; see [20]. We note that
these methods, though subvolume-based, still consider discrete species popula-
tions. However, the precise locations of individual molecules are not maintained,
and diffusion is modeled as transitions of molecules between adjacent subvol-
umes; see [21].

The second category of simulation platforms use particle-based methods,
where the precise locations of all individual molecules are known. Every free
molecule diffuses independently along each dimension. These methods require
a constant global time step ∆t and there is a separation in the simulation of
reaction and diffusion; see [22]. First, all free molecules are independently dif-
fused along each dimension by generating normal random variables with variance
2DS∆t. Next, potential reactions are evaluated to see whether they would have
occurred during ∆t. For bimolecular reactions, a binding radius rB is defined
as how close the centers of two reactant molecules need to be at the end of ∆t
in order to assume that the two molecules collided and bound during ∆t. For
unimolecular reactions, a random number is generated using the rate constant
to declare whether the reaction occurred during ∆t.

Particle-based methods tend to be less computationally efficient, but they
do not have to meet the well-stirred requirement. Our system has an impulse of
molecules being released into an environment with highly reactive enzymes (we
will discuss specific rate constants in Section 5, but for now we note that we are
generally interested in large k1). A general criterion for subvolume size is that
the typical diffusion time for each species should be much less than the typical
reaction time; see [23]. We cannot guarantee the satisfaction of this criterion for
subvolume sizes that make physical sense (i.e., significantly larger than the size
of individual molecules), so we adopt a particle-based method.

4.2 Simulating Reactions

Our bimolecular reaction (1) (the binding of E and A to form EA) is reversible,
so we must be careful in our choice of binding radius rB, time step ∆t, and
what we assume when EA reverts back to E and A molecules. A relevant metric
is the root mean square step length, rrms, between E and A molecules, given
as [22, Eq. 23]

rrms =
√

2 (DA +DE)∆t. (13)

If reaction (2) occurs, then the root mean square separation of the product
molecules A and E along each dimension is rrms. Unless rrms ≫ rB , then these
two reactants will likely undergo reaction (1) in the next time step. Generally,
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we need to define an unbinding radius specifying the initial separation of the A
and E molecules when reaction (2) occurs. However, in the long time step limit,
we can define rB as [22, Eq. 27]

rB =

(

3k1∆t

4π

)
1

3

, (14)

and this is valid only when rrms ≫ rB . Thus, if rrms is much greater than rB
found by (14), which we can impose by our selection of k1 and ∆t, then we
do not need to implement an unbinding radius. Also, the evaluation of rB is
much more involved when we are not in the long time step limit and requires
generating a lookup table; see [22] for further details. We will select parameters
so that rrms ≫ rB is satisfied, even if rrms becomes comparable with the size of
the receiver, so we simply use (14).

We have a few additional comments on simulating reaction (1). It does not
require the generation of any random values, besides those that are used to
diffuse the individual molecules. However, we must check the position of every
unbound A molecule with that of every unbound E molecule to see whether
they are closer than rB . For computational efficiency, we create subvolumes so
that we only need to check the positions of enzymes in the current and adjacent
subvolumes of the current free A molecule. If we find a pair close enough, then
we move both of them to the midpoint of the line between their centers and
re-label them as a single EA molecule.

Our two unimolecular reactions have the same reactant, EA, so we must con-
sider both of them when calculating the probability of either reaction occuring.
For (2), we have [22, Eq. 14]

Pr{Reaction (9)} =
k−1

k−1 + k2
[1− exp (−∆t (k−1 + k2))] , (15)

where Pr{·} denotes probability and (3) has an analogous expression by switch-
ing k−1 and k2. A single random number uniformly distributed between 0 and
1 can then be used to determine whether a given EA molecule reacts. If it does,
then we place the products at the same coordinates.

4.3 Simulating the Sender and Receiver

When the sender releases an impulse of NA A molecules, we enforce an initial
separation of 2RA between adjacent A molecules, placing them in a spherical
shape centered at the origin. At the receiver, we make observations at integer
multiples of time step ∆t. When an observation is made, all free A molecules
whose centres are within Vobs are counted.

4.4 Selecting Component Parameters

We now discuss practical parameter values for the underlying reaction-diffusion
system. Specific enzymatic reactions, such as the breakdown of acetylcholine by
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acetylcholinesterase, are represented by specific molecules and are characterized
by specific reaction rate constants. Most enzymes are proteins and are usually
on the order of less than 10 nm in diameter; see [1, Ch. 4]. From (4), smaller
molecules diffuse faster, so we are most likely to select small molecules as in-
formation molecules. Many common small organic molecules, such as glucose,
amino acids, and nucleotides, are about 1 nm in diameter. In the limit, single
covalent bonds between two atoms are about 0.15nm long; see [1, Ch. 2].

Higher rate constants correlate to faster reactions. Bimolecular rate constants
can be no greater than the collision frequency between the two reactants, i.e.,
every collision results in a reaction. The largest possible value of k1 is on the
order of 1.66× 10−19molecule−1m3s−1; see [15, Ch. 10] where the limiting rate
is listed as on the order of 108 L/mol/s. k2 usually varies between 1 and 105 s−1,
with values as high as 107 s−1. In theory, we are not entirely limited to pre-
existing enzyme-substrate pairs; protein and ribozyme engineering techniques
can be used to modify and optimize the enzyme reaction rate, specificity, or
thermal stability, or modify enzyme function in the presence of solvents.

5 Results and Discussion

We are now prepared to present results comparing the observed number of
A molecules at a receiver with and without the presence of enzymes in the
propagation environment. We assume that the environment has a viscosity of
10−3 kgm−1s−1 and temperature of 25 ◦C. The sender emits NA = 104 A
molecules, each having radius RA = 0.5 nm, in a single impulse. Venz is de-
fined as a cube with side length 1µm and centered at the origin, so its size
is on the order of a bacterial cell. NE = 2 × 105 E molecules having radius
RE = 2.5 nm are uniformly distributed throughout Venz . For simplicity, we as-
sume that REA = RA + RE = 3nm. In consideration of the limiting values of
reaction rate constants, we choose k1 = 10−19molecule−1m3s−1, k−1 = 104 s−1,
and k2 = 106 s−1. We also set ∆t = 0.5µs, resulting in rrms = 22.9nm and
rB = 2.28 nm, so that rrms ≫ rB is satisfied.

We compare the number of molecules observed at a receiver due to a single
emission from the sender. In Fig. 3, we consider two receivers with radii robs =
{25, 45}nm and their centers placed at a distance of |~r0| = {150, 300}nm from
the sender, respectively. The expected number of molecules is calculated using
either (12) or (6) for enzymes present and absent, respectively. The observed
number of Amolecules via simulation is averaged over at least 15000 independent
emissions by the sender at t = 0.

Let us first consider the receiver placed 150nm from the sender. The maxi-
mum number of molecules is received about 8µs after emission. The maximum
value is less than 15% higher in the absence of active enzymes; over 14 molecules
are expected and observed on average via simulation without enzymes, compared
to 12 molecules expected and 12.5 molecules observed with active enzymes. The
decay from the maximum value is slower in the absence of active enzymes; 60µs
after emission, 3 molecules are expected and observed without enzymes while
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Fig. 3. Number of particles counted by receivers with radii robs = {25, 45} nm that
are placed |~r0| = {150, 300} nm from the sender, respectively. The source releases 104

molecules at t = 0. Simulation and analytical results are shown both with and without
active enzymes.

1 molecule is expected and observed with enzymes, a threefold difference. We
see that, as previously noted, the expected number of observed A molecules
when active enzymes are present is a lower bound on the average number of A
molecules observed in simulation, and this is a relatively tight bound.

The simulation and analytical results for the receiver placed 300nm from the
sender follow the same general trends as those for the closer receiver, but with
a few noteworthy differences. Obviously, the time elapsed before receiving the
maximum number of molecules is greater and the maximum value is less than for
the closer receiver, even though the receiver is larger (the receiver being larger
accounts for how it is possible for this receiver to observe more molecules than
the closer receiver after 23µs). However, the change in the number of molecules
received is much greater in the presence of active enzymes; the peak number
of molecules is observed relatively sooner (about 25µs instead of about 35µs
after emission), but the maximum number of molecules is less than 60% of
that expected without enzymes (about 6 molecules instead of 10.5 molecules).
Intuitively, being further from the sender gives more time for the E molecules
to bind to and then degrade the A molecules.

Both receivers in Fig. 3 show that adding enzymes decreases the “tail” of
diffusion while still providing a peak to be detected at the receiver. It is clear that
the sender could emit impulses more often with less risk of ISI. For example, if the
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criterion for designing the bit interval TB was the time at which the expected
number of particles is some fraction of the maximum expected number, then
this time should be shorter in the presence of active enzymes. Alternatively,
sender-receiver pairs could be placed closer together with less risk of co-channel
interference. We leave formal proofs of these statements for future work, but
they are intuitive given the results in Fig. 3.

Finally, we consider in Fig. 4 the limiting case that we used to derive the
bound (12), i.e., set k2 = ∞, k−1 = 0, and co-locate all A molecules at the origin
when emitting. In this case, an E molecule binding to an Amolecule immediately
degrades the Amolecule while releasing the E molecule, so all enzymes are always
available to react. We otherwise maintain the same parameters that we used for
Fig. 3. We see that the average number of particles observed via simulation
with active enzymes agrees very well with that expected from (12), and that
the average number of particles observed via simulation without active enzymes
matches the value expected from (6), even though we are still assuming uniform
CA throughout the receiver volume. This confirms that the looseness of the
lower bound (12) in Fig. 3 comes from both the finite emission volume and the
creation of EA molecules. The slight looseness of the lower bound in Fig. 4 for
the receiver 300 nm away and when enzymes are present is likely due to having a
finite Venz ; some A molecules are able to diffuse beyond Venz , where they cannot
be degraded, and then enter the receiver volume after returning to Venz . This
effect is negligible at the receiver 150nm away.

6 Conclusions and Future Work

In this paper, we introduced the concept of using enzymes in the propagation
environment to improve the performance of a diffusive molecular communication
system. Enzymes that break down information molecules are able to reduce the
time that a sender must wait before being able to send additional information
molecules. There is potential to increase the data rate and to decrease the prob-
ability of error. This gain in performance comes with no additional complexity
required at either the sender or receiver.

The emphasis in this paper was the description of the underlying reaction-
diffusion model and the selection of an appropriate simulation framework,
thereby providing a foundation for performance analysis. On-going work includes
the derivation of the bit error rate for this binary-coded communication network
when multiple emissions are made by the sender given a bit interval TB and the
reception scheme at the receiver. Furthermore, we are currently evaluating the
analytical accuracy of the assumption that the concentration observed at the
receiver is uniform. We must also consider the ability to choose reaction rate
constants based on specific enzymes, as well as the enzyme concentration. In
addition, dimensional analysis is useful to arbitrarily scale our system, compare
different parameter sets, and derive the looseness of our receiver bound in terms
of a dimensionless parameter. We also note that we could forego the use of en-
zymes altogether and use A molecules with a faster natural degradation rate,
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Fig. 4. Number of particles counted by receivers with radii robs = {25, 45} nm that
are placed |~r0| = {150, 300} nm from the sender, respectively. The source releases 104

molecules from a point at t = 0. Simulation and analytical results are shown both with
and without active enzymes, where k2 = ∞ and k

−1 = 0. The resultant difference
between this figure and Fig. 3 is that here the curves generated via simulation are
tighter to the curves generated by the analytical expressions.

as in [12], but without using the number of counted molecules as the amount
of information received. This case would allow simpler and accurate analysis
though we would have to be concerned with maintaining a stockpile of these
molecules at the sender without them degrading before emission. Other relevant
problems of interest include interference from nearby sender/receiver pairs and
the potential mobility of the sender and receiver.
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