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Abstract. In ant algorithms, each individual ant makes decisions ac-
cording to the greedy force (short term profit) and the trail system based
on the history of the search (information provided by other ants). Usu-
ally, each ant is a constructive process, which starts from scratch and
builds step by step a complete solution of the considered problem. In
contrast, in Ant Local Search (ALS), each ant is a local search, which
starts from an initial solution and tries to improve it iteratively. In this
paper are presented and discussed successful adaptations of ALS to dif-
ferent combinatorial optimization problems: graph coloring, a refueling
problem in a railway network, and a job scheduling problem.
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1 Introduction

As exposed in [15], most ant algorithms are population based methods where at
each generation, a set of ants provide solutions, and at the end of each generation,
a central memory (the trail system) is updated. The role of each ant is to build
a solution step by step from scratch. At each step, an ant adds an element to the
current partial solution. Each decision or move m is based on two ingredients:
the greedy force GF (m) (short term profit for the considered ant, also called the
heuristic information) and the trail Tr(m) (information obtained from other
ants). Let M be the set of all possible decisions. The probability pi(m) that ant
i chooses decision m is given by

pi(m) =
GF (m)α · Tr(m)β

∑

m′∈Mi(adm)

GF (m′)α · Tr(m′)β
(1)

where α and β are parameters, and Mi(adm) is the set of admissible decisions
that ant i can make. When each ant of the population has built a solution, the
trails are generally updated as follows: Tr(m) = ρ ·Tr(m) +∆Tr(m), ∀m ∈ M ,
where ρ ∈ ]0, 1[ is a parameter representing the evaporation of the trails (often
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fixed to 0.9 or a close value), and∆Tr(m) is a term which reinforces the trails left
on decision m by the ant population of the current generation. That quantity is
usually proportional to the number of times the ants selected decision m, and to
the quality of the obtained solutions when decision m was made. More precisely,
let N be the number of ants, then ∆Tr(m) =

∑N

i=1 ∆Tri(m), where ∆Tri(m)
is proportional to the quality of the solution provided by ant i if it has selected
decision m. Overviews of ant algorithms (including ant colony optimization) are
[3, 5].

Often, in order to get competitive results, it is unavoidable to apply a local search
method to the solutions provided by such constructive ants [6]. In contrast, as
proposed in [15], a more important role can be given to each ant by considering
each of them as a local search, where at each step, as in every ant algorithm, the
considered ant makes a decision (i.e. performs a move) according to the greedy
force and the trail. The resulting method is called Ant Local Search (ALS).

The paper is organized as follows. In Section 2 are briefly described the main ele-
ments of a local search and the ALS methodology. Then are presented successful
adaptations of ALS to three combinatorial optimization problems, namely the
graph coloring problem (Section 3), a refueling problem in a railway network
(Section 4), and a job scheduling problem with setup, tardiness and abandon
issues (Section 5). The paper ends up with a conclusion in Section 6.

The contribution of this paper is the following:

– some advantages of the ALS approach are accurately highlighted;

– it is showed that ALS is a flexible method, as it can be easily adapted to very
different combinatorial optimization problems;

– a new ALS algorithm is proposed for the job scheduling problem (Section 5);

– guidelines are given to efficiently design a trail system within an ALS frame-
work.

2 Ant Local Search (ALS)

A local search can be described as follows. Let f be an objective function which
has to be minimized. At each step, a neighbor solution s′ is generated from the
current solution s by performing a specific modification on s, called a move.
Let N(s) denote the set of neighbor solutions of s. First, a local search needs an
initial solution s0 as input. Then, the algorithm generates a sequence of solutions
s1, s2, . . . in the search space such that sr+1 ∈ N(sr). The process is stopped
for example when an optimal solution is found (if it is known), or when a fixed
number of iterations have been performed. Some famous local search algorithms
are: the descent method (where at each step the best move is performed, and the
process stops when a local optimum is reached), simulated annealing, variable
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neighborhood search, and tabu search. In tabu search for example, when a move
is performed from a current solution sr to a neighbor solution sr+1 ∈ N(sr), it is
forbidden (with some exceptions) to perform the inverse of that move during tab
(parameter) iterations: such forbidden moves are called tabu moves. The solution
sr+1 is computed as sr+1 = argmins∈N ′(sr) f(s), where N

′(s) is a subset of N(s)
containing solutions which can be obtained from s by performing a non tabu
move. Many variants and extensions of tabu search can be found for example in
[7].

The ALS method is summarized in Algorithm 1, where N is the number of used
ants. A generation consists in performing steps (1) and (2).

Algorithm 1 ALS

While a time limit is not reached, do

1. for i = 1 to N : apply the local search associated with ant i, and let si be the
resulting solution;

2. update the trails by the use of a subset of {s1, . . . , sN}.

In most ant algorithms, it is very time consuming to make a single decision
according to Equation (1). For this reason, a quick way to select a move, based
on the greedy forces and the trails, is proposed in [15] and described below (the
advantages of such a selection process are more deeply discussed here). At each
iteration of the local search associated with the considered ant, let A be the set
of moves with the largest greedy force (resp. trail) values. Then, the selected
move is the one in A with the largest trail (resp. greedy force) value (ties are
broken randomly). Of course, this process is only interesting if |A| > 1, otherwise
the trails (resp. greedy forces) will have no impact on the search. Such a way
of selecting each move at each iteration leads to several advantages over most
classical ant algorithms. More precisely, it is not required anymore to:

– compute the trails (resp. greedy forces) of all possible moves, as only |A|
computations are required (note that even if the trails can be stored in a
matrix which is only updated at the end of each generation, the computation
of the trail of a move often needs additional specific computation, as illustrated
in the three next sections);

– normalize the greedy forces and the trails of the possible moves (without
normalization, during the search, the range of the trail values might become
much larger than the range of the greedy force values, which makes the search
difficult to control);

– compute the probability pi(m) associated with each possible move m;

– consider and tune the parameters α and β (as the use of Equation (1) is
avoided).
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In other words, in contrast with most other ant algorithms, the greedy forces and
the trails are successively used to make a decision (instead of jointly). Therefore,
a significant amount of computing time is saved, and the tuning phase of the
algorithm is reduced.

3 ALS for Graph Coloring

3.1 Presentation of the problem

Given a graph G = (V,E) with vertex set V = {1, 2, . . . , n} and edge set E, the
graph coloring problem (GCP) [21] consists in assigning an integer (called color)
in {1, 2, 3, . . . , n} to every vertex such that two adjacent vertices have different
colors, while minimizing the number of used colors. The k-coloring problem (k-
GCP) consists in assigning a color in {1, . . . , k} to every vertex such that two
adjacent vertices have different colors. Thus, the GCP consists in finding a k-
coloring with the smallest possible k. The GCP is usually tackled by solving
a series of k-GCP’s, starting with a large value of k (which is at most n) and
decreasing k by one unit each time a k-coloring is found. In such a case, a solution
is often represented by a partition of the vertices into k color classes, conflicts are
allowed (i.e. adjacent vertices can have the same color), and the goal consists in
minimizing the number of conflicts (if it reaches zero, a k-coloring is found and
the algorithm stops). Many (meta)heuristics were proposed to solve the GCP
and the k-GCP. For a recent survey, the reader is referred to [12]. As discussed
in [21], there mainly exists three types of ant algorithms for the GCP. First and
as in most of the cases, an ant can be a constructive heuristic [4]. Second, an
ant can be a very simple agent which helps to make a minor decision [8]. Third,
an ant can be a refined local search such as tabu search [15]. Even if the role
of an ant can be defined in various ways, each decision is always based on the
greedy force, which is associated with the self-adaptation of each ant, and the
trail system, which represents the collaboration between the ants.

3.2 Adaptation of ALS

The ALS coloring method proposed in [15] is derived from PartialCol [2], an
efficient tabu search algorithm for the k-GCP, where partial legal k-colorings are
considered, which are defined as conflict-free k-colorings of a subset of vertices
of G. Such colorings are represented by a partition of the vertex set into k + 1
subsets V1, . . . , Vk+1, where V1, . . . , Vk are k disjoint color classes without any
conflict, and Vk+1 is the set of non colored vertices. Vc (with c ≤ k) actually
represents the set of vertices with color c. The objective is to minimize |Vk+1|
(if it reaches zero, a k-coloring is found and the algorithms stops). A neighbor
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solution can be obtained from the current solution by moving a vertex v from
Vk+1 to a color class Vc (with c ≤ k, which means that vertex v gets color c), and
by moving to Vk+1 each vertex in Vc that is in conflict with v (such vertices are
thus uncolored). Such a movem is denoted m = (v → Vc). When it is performed,
it is then tabu to move v back to Vk+1 (i.e. to remove the color c from vertex v)
for a few iterations.

In ALS for the k-GCP, an ant is a tabu search procedure derived from PartialCol.
The greedy force GF (m) of a move m = (v → Vc) is defined as the inverse of the
number of adjacent vertices to v that are in color class Vc (if it is zero, GF (m)
is set to an arbitrary large number, because there is then no need to remove
the color of other vertices). The trail value Tr(m) associated with move m is
defined as follows. Let x and y be two vertices, and let si = (V1, . . . , Vk;Vk+1) be
a solution provided by a single ant i of the population at a specific generation.
If ant i gives the same color c to x and y in solution si (i.e. x, y ∈ Vc 6= Vk+1),
such an information should be transmitted to the ants of the next generations,
and this information should be more important if x and y are in a large color
class. During the search, a non colored vertex v ∈ Vk+1 is likely to move to a
color class Vc containing vertices with which v is used to have the same color.

Formally, let

∆Tri(x, y) =

{

|Vc|
2 if x and y have the same colour c in si;

0 if x and y have different colours in si.

At the end of each generation and as in many classical ant algorithm, the trails
are globally updated as follows: Tr(x, y) = 0.9 · Tr(x, y) + ∆Tr(x, y), where

∆Tr(x, y) =
∑N

i=1 ∆Tri(x, y). Finally, the trail of a single move m = (v → Vc)
is defined as Tr(v → Vc) =

∑

x∈Vc
Tr(v, x).

3.3 Results

Considering a set of 14 well-known and difficult benchmark instances (see
http://www.info.univ-angers.fr/pub/porumbel/graphs/), below is a rep-
resentative numerical comparison for the following coloring algorithms:

– CAS [4], a Constructive Ant System where each ant is a constructive procedure
(as in most classical ant algorithms);

– ADS [8], an Ant Decision System where each ant can help to color a vertex;

– ALS [15], the already discussed Ant Local Search;

– PartialCol [2], the tabu search from which ALS was derived;

– Mem [11], a memetic algorithm which can be considered as the best coloring
method, as it provides the best average results on each of the benchmark
instances.
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A time limit of one hour and the same computer were used for PartialCol and
the three ant coloring algorithms (i.e. CAS, ADS and ALS). The experimen-
tal conditions of Mem were different (e.g., a time limit of five hours [11]). The
reader interested in accurate and detailed comparisons of coloring methods is re-
ferred to [21] for ant algorithms, and to [11] for other state-of-the-art algorithms.
The density d ∈ [0, 1] of a graph is the average number of edges between two
vertices. The results are summarized in Table 1. For each graph (first column)
is mentioned its number n of vertices (second column) and its density d (third
column). In the next columns are given the minimum number of colors used by
each method to generate conflict-free colorings. Obviously, ALS performs much
better than the other ant coloring methods. Secondly, it is clear that the ingre-
dients added to PartialCol to derive ALS are useful. Finally, in contrast with
ALS, CAS and ADS are not competitive with the best coloring methods. The
main reasons are probably the following: in CAS and ADS, too many ingredients
are simultaneously handled in order to make the decision of changing the color
of a single vertex, and these ingredients are of different natures and should not
be mixed together. On the contrary, ALS only manipulates, successively, a few
ingredients.

Graph n d CAS ADS ALS PartialCol Mem

DSJC500.1 500 0.1 17 15 12 12 12

DSJC500.5 500 0.5 68 56 48 50 48

DSJC500.9 500 0.9 167 135 127 127 126

DSJC1000.1 1000 0.1 29 25 20 21 20

DSJC1000.5 1000 0.5 122 104 86 89 83

DSJC1000.9 1000 0.9 313 255 225 226 223

flat300 28 0 300 0.48 43 36 29 28 29

flat1000 50 0 1000 0.49 120 101 50 50 50

flat1000 60 0 1000 0.49 121 102 60 60 60

flat1000 76 0 1000 0.49 120 103 85 88 82

le450 15c 450 0.17 28 18 15 15 15

le450 15d 450 0.17 28 18 15 15 15

le450 25c 450 0.17 33 29 26 27 25

le450 25d 450 0.17 33 29 26 27 25

Table 1. Comparisons between ant and state-of-the-art coloring algorithms
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4 ALS for a Refueling Problem in a Railway Network

4.1 Presentation of the problem

The problem proposed in the 2010 INFORMS optimization competition consists
in optimizing the refueling costs of a fleet of locomotives over a railway network
[9]. It is assumed that there is only one source of fuel: fueling trucks, located at
yards. A solution of the problem has two important components [16]: (1) choose
the number of trucks contracted at each yard, and (2) determine the refueling
plan of each locomotive (i.e. the quantity of fuel that must be dispensed into
each locomotive at every yard). Such components are respectively called the
truck assignment problem (TAP) and the fuel distribution problem (FDP).

The constraints are the following: the capacity of the tank of each locomotive is
limited, as well as the maximum amount of fuel a truck can provide the same
day; a locomotive cannot be refueled at its destination yard; there is a maximum
number of times (which is two) a train can stop to be refueled (excluding the
origin); it is forbidden to run out of fuel. The encountered costs are the weekly
operating cost of each fueling truck, the fuel price per gallon associated with each
yard, and the fixed cost associated with each refueling. The problem consists in
finding a feasible solution minimizing the total costs. A detailed description is
provided in [9] as well as a literature review (recent papers in that field are
[10, 13, 19]).

A stop is defined with a triplet (locomotive, yard, day). If a stop is open, it
means that the involved locomotive can get fuel at that yard on that day (for the
considered realistic instance, the same locomotive cannot stop two times at the
same yard during the same day). The stop is closed otherwise (fuel distribution
is not allowed). A solution of the problem can be modeled with a pair (T, S),
where T and S are vectors of respective sizes equal to the number of yards and
the total number of stops (among all locomotives). Component j of T is the
number of contracted trucks at yard j, and component i of S indicates if stop i
is open or closed. As proposed in [16], if a solution of the TAP is provided (i.e. if
T is known), the corresponding FDP can be quickly and optimally solved with
a flow algorithm. For the flow algorithm, all the stops for which there are trucks
on the associated yards are initially open. Then the provided flow solution will
indicate which stop will be actually used (and the non used stops will be closed).
This also means that a solution of the TAP can be evaluated by the use of the
flow algorithm. Thus, only the TAP is considered below.

4.2 Adaptation of ALS

First, a descent algorithm for the TAP can be easily designed as follows. From a
current solution (T, S), a move consists in adding a contracted truck to a yard
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(add move), or in removing a contracted truck from a yard (drop move). When a
move is performed, the associated FDP is optimally solved and evaluated by the
flow algorithm. During the evaluation, all the costs are considered: the refueling
costs for the used gallons of fuel, the fixed refueling costs and the contracting
costs of the trucks. The resulting descent method for the TAP (denoted DTAP)
is proposed in Algorithm 2, with the setting |Y (add)| = |Y (drop)| = 5 (other
settings were tested but did not improve the results).

Algorithm 2 DTAP: Descent for the Truck Assignment Problem

Construct an initial solution (T, S).

While a local optimum is not reached, do:

1. in solution (T, S), randomly choose a set Y (drop) containing yards for which drop
moves are allowed; for any yard y ∈ Y (drop) and from (T, S), remove a truck from
it, and apply the flow algorithm to evaluate such a drop candidate move;

2. in solution (T, S), randomly choose a set Y (add) of yards; for any yard y ∈ Y (add)

and from (T, S), add a truck to it, and apply the flow algorithm to evaluate such
an add candidate move;

3. from (T, S), perform the best move among the | Y (drop)∪Y (add) | above candidate
moves, and rename the resulting solution as (T, S).

An ALS method for the TAP can be derived from the above descent algorithm
[17], where each ant is a procedure identical to DTAP, but with a learning

process based on a trail system, which is defined as follows. Let x and y be two
yards. The trail Tr(x, y) associated with yards x and y aims to indicate if it
is a good idea to have trucks on both yards x and y in the same solution. At
the end of the current generation, such trails are globally updated as follows:
Tr(x, y) = 0.9 · Tr(x, y) +∆Tr(x, y), where ∆Tr(x, y) is the number of trucks
on x and y, computed only for solutions of the current generation having trucks
on both x and y. A move can be denoted by (x → s), indicating that a truck
is added to or removed from yard x, in the current solution s handled by the
considered ant. Let Tr(x → s) be its associated trail value. It is straightforward
to set Tr(x → s) =

∑

y∈s Tr(x, y) if it is used as follows. If (x → s) is an add
move, among the possible add moves, it is interesting to select a move with a
large Tr(x → s) value (because the history of the search seems to indicate that
having trucks on yard x, as well as on the yards which already contain trucks
in the current solution s, is a good idea). On the contrary, if (x → s) is a drop
move, among the possible drop moves, it is better to select a move with a small
Tr(x → s) value.

The greedy force GF (x → s) of a move (x → s) is simply the resulting objective
function value. The way that an ant selects a move at each iteration is now
described, according to the greedy force and the trail system. Remember that
in DTAP, the performed move is the best among the ones in the set | Y (drop) ∪
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Y (add) |, with |Y (add)| = |Y (drop)| = 5. For the descent algorithm associated
with an ant of ALS, two sets T (add) and T (drop) of size ten are first randomly
chosen (other sizes were tested but without leading to a better performance).
Then, let Y (add) (resp. Y (drop)) be the subset of T (add) (resp. T (drop)) containing
the five moves with the best trail values (which is much quicker to compute
than the objective function values, as the use of the flow algorithm is avoided).
The performed move among Y (add) ∪ Y (drop) is the best one according to the
greedy force. Therefore, for DTAP as well as for the descent algorithm associated
with an ant, the performed move has the best objective function value among a
sample of ten evaluated solutions. This will allow to better measure the impact
of the trail system on the search.

4.3 Results

The algorithms were tested on an iMac (3.06 GHz Intel Core 2 Duo processor, 4
Go 1,067 MHz RAM) with a time limit of 120 minutes. In order to fairly compare
ALS and DTAP, the latter is restarted from scratch each time a local optimum is
found (as long as the time limit is not reached). The considered realistic instance,
proposed in [9], is characterized as follows: 73 yards, 213 trains, 214 locomotives,
and a planning horizon of 14 days.

DTAP and ALS can be compared in Table 2. In the second column is given the
average value (in $, over ten runs) of DTAP for the corresponding execution
time (indicated in the first column). In the third column is indicated the average
gain (in $, over ten runs) of ALS over DTAP. In addition, Figure 1 compares
the evolution of the best encountered solution value (average over 10 runs, on
the vertical axis) during 120 minutes (7200 seconds, on the horizontal axis). One
can easily deduce that the learning process (i.e. the trail system) introduced to
DTAP to derive ALS is relevant as it leads to non negligible savings.

The INFORMS contest involved 31 research teams. The approaches of the three
best teams can be found in [9]. The winners of the contest (Kaspi and Raviv)
formulated the problem as a MILP (mixed integer linear program). They found
a lower bound LB = 11, 399, 670.58$ and their best result was 0.30$ above LB.
Thus the gap between ALS and LB is approximately 0.35%. Note that a major
advantage of ALS over the MILP proposed by Kaspi and Raviv is its flexibility:
it can be easily adapted if non linear components are added to the problem. For
example, one can assume that the weekly operating cost of the fueling trucks
might be concave with the number of trucks located at the same yard.



10 Nicolas Zufferey

Time (min) DTAP Gain(ALS)

0 11,605,703 0

15 11,455,921 16,584

30 11,450,137 16,178

45 11,445,918 12,502

60 11,442,113 9,039

90 11,439,601 6,636

105 11,439,601 7,919

120 11,439,587 7,929

Table 2. Gain of ALS over DTAP (in $)

11,400,000

11,450,000

11,500,000

11,550,000

11,600,000

0 1800 3600 5400 7200

ALS

DTAP

Fig. 1. Evolution of ALS and DTAP

5 ALS for a Scheduling Problem with Abandon Costs

5.1 Presentation of the problem

Consider a scheduling problem (P ) where a set of n jobs have to be performed
on a single machine. It is possible to abandon (reject) a job j, and in such a
case, an abandon cost uj is encountered (it can represent that j is allocated
to an external resource). For each job j are known: its processing time pj, its
release date rj (it is not possible to start j before that date), its due date dj
(the preferred completion time of job j) and its deadline d′j (the latest allowed
completion time of job j), such that rj ≤ dj ≤ d′j . For each job, its starting
time Bj (or equivalently its completion time Cj because Cj = Bj + pj) has to
be determined.

On the one hand, a job cannot be started before its release date (i.e. Bj ≥ rj),
because one can assume that it is not possible to get the raw material associated
with j before that date. On the other end, a job cannot be finished after its
deadline (i.e. Cj ≤ d′j), because one can assume that the client will refuse j after
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that date. If Cj ∈]dj , d
′

j ], j is said to be late (from the client perspective) and
this will be penalized in the objective function by a component fj(Cj).

In addition, various families of jobs are considered, assuming that jobs with
comparable characteristics belong to the same family or product type. If two jobs
j and j′ of different families are consecutively performed, a setup cost cjj′ is
encountered and a setup time sjj′ has to be taken into account.

A solution s can be represented as a vector of size n where component j contains
the value of Bj . If job j is unperformed, one can put a fictitious −1. Let U(s)
(resp. I(s)) be the set of unperformed (resp. performed) jobs of solution s. The
goal consists in minimizing an objective function with three components: (1) the
abandon costs

∑

j∈U(s) uj; (2) the setup costs
∑

j→j′ cjj′ of the consecutively

performed jobs j → j′ of I(s); (3) the penalty costs for late completion times
∑

j∈I(s) fj(Cj), where fj(Cj) is a regular (i.e. non decreasing) function depend-
ing on Cj . In the literature, the two most popular regular objective functions are
the sum of completion times (i.e.

∑

j Cj) and the sum of tardiness (i.e.
∑

j Tj ,
where Tj = max{0;Cj − dj}), as well as their weighted versions (i.e.

∑

j wj · Tj

and
∑

j wj · Cj).

Problem (P ) was first proposed in [1] where the authors proposed a branch and
bound algorithm able to tackle most instances with up to 30 jobs. Other relevant
references in the field are [14, 20]. Up to date, the only existing (meta)heuristic
for (P ) is a tabu search proposed in [18], denoted Tabu(P ), which is based on
four types of moves: reinsert a job (i.e. remove a job j ∈ I(s) from its current
position in s and insert it somewhere else in s), swap two jobs of I(s), add a job
(i.e. move a job from U(s) to I(s)), and drop a job (i.e. move a job from I(s)
to U(s)). At each iteration, a random sample (tuned to 15%) of the four types
of move is generated, and the best move among the sample is performed. Note
that if a moves leads to a non feasible solution (e.g., if the processing of some
jobs overlap in time, or if a job is finished after its deadline), a repairing process
is used, which allows to shift or drop jobs (see [18] for details on the repairing
process).

5.2 Adaptation of ALS

The ALS method for (P ) is denoted ALS(P ) and is summarized in Algorithm
3, where N = 20 and I = 500 were used in the experiments (other settings
were tested but did not lead to better results). The local search operator of the
initialization phase is Tabu(P ). The specificities of Algorithm 3, when compared
to Algorithm 1, are the following: the trail matrix Tr is initialized before the
main loop, Tr also appears in the construction operator, and Tr is updated as
soon as an ant provides a solution (denoted s′ in the pseudo-code).
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The greedy force GF of a move is simply its associated objective function value.
The construction operator starts from an empty solution s. Then, at each step,
a non considered job j is scheduled within s (or rejected if it is better). More
precisely, let (j → p, s) be the move consisting in inserting job j at position p
of the jobs sequence of solution s (when inserting a job, it is allowed to shift, or
to reject, some already scheduled jobs if it can make the solution feasible or less
costly). At each step, among the q (parameter tuned to 25) less costly insertions
(j → p, s), choose the one with the largest associated trail value Tr(j → p, s),
which is defined as

Tr(j → p, s) =
∑

x before p in s

Tr(x, j) +
∑

x after p in s

Tr(j, x)

The trail matrix Tr(x, y) associated with the scheduling of job x before job y is
based on the number of times x was positioned before y during the search (and
on the quality of the associated solutions). More precisely, at the end of each

generation, the trail matrix is updated as follows: Tr(x, y) = 0.9 ·Tr(x, y)+1/f̂ ,

where f̂ is the average value of the solutions of the current generation for which
job x is scheduled before job y.

The local search operator of the main loop is exactly Tabu(P ), with the following
modification. Every ten iterations, it is imposed to perform an add move based
on Tr and GF as follows. Among the q (parameter tuned to 25) moves of type
(j → p, s) with the largest trail value Tr(j → p, s), perform the less costly
insertion (i.e. the one with the largest GF value).

Algorithm 3 Algorithm ALS(P )

Initialization of the trail matrix Tr

1. generate randomly N solutions and improve each of them with a local search
operator during I iterations;

2. initialize the trail matrix Tr with the N improved solutions.

While a time limit is not reached, do:

1. construction operator: build a solution s based on the trail matrix Tr and the
greedy force GF ;

2. improve s by the use of a local search operator during I iterations (based on Tr

and GF ) and let s′ be the resulting solution;
3. use s′ to update the trail matrix Tr.

5.3 Results

Tabu(P ) and ALS(P ) were tested on a computer with processor Intel i7 Quand-
core (2.93 GHz RAM 8 Go DDR3) during 30 ·n seconds (i.e. about four hours if
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n = 500 jobs). Note that Tabu(P ) is restarted every I = 500 iterations as long as
the time limit is not reached, so that it can be fairly compared to ALS(P ), which
uses each ant during I = 500 iterations. The instances are the same as the ones
with setups described in [1] and the cost component fj(Cj) is wj · Tj . In Table
3 are compared the upper bounds UB(P ) provided by the branch and bound
algorithm of [1], and the average gain (over 10 runs) of Tabu(P ) and ALS(P )
over UB(P ). One can remark that the average gain of ALS(P ) is more than
4,000 above the average gain of Tabu(P ): it is thus worthy to use the proposed
trail system.

Instance n UB Gain(TS) Gain(ALS)

STCNCOS01.csv 8 920 220 220

STCNCOS01a.csv 8 1,010 400 400

STCNCOS15.csv 30 22,321 4,710 4,710

STCNCOS15a.csv 30 6,449 865 865

STCNCOS31.csv 75 6,615 -250 -250

STCNCOS31a.csv 75 7,590 -250 -250

STCNCOS32.csv 75 25,774 1,554 1795

STCNCOS32a.csv 75 16,908 110 110

STCNCOS41.csv 90 85,378 40,740 42,175

STCNCOS41a.csv 90 26,828 7,731 8,246

STCNCOS51.csv 200 308,770 169,095 164,559

STCNCOS51a.csv 200 318,740 107,770 170,510

STCNCOS61.csv 500 1,495,045 0 -463

STCNCOS61a.csv 500 1,821,085 6,480 6,480

Averages 295,960 24,227 28,508

Table 3. Comparison of Tabu(P ), ALS(P ) and an upper bound UB(P )

6 Discussion and Conclusion

Within the ant algorithms field, paper [21] was a first try to answer the question:
”What should be the role of a single ant?”. In most ant algorithms, an ant is a
constructive heuristic. In contrast, an ant is a local search in ALS. Even if the
role of an ant can be defined in various ways, each decision is always based on the
greedy force (representing the self-adaptation of each ant), and the trail system
(modeling the collaboration between the ants). This paper shows that ALS is a
promising algorithm for combinatorial problems: it obtained competitive results
for three very different combinatorial optimization problems (graph coloring, a
refueling problem, and a job scheduling problem). For the graph coloring prob-
lem, it was numerically showed that ALS performs much better than a standard
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ant algorithm. Therefore, a straightforward avenue of research would be to adapt
ALS to other combinatorial problems.

Another important issue is indirectly tackled in this paper: ”How should be

defined an efficient trail system?”. For the three considered problems, it would
not be relevant to respectively transmit the following myopic (or very local)
information to the ants of the next generations: (1) a pair (vertex x, color c),
as two colorings can be equivalent if the color indexes are permuted; (2) a pair
(yard y, truck t), as yard y might be empty if trucks are located in a yard close
to y; (3) a pair (position p, job j), as the scheduling of a job strongly depends on
the scheduling of the other jobs (especially if setups are considered). In contrast,
the above proposed trail systems are respectively based on: (1) the assignment
of the same color to some vertices; (2) the assignment of trucks to a same set of
yards; (3) the relative order in which jobs appear. In other words, a trail system
should globally cover specific characteristics of the considered problem.
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