Skip to main content

Activity Recognition for Traditional Dances Using Dimensionality Reduction

  • Conference paper
Artificial Intelligence: Methods and Applications (SETN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8445))

Included in the following conference series:

  • 2734 Accesses

Abstract

Activity recognition is a complex problem mainly because of the nature of the data. Data usually are high dimensional, so applying a classifier directly to the data is not always a good practice. A common method is to find a meaningful representation of complex data through dimensionality reduction. In this paper we propose novel kernel matrices based on graph theory to be used for dimensionality reduction. The proposed kernel can be embedded in a general dimensionality reduction framework. Experiments on a traditional dance recognition dataset are conducted and the advantage of using dimensionality reduction before classification is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chapelle, O., Weston, J., Scholkopf, B.: Cluster kernels for semi-supervised learning. In: Advances in Neural Information Processing Systems, p. 15 (2002)

    Google Scholar 

  2. Chung, F.R.K.: Spectral Graph Theory (CBMS Regional Conference Series in Mathematics, No. 92). American Mathematical Society (December 1996)

    Google Scholar 

  3. He, X., Niyogi, P.: Locality preserving projections (2002)

    Google Scholar 

  4. Iosifidis, A., Tefas, A., Pitas, I.: View-invariant action recognition based on artificial neural networks. IEEE Transactions on Neural Networks and Learning Systems 23(3), 412–424 (2012)

    Article  Google Scholar 

  5. Ji, X., Liu, H.: Advances in view-invariant human motion analysis: A review. Trans. Sys. Man Cyber. Part C 40(1), 13–24 (2010)

    Google Scholar 

  6. Kapsouras, I., Karanikolos, S., Nikolaidis, N., Tefas, A.: Feature comparison and feature fusion for traditional dances recognition. In: Iliadis, L., Papadopoulos, H., Jayne, C. (eds.) EANN 2013, Part I. CCIS, vol. 383, pp. 172–181. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Kyperountas, M., Tefas, A., Pitas, I.: Salient feature and reliable classifier selection for facial expression classification. Pattern Recognition 43(3), 972–986 (2010)

    Article  MATH  Google Scholar 

  8. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8 (2008)

    Google Scholar 

  9. Le, Q.V., Zou, W.Y., Yeung, S.Y., Ng, A.Y.: Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011, pp. 3361–3368. IEEE Computer Society, Washington, DC (2011)

    Google Scholar 

  10. Leung, T., Malik, J.: Representing and recognizing the visual appearance of materials using three-dimensional textons. International Journal of Computer Vision 43(1), 29–44 (2001)

    Article  MATH  Google Scholar 

  11. Poppe, R.: A survey on vision-based human action recognition. Image Vision Comput. 28(6), 976–990 (2010)

    Article  Google Scholar 

  12. Smola, A.J., Kondor, R.: Kernels and regularization on graphs (2003)

    Google Scholar 

  13. Szummer, M., Jaakkola, T.: Partially labeled classification with markov random walks. In: Advances in Neural Information Processing Systems 15. MIT Press, Cambridge (2001)

    Google Scholar 

  14. Turaga, P., Chellappa, R., Subrahmanian, V.S., Udrea, O.: Machine recognition of human activities: A survey. IEEE Transactions on Circuits and Systems for Video Technology 18(11), 1473–1488 (2008)

    Article  Google Scholar 

  15. Wang, H., Kläser, A., Schmid, C., Liu, C.L.: Dense trajectories and motion boundary descriptors for action recognition. International Journal of Computer Vision 103(1), 60–79 (2013)

    Article  MathSciNet  Google Scholar 

  16. Yan, S., Xu, D., Zhang, B., Zhang, H.J., Yang, Q., Lin, S.: Graph embedding and extensions: A general framework for dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(1), 40–51 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Gavriilidis, V., Tefas, A. (2014). Activity Recognition for Traditional Dances Using Dimensionality Reduction. In: Likas, A., Blekas, K., Kalles, D. (eds) Artificial Intelligence: Methods and Applications. SETN 2014. Lecture Notes in Computer Science(), vol 8445. Springer, Cham. https://doi.org/10.1007/978-3-319-07064-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07064-3_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07063-6

  • Online ISBN: 978-3-319-07064-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics