Skip to main content

Multi-objective Optimization

  • Reference work entry
  • First Online:

Abstract

This chapter provides a short overview of multi-objective optimization using metaheuristics. The chapter includes a description of some of the main metaheuristics that have been used for multi-objective optimization. Although special emphasis is made on evolutionary algorithms, other metaheuristics, such as particle swarm optimization, artificial immune systems, and ant colony optimization, are also briefly discussed. Other topics such as applications and recent algorithmic trends are also included. Finally, some of the main research trends that are worth exploring in this area are briefly discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abboud K, Schoenauer M (2002) Surrogate deterministic mutation. In: Collet P, Fonlupt C, Hao J-K, Lutton E, Schoenauer M (eds) Artificial evolution, 5th international conference, evolution artificielle, EA 2001. Lecture notes in computer science, vol 2310. Springer, Le Creusot, pp 103–115

    Google Scholar 

  2. Akay B (2013) Synchronous and asynchronous Pareto-based multi-objective Artificial Bee Colony algorithms. J Glob Optim 57(2):415–445

    Google Scholar 

  3. Alba E, Luque G, Nesmachnow S (2013) Parallel metaheuristics: recent advances and new trends. Int Trans Oper Res 20(1):1–48

    Google Scholar 

  4. Angus D, Woodward C (2009) Multiple objective ant colony optimisation. Swarm Intell 3(1):69–85

    Google Scholar 

  5. Antonio LM, Coello Coello CA (2013) Use of cooperative coevolution for solving large scale multiobjective optimization problems. In: 2013 IEEE congress on evolutionary computation (CEC’2013), Cancún. IEEE Press, pp 2758–2765. ISBN:978-1-4799-0454-9

    Google Scholar 

  6. Arias-Montaño A, Coello Coello CA, Mezura-Montes E (2012) Multi-objective evolutionary algorithms in aeronautical and aerospace engineering. IEEE Trans Evol Comput 16(5): 662–694

    Google Scholar 

  7. Bader J, Zitzler E (2011) HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol Comput 19(1):45–76. Spring

    Google Scholar 

  8. Bai Q, Labi S, Sinha KC (2012) Trade-off analysis for multiobjective optimization in transportation asset management by generating Pareto frontiers using extreme points nondominated sorting genetic algorithm II. J Trans Eng-ASCE 138(6):798–808

    Google Scholar 

  9. Balesdent M, Berend N, Depince P, Chriette A (2012) A survey of multidisciplinary design optimization methods in launch vehicle design. Struct Multidiscip Optim 45(5):619–642

    Google Scholar 

  10. Balling R, Wilson S (2001) The maximin fitness function for multi-objective evolutionary computation: application to city planning. In: Spector L, Goodman ED, Wu A, Langdon WB, Voigt H-M, Gen M, Sen S, Dorigo M, Pezeshk S, Garzon MH, Burke E (eds) Proceedings of the genetic and evolutionary computation conference (GECCO’2001), San Francisco. Morgan Kaufmann Publishers, pp 1079–1084

    Google Scholar 

  11. Banks A, Vincent J, Anyakoha C (2008) A review of particle swarm optimization. II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. Nat Comput 7(1):109–124. Unconventional Computation 2006, Selected Papers

    Google Scholar 

  12. Baños R, Gil C, Reca J, Martínez J (2009) Implementation of scatter search for multi-objective optimization: a comparative study. Comput Optim Appl 42(3):421–441

    Google Scholar 

  13. Baronas R, Žilinskas A, Litvinas L (2016) Optimal design of amperometric biosensors applying multi-objective optimization and decision visualization. Electrochim Acta 211: 586–594

    Google Scholar 

  14. Bartolini R, Apollonio M, Martin IPS (2012) Multi-objective genetic algorithm optimization of the beam dynamics in linac drivers for free electron lasers. Phys Rev Spec Top Accel Beams 15(3). Article number:030701

    Google Scholar 

  15. Beausoleil RP (2006) “MOSS” multiobjective scatter search applied to non-linear multiple criteria optimization. Eur J Oper Res 169(2):426–449

    Google Scholar 

  16. Beausoleil RP (2008) “MOSS-II” Tabu/Scatter search for nonlinear multiobjective optimization. In: Siarry P, Michalewicz Z (eds) Advances in metaheuristic methods for hard optimization. Springer, Berlin, pp 39–67. ISBN:978-3-540-72959-4

    Google Scholar 

  17. Benyoucef L, Xie X (2011) Supply chain design using simulation-based NSGA-II approach. In: Wang L, Ng AHC, Deb K (eds) Multi-objective evolutionary optimisation for product design and manufacturing. Springer, London, pp 455–491. ISBN:978-0-85729-617-7. Chapter 17

    Google Scholar 

  18. Bernardes de Oliveira F, Davendra D, Gadelha Guimar aes F (2013) Multi-objective differential evolution on the GPU with C-CUDA. In: Snášel V, Abraham A, Corchado ES (eds) Soft computing models in industrial and environmental applications, 7th international conference (SOCO’12). Advances in intelligent systems and computing, vol 188. Springer, Ostrava, pp 123–132

    Google Scholar 

  19. Beume N, Naujoks B, Emmerich M (2007) SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur J Oper Res 181(3):1653–1669

    Google Scholar 

  20. Bhattacharya M, Lu G (2003) A dynamic approximate fitness based hybrid ea for optimization problems. In: Proceedings of IEEE congress on evolutionary computation, pp 1879–1886

    Google Scholar 

  21. Branke J (2002) Evolutionary optimization in dynamic environments. Kluwer Academic Publishers, Boston. ISBN:0-7923-7631-5

    Google Scholar 

  22. Branke J (2008) Consideration of partial user preferences in evolutionary multiobjective optimization. In: Branke J, Deb K, Miettinen K, Slowinski R (eds) Multiobjective optimization. Interactive and evolutionary approaches. Lecture notes in computer science, vol 5252. Springer, Berlin, pp 157–178

    Google Scholar 

  23. Brockhoff D, Friedrich T, Hebbinghaus N, Klein C, Neumann F, Zitzler E (2007) Do additional objectives make a problem harder? In: Thierens D (ed) 2007 genetic and evolutionary computation conference (GECCO’2007), vol 1. ACM Press, London, pp 765–772

    Google Scholar 

  24. Brockhoff D, Wagner T, Trautmann H (2012) On the properties of the R2 indicator. In: 2012 genetic and evolutionary computation conference (GECCO’2012). ACM Press, Philadelphia, pp 465–472. ISBN:978-1-4503-1177-9

    Google Scholar 

  25. Bueche D, Schraudolph NN, Koumoutsakos P (2005) Accelerating evolutionary algorithms with gaussian process fitness function models. IEEE Trans Syst Man Cybern Part C 35(2):183–194

    Google Scholar 

  26. Burke EK, Li J, Qu R (2012) A Pareto-based search methodology for multi-objective nurse scheduling. Ann Oper Res 196(1):91–109

    Google Scholar 

  27. Campelo F, Guimar aes FG, Saldanha RR, Igarashi H, Noguchi S, Lowther DA, Ramirez JA (2004) A novel multiobjective immune algorithm using nondominated sorting. In: 11th international IGTE symposium on numerical field calculation in electrical engineering, Seggauberg

    Google Scholar 

  28. Campelo F, Guimar aes FG, Igarashi H (2007) Overview of artificial immune systems for multi-objective optimization. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T (eds) Evolutionary multi-criterion optimization, 4th international conference (EMO 2007), Matshushima. Lecture notes in computer science, vol 4403. Springer, pp 937–951

    Google Scholar 

  29. Campos SC, Arroyo JEC (2014) NSGA-II with iterated greedy for a bi-objective three-stage assembly flowshop scheduling problem. In: 2014 genetic and evolutionary computation conference (GECCO 2014), Vancouver. ACM Press, pp 429–436. ISBN:978-1-4503-2662-9

    Google Scholar 

  30. Carcangiu S, Fanni A, Montisci A (2008) Multiobjective Tabu search algorithms for optimal design of electromagnetic devices. IEEE Trans Magn 44(6):970–973

    Google Scholar 

  31. Carrese R, Winarto H, Li X, Sobester A, Ebenezer S (2012) A comprehensive preference-based optimization framework with application to high-lift aerodynamic design. Eng Optim 44(10):1209–1227

    Google Scholar 

  32. Chang Y-C (2012) Multi-objective optimal SVC installation for power system loading margin improvement. IEEE Trans Power Syst 27(2):984–992

    Google Scholar 

  33. Chaves-Gonzalez JM, Vega-Rodriguez MA, Granado-Criado JM (2013) A multiobjective swarm intelligence approach based on artificial bee colony for reliable DNA sequence design. Eng Appl Artif Intel 26(9):2045–2057

    Google Scholar 

  34. Chikumbo O, Goodman E, Deb K (2012) Approximating a multi-dimensional Pareto front for a land use management problem: a modified MOEA with an epigenetic silencing metaphor. In: 2012 IEEE congress on evolutionary computation (CEC’2012), Brisbane. IEEE Press, pp 480–488

    Google Scholar 

  35. Coello Coello CA (2000) Constraint-handling using an evolutionary multiobjective optimization technique. Civ Eng Environ Syst 17:319–346

    Google Scholar 

  36. Coello Coello CA (2002) Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Methods Appl Mech Eng 191(11–12):1245–1287

    Google Scholar 

  37. Coello Coello CA (2011) An introduction to multi-objective particle swarm optimizers. In: Gaspar-Cunha A, Takahashi R, Schaefer G, Costa L (eds) Soft computing in industrial applications. Advances in intelligent and soft computing series, vol 96. Springer, Berlin, pp 3–12. ISBN:978-3-642-20504-0

    Google Scholar 

  38. Coello Coello CA, Cruz Cortés N (2005) Solving multiobjective optimization problems using an artificial immune system. Genet Program Evolvable Mach 6(2):163–190

    Google Scholar 

  39. Coello Coello CA, Toscano Pulido G (2001) Multiobjective optimization using a micro-genetic algorithm. In: Spector L, Goodman ED, Wu A, Langdon WB, Voigt H-M, Gen M, Sen S, Dorigo M, Pezeshk S, Garzon MH, Burke E (eds) Proceedings of the genetic and evolutionary computation conference (GECCO’2001), San Francisco. Morgan Kaufmann Publishers, pp 274–282

    Google Scholar 

  40. Coello Coello CA, Toscano Pulido G, Salazar Lechuga M (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8(3):256–279

    Google Scholar 

  41. Coello Coello CA, Lamont GB, Van Veldhuizen DA (2007) Evolutionary algorithms for solving multi-objective problems, 2nd edn. Springer, New York. ISBN:978-0-387-33254-3

    Google Scholar 

  42. Collette Y, Siarry P (2003) Multiobjective optimization. Principles and case studies. Springer Berlin, Germany. ISBN:3-540-40182-2

    Google Scholar 

  43. Corne D, Glover F, Dorigo M (eds) (1999) New ideas in optimization. McGraw-Hill, Berkshire. ISBN:007-709506-5

    Google Scholar 

  44. Corne DW, Knowles JD, Oates MJ (2000) The Pareto envelope-based selection algorithm for multiobjective optimization. In: Schoenauer M, Deb K, Rudolph G, Yao X, Lutton E, Merelo JJ, Schwefel H-P (eds) Proceedings of the parallel problem solving from nature VI conference, Paris. Lecture notes in computer science, vol 1917. Springer, pp 839–848

    Google Scholar 

  45. Corne DW, Jerram NR, Knowles JD, Oates MJ (2001) PESA-II: region-based selection in evolutionary multiobjective optimization. In: Spector L, Goodman ED, Wu A, Langdon WB, Voigt H-M, Gen M, Sen S, Dorigo M, Pezeshk S, Garzon MH, Burke E (eds) Proceedings of the genetic and evolutionary computation conference (GECCO’2001), San Francisco. Morgan Kaufmann Publishers, pp 283–290

    Google Scholar 

  46. Cui X, Li M, Fang T (2001) Study of population diversity of multiobjective evolutionary algorithm based on immune and entropy principles. In: Proceedings of the congress on evolutionary computation 2001 (CEC’2001), Piscataway, vol 2. IEEE Service Center, pp 1316–1321

    Google Scholar 

  47. Cvetković D, Parmee IC (2002) Preferences and their application in evolutionary multiobjective optimisation. IEEE Trans Evol Comput 6(1):42–57

    Google Scholar 

  48. Czyzak P, Jaszkiewicz A (1998) Pareto simulated annealing—a metaheuristic technique for multiple-objective combinatorial optimization. J Multi-Criteria Decis Anal 7:34–47

    Google Scholar 

  49. Das I, Dennis J (1997) A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems. Struct Optim 14(1):63–69

    Google Scholar 

  50. Dasgupta D (ed) (1999) Artificial immune systems and their applications. Springer, Berlin

    Google Scholar 

  51. de Castro LN, Timmis J (2002) An introduction to artificial immune systems: a new computational intelligence paradigm. Springer, London. ISBN:1-85233-594-7

    Google Scholar 

  52. Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, Chichester. ISBN:0-471-87339-X

    Google Scholar 

  53. Deb K, Goldberg DE (1989) An investigation of niche and species formation in genetic function optimization. In: Schaffer JD (ed) Proceedings of the third international conference on genetic algorithms, San Mateo. George Mason University, Morgan Kaufmann Publishers, pp 42–50

    Google Scholar 

  54. Deb K, Jain H (2014) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans Evol Comput 18(4):577–601

    Google Scholar 

  55. Deb K, Pratap A, Meyarivan T (2001) Constrained test problems for multi-objective evolutionary optimization. In: Zitzler E, Deb K, Thiele L, Coello Coello CA, Corne D (eds) First international conference on evolutionary multi-criterion optimization. Lecture notes in computer science, vol 1993. Springer, pp 284–298

    Google Scholar 

  56. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA–II. IEEE Trans Evol Comput 6(2):182–197

    Google Scholar 

  57. Deb K, Mohan M, Mishra S (2005) Evaluating the 𝜖-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions. Evol Comput 13(4):501–525. Winter

    Google Scholar 

  58. Dhouib S, Dhouib S, Chabchoub H (2013) Artificial bee colony metaheuristic to find Pareto optimal solutions set for engineering design problems. In: 2013 5th international conference on modeling, simulation and applied optimization (ICMSAO), Hammamet. IEEE Press. ISBN:978-1-4673-5812-5

    Google Scholar 

  59. di Pierro F, Khu S-T, Savić DA (2007) An investigation on preference order ranking scheme for multiobjective evolutionary optimization. IEEE Trans Evol Comput 11(1): 17–45

    Google Scholar 

  60. Dorigo M, Stützle T (2004) Ant colony optimization. MIT Press, Cambridge. ISBN:0-262-04219-3

    Google Scholar 

  61. Durillo JJ, García-Nieto J, Nebro AJ, Coello Coello CA, Luna F, Alba E (2009) Multi-objective particle swarm optimizers: an experimental comparison. In: Ehrgott M, Fonseca CM, Gandibleux X, Hao J-K, Sevaux M (eds) Evolutionary multi-criterion optimization. 5th international conference (EMO 2009). Lecture notes in computer science, vol 5467. Springer, Nantes, pp 495–509

    Google Scholar 

  62. Durillo JJ, Nebro AJ, Coello Coello CA, Garcia-Nieto J, Luna F, Alba E (2010) A study of multiobjective metaheuristics when solving parameter scalable problems. IEEE Trans Evol Comput 14(4):618–635

    Google Scholar 

  63. Edgeworth FY (1881) Mathematical psychics. P. Keagan, London

    Google Scholar 

  64. Eiben AE, Smith JE (2003) Introduction to evolutionary computing. Springer, Berlin. ISBN:3-540-40184-9

    Google Scholar 

  65. Ekbal A, Saha S (2013) Combining feature selection and classifier ensemble using a multiobjective simulated annealing approach: application to named entity recognition. Soft Comput 17(1):1–16

    Google Scholar 

  66. Emmerich M, Giotis A, Özdemir M, Bäck T, Giannakoglou K (2002) Metamodel-assisted evolution strategies. In: Merelo Guervós JJ, Adamidis P, Beyer H-G, Fernández-Villaca nas J-L, Schwefel H-P (eds) Parallel problem solving from nature—PPSN VII, Granada. Lecture notes in computer science, vol 2439. Springer, pp 371–380

    Google Scholar 

  67. Emmerich M, Beume N, Naujoks B (2005) An EMO algorithm using the hypervolume measure as selection criterion. In: Coello Coello CA, Hernández Aguirre A, Zitzler E (eds) Evolutionary multi-criterion optimization. Third international conference (EMO 2005), Guanajuato. Lecture notes in computer science, vol 3410. Springer, pp 62–76

    Google Scholar 

  68. Eppe S, López-Ibá nez M, Stützle T, De Smet Y (2011) An experimental study of preference model integration into multi-objective optimization heuristics. In: 2011 IEEE congress on evolutionary computation (CEC’2011), New Orleans. IEEE Service Center, pp 2751–2758

    Google Scholar 

  69. Esparcia-Alcazar AI, Martínez-García A, García-Sánchez P, Merelo JJ, Mora AM (2013) Towards a multiobjective evolutionary approach to inventory and routing management in a retail chain. In: 2013 IEEE congress on evolutionary computation (CEC’2013), Cancún. IEEE Press, pp 3166–3173. ISBN:978-1-4799-0454-9

    Google Scholar 

  70. Falcon-Cardona JG, Coello Coello CA (2017) A new indicator-based many-objective ant colony optimizer for continuous search spaces. Swarm Intell 11(1):71–100

    Google Scholar 

  71. Fang G, Xue M, Su M, Hu D, Li Y, Xiong B, Ma L, Meng T, Chen Y, Li J, Li J, Shen J (2012) CCLab-a multi-objective genetic algorithm based combinatorial library desing software and an application for histone deacetylase inhibitor desing. Bioorg Med Chem Lett 22(14): 4540–4545

    Google Scholar 

  72. Farina M, Amato P (2004) A fuzzy definition of “optimality” for many-criteria optimization problems. IEEE Trans Syst Man and Cybern Part A Syst Hum 34(3):315–326

    Google Scholar 

  73. Fleischer M (2003) The measure of Pareto optima. Applications to multi-objective metaheuristics. In: Fonseca CM, Fleming PJ, Zitzler E, Deb K, Thiele L (eds) Evolutionary multi-criterion optimization. Second international conference (EMO 2003), Faro. Lecture notes in computer science, vol 2632. Springer, pp 519–533

    Google Scholar 

  74. Fogel LJ (1966) Artificial intelligence through simulated evolution. John Wiley, New York

    Google Scholar 

  75. Fogel DB (1995) Evolutionary computation. Toward a new philosophy of machine intelligence. The Institute of Electrical and Electronic Engineers, New York

    Google Scholar 

  76. Fogel LJ (1999) Artificial intelligence through simulated evolution. Forty years of evolutionary programming. Wiley, New York

    Google Scholar 

  77. Fonseca CM, Fleming PJ (1993) Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In: Forrest S (ed) Proceedings of the fifth international conference on genetic algorithms, San Mateo. University of Illinois at Urbana-Champaign, Morgan Kauffman Publishers, pp 416–423

    Google Scholar 

  78. Forrest S, Perelson AS (1991) Genetic algorithms and the immune system. In: Schwefel H-P, Männer R (eds) Parallel problem solving from nature. Lecture notes in computer science. Springer, Berlin, pp 320–325

    Google Scholar 

  79. Freschi F, Repetto M (2006) VIS: an artificial immune network for multi-objective optimization. Eng Optim 38(8):975–996

    Google Scholar 

  80. Freschi F, Coello Coello CA, Repetto M (2009) Multiobjective optimization and artificial immune systems: a review. In: Mo H (ed) Handbook of research on artificial immune systems and natural computing: applying complex adaptive technologies. Medical Information Science Reference, Hershey/New York, pp 1–21. ISBN:978-1-60566-310-4

    Google Scholar 

  81. Friedrich T, Kroeger T, Neumann F (2011) Weighted preferences in evolutionary multi-objective optimization. In: Wang D, Reynolds M (eds) AI 2011: advances in artificial intelligence, 24th Australasian joint conference, Perth. Lecture notes in computer science, vol 7106. Springer, pp 291–300

    Google Scholar 

  82. García-Martínez C, Cordón O, Herrera F (2007) A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP. Eur J Oper Res 180(1):116–148

    Google Scholar 

  83. Garza Fabre M, Toscano Pulido G, Coello Coello CA (2009) Ranking methods for many-objective problems. In: Aguirre AH, Borja RM, García CAR (eds) MICAI 2009: advances in artificial intelligence. 8th Mexican international conference on artificial intelligence, Guanajuato. Lecture notes in artificial intelligence, vol 5845. Springer, pp 633–645

    Google Scholar 

  84. Garza-Fabre M, Rodriguez-Tello E, Toscano-Pulido G (2015) Constraint-handling through multi-objective optimization: the hydrophobic-polar model for protein structure prediction. Comput Oper Res 53:128–153

    Google Scholar 

  85. Gen M, Cheng R (2000) Genetic algorithms and engineering optimization. Wiley series in engineering design and automation. Wiley, New York

    Google Scholar 

  86. Ghisu T, Parks GT, Jaeggi DM, Jarrett JP, Clarkson PJ (2010) The benefits of adaptive parametrization in multi-objective Tabu search optimization. Eng Optim 42(10):959–981

    Google Scholar 

  87. Giel O (2003) Expected runtimes of a simple multi-objective evolutionary algorithm. In: Proceedings of the 2003 congress on evolutionary computation (CEC’2003), vol 3, Canberra. IEEE Press, pp 1918–1925

    Google Scholar 

  88. Glover F, Kochenberger GA (eds) (2003) Handbook of metaheuristics. Kluwer Academic Publishers, Boston. ISBN:1-4020-7263-5

    Google Scholar 

  89. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley Publishing Company, Reading

    Google Scholar 

  90. Goldberg DE, Deb K (1991) A comparison of selection schemes used in genetic algorithms. In: Rawlins GJE (ed) Foundations of genetic algorithms. Morgan Kaufmann, San Mateo, pp 69–93

    Google Scholar 

  91. Goldberg DE, Richardson J (1987) Genetic algorithm with sharing for multimodal function optimization. In: Grefenstette JJ (ed) Genetic algorithms and their applications: proceedings of the second international conference on genetic algorithms, Hillsdale. Lawrence Erlbaum, pp 41–49

    Google Scholar 

  92. Gupta H, Deb K (2005) Handling constraints in robust multi-objective optimization. In: 2005 IEEE congress on evolutionary computation (CEC’2005), vol 1, Edinburgh. IEEE Service Center, pp 25–32

    Google Scholar 

  93. Hajela P, Lin CY (1992) Genetic search strategies in multicriterion optimal design. Struct Optim 4:99–107

    Google Scholar 

  94. Hansen MP (1998) Metaheuristics for multiple objective combinatorial optimization. PhD thesis, Institute of Mathematical Modelling, Technical University of Denmark

    Google Scholar 

  95. Hansen MP (2000) Tabu search for multiobjective combinatorial optimization: TAMOCO. Control Cybern 29(3):799–818

    Google Scholar 

  96. Harada K, Sakuma J, Ono I, Kobayashi S (2007) Constraint-handling method for multi-objective function optimization: Pareto descent repair operator. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T (eds) Evolutionary multi-criterion optimization, 4th international conference (EMO 2007), Matshushima. Lecture notes in computer science, vol 4403. Springer, pp 156–170

    Google Scholar 

  97. Heris SMK, Khaloozadeh H (2011) Open- and closed-loop multiobjective optimal strategies for HIV therapy using NSGA-II. IEEE Trans Biomed Eng 58(6):1678–1685

    Google Scholar 

  98. Hernández Aguirre A, Botello Rionda S, Lizárraga Lizárraga G, Coello Coello C (2004) IS-PAES: multiobjective optimization with efficient constraint handling. In: Burczyński T, Osyczka A (eds) IUTAM symposium on evolutionary methods in mechanics. Kluwer Academic Publishers, Dordrecht/Boston/London, pp 111–120. ISBN:1-4020-2266-2

    Google Scholar 

  99. Hernández Gómez R, Coello Coello CA (2013) MOMBI: a new metaheuristic for many-objective optimization based on the R2 indicator. In: 2013 IEEE congress on evolutionary computation (CEC’2013), Cancún. IEEE Press, pp 2488–2495. ISBN:978-1-4799-0454-9

    Google Scholar 

  100. Hernández Gómez R, Coello Coello CA, Alba Torres E (2016) A multi-objective evolutionary algorithm based on parallel coordinates. In: 2016 genetic and evolutionary computation conference (GECCO’2016), Denver. ACM Press, pp 565–572. ISBN:978-1-4503-4206-3

    Google Scholar 

  101. Holland JH (1962) Concerning efficient adaptive systems. In: Yovits MC, Jacobi GT, Goldstein GD (eds) Self-organizing systems—1962. Spartan Books, Washington, DC, pp 215–230

    Google Scholar 

  102. Hong Y-S, Lee H, Tahk M-J (2003) Acceleration of the convergence speed of evolutionary algorithms using multi-layer neural networks. Eng Optim 35(1):91–102

    Google Scholar 

  103. Horn J, Nafpliotis N, Goldberg DE (1994) A niched Pareto genetic algorithm for multiobjective optimization. In: Proceedings of the first IEEE conference on evolutionary computation, IEEE world congress on computational intelligence, Piscataway, vol 1. IEEE Service Center, pp 82–87

    Google Scholar 

  104. Hsieh M-N, Chiang T-C, Fu L-C (2011) A hybrid constraint handling mechanism with differential evolution for constrained multiobjective optimization. In: 2011 IEEE congress on evolutionary computation (CEC’2011), New Orleans. IEEE Service Center, pp 1785–1792

    Google Scholar 

  105. Huang B, Buckley B, Kechadi TM (2010) Multi-objective feature selection by using NSGA-II for customer churn prediction in telecommunications. Expert Syst Appl 37(5):3638–3646

    Google Scholar 

  106. Huband S, Hingston P, White L, Barone L (2003) An evolution strategy with probabilistic mutation for multi-objective optimisation. In: Proceedings of the 2003 congress on evolutionary computation (CEC’2003), Canberra, vol 3. IEEE Press, pp 2284–2291

    Google Scholar 

  107. Husbands P (1994) Distributed coevolutionary genetic algorithms for multi-criteria and multi-constraint optimisation. In: Fogarty TC (ed) Evolutionary computing. AIS workshop. Selected papers. Lecture notes in computer science, vol 865. Springer, pp 150–165

    Google Scholar 

  108. Hüscken M, Jin Y, Sendhoff B (2005) Structure optimization of neural networks for aerodynamic optimization. Soft Comput 9(1):21–28

    Google Scholar 

  109. Ibaraki T, Nonobe K, Yagiura M (eds) (2005) Metaheuristics. Progress as real problem solvers. Springer, New York. ISBN:978-0-387-25382-4

    Google Scholar 

  110. Iordache R, Iordache S, Moldoveanu F (2014) A framework for the study of preference incorporation in multiobjective evolutionary algorithms. In: 2014 genetic and evolutionary computation conference (GECCO 2014), Vancouver. ACM Press, pp 621–628. ISBN:978-1-4503-2662-9

    Google Scholar 

  111. Iredi S, Merkle D, Middendorf M (2001) Bi-criterion optimization with multi colony ant algorithms. In: Zitzler E, Deb K, Thiele L, Coello Coello CA, Corne D (eds) First international conference on evolutionary multi-criterion optimization. Lecture notes in computer science, vol 1993. Springer, pp 359–372

    Google Scholar 

  112. Jain H, Deb K (2014) An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: handling constraints and extending to an adaptive approach. IEEE Trans Evol Comput 18(4):602–622

    Google Scholar 

  113. Jensen MT (2003) Reducing the run-time complexity of multiobjective EAs: the NSGA-II and other algorithms. IEEE Trans Evol Comput 7(5):503–515

    Google Scholar 

  114. Jin Y, Sendhoff B, Körner E (2005) Evolutionary multi-objective optimization for simultaneous generation of signal-type and symbol-type representations. In: Coello Coello CA, Hernández Aguirre A, Zitzler E (eds) Evolutionary multi-criterion optimization. Third international conference, EMO 2005, Guanajuato. Lecture notes in computer science, vol 3410. Springer, pp 752–766

    Google Scholar 

  115. Kelaiaia R, Zaatri A, Company O (2012) Multiobjective optimization of 6-dof UPS parallel manipulators. Adv Robot 26(16):1885–1913

    Google Scholar 

  116. Kennedy J, Eberhart RC (2001) Swarm intelligence. Morgan Kaufmann Publishers, San Francisco

    Google Scholar 

  117. Kita H, Yabumoto Y, Mori N, Nishikawa Y (1996) Multi-objective optimization by means of the thermodynamical genetic algorithm. In: Voigt H-M, Ebeling W, Rechenberg I, Schwefel H-P (eds) Parallel problem solving from nature—PPSN IV. Lecture notes in computer science, Berlin. Springer, pp 504–512

    Google Scholar 

  118. Knowles J (2006) ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Trans Evol Comput 10(1):50–66

    Google Scholar 

  119. Knowles JD, Corne DW (2000) Approximating the nondominated front using the pareto archived evolution strategy. Evol Comput 8(2):149–172

    Google Scholar 

  120. Knowles J, Corne D (2003) Properties of an adaptive archiving algorithm for storing nondominated vectors. IEEE Trans Evol Comput 7(2):100–116

    Google Scholar 

  121. Knowles J, Corne D (2007) Quantifying the effects of objective space dimension in evolutionary multiobjective optimization. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T (eds) Evolutionary multi-criterion optimization, 4th international conference (EMO 2007), Matshushima. Lecture notes in computer science, vol 4403. Springer, pp 757–771

    Google Scholar 

  122. Lahsasna A, Ainon RN, Zainuddin R, Bulgiba A (2012) Design of a fuzzy-based decision support system for coronary heart disease diagnosis. J Med Syst 36(5):3293–3306

    Google Scholar 

  123. Larzabal E, Cubillos JA, Larrea M, Irigoyen E, Valera JJ (2012) Soft computing testing in real industrial platforms for process intelligent control. In: Snášel V, Abraham A, Corchado ES (eds) Soft computing models in industrial and environmental applications, 7th international conference (SOCO’12). Advances in intelligent systems and computing, vol 188. Springer, Ostrava, pp 221–230

    Google Scholar 

  124. Laumanns M, Thiele L, Deb K, Zitzler E (2002) Combining convergence and diversity in evolutionary multi-objective optimization. Evol Comput 10(3):263–282. Fall

    Google Scholar 

  125. Laumanns M, Thiele L, Zitzler E (2004) Running time analysis of multiobjective evolutionary algorithms on Pseudo-Boolean functions. IEEE Trans Evol Comput 8(2):170–182

    Google Scholar 

  126. Levene C, Correa E, Blanch EW, Goodacre R (2012) Enhancing surface enhanced raman scattering (SERS) detection of propranolol with multiobjective evolutionary optimization. Anal Chem 84(18):7899–7905

    Google Scholar 

  127. Li J-Q, Pan Q-K, Gao K-Z (2011) Pareto-based discrete artificial bee colony algorithm for multi-objective flexible job shop scheduling problems. Int J Adv Manuf Tech 55(9–12):1159–1169

    Google Scholar 

  128. López Jaimes A, Coello Coello CA, Chakraborty D (2008) Objective reduction using a feature selection technique. In: 2008 genetic and evolutionary computation conference (GECCO’2008), Atlanta. ACM Press, pp 674–680. ISBN:978-1-60558-131-6

    Google Scholar 

  129. López Jaimes A, Santana Quintero LV, Coello Coello CA (2009) Ranking methods in many-objective evolutionary algorithms. In: Chiong R (ed) Nature-inspired algorithms for optimisation. Springer, Berlin, pp 413–434. ISBN:978-3-642-00266-3

    Google Scholar 

  130. Luh G-C, Chueh C-H, Liu W-W (2003) MOIA: multi-objective immune algorithm. Eng Optim 35(2):143–164

    Google Scholar 

  131. Mahmoodabadi MJ, Arabani Mostaghim S, Bagheri A, Nariman-zadeh N (2013) Pareto optimal design of the decoupled sliding mode controller for an inverted pendulum system and its stability simulation via Java programming. Math Comput Model 57(5–6):1070–1082

    Google Scholar 

  132. Menchaca-Mendez A, Coello Coello CA (2013) Selection operators based on maximin fitness function for multi-objective evolutionary algorithms. In: Purshouse RC, Fleming PJ, Fonseca CM, Greco S, Shaw J (eds) Evolutionary multi-criterion optimization, 7th international conference (EMO 2013). Lecture notes in computer science, vol 7811, Sheffield. Springer, pp 215–229

    Google Scholar 

  133. Mezura-Montes E, Coello Coello CA (2008) Constrained optimization via multiobjective evolutionary algorithms. In: Knowles J, Corne D, Deb K (eds) Multi-objective problem solving from nature: from concepts to applications. Springer, Berlin, pp 53–75. ISBN:978-3-540-72963-1

    Google Scholar 

  134. Mezura-Montes E, Reyes-Sierra M, Coello Coello CA (2008) Multi-objective optimization using differential evolution: a survey of the state-of-the-art. In: Chakraborty UK (ed) Advances in differential evolution. Springer, Berlin, pp 173–196. ISBN:978-3-540- 68827-3

    Google Scholar 

  135. Miettinen KM (1999) Nonlinear multiobjective optimization. Kluwer Academic Publishers, Boston

    Google Scholar 

  136. Mishra BSP, Dehuri S, Mall R, Ghosh A (2011) Parallel single and multiple objectives genetic algorithms: a survey. Int J Appl Evol Comput 2(2):21–57

    Google Scholar 

  137. Moncayo-Martinez LA, Zhang DZ (2011) Multi-objective ant colony optimisation: a meta-heuristic approach to supply chain design. Int J Prod Econ 131(1):407–420

    Google Scholar 

  138. Montaño AA, Coello Coello CA, Mezura-Montes E (2010) MODE-LD+SS: a novel differential evolution algorithm incorporating local dominance and scalar selection mechanisms for multi-objective optimization. In: 2010 IEEE congress on evolutionary computation (CEC’2010), Barcelona. IEEE Press, pp 3284–3291

    Google Scholar 

  139. Moore J, Chapman R, Dozier G (2000) Multiobjective particle swarm optimization. In: Turner AJ (ed) Proceedings of the 38th annual southeast regional conference, Clemson. ACM Press, pp 56–57

    Google Scholar 

  140. Mora AM, Garcia-Sanchez P, Merelo JJ, Castillo PA (2013) Pareto-based multi-colony multi-objective ant colony optimization algorithms: an island model proposal. Soft Comput 17(7):1175–1207

    Google Scholar 

  141. Narayanan L, Subramanian B, Arokiaswami A, Iruthayarajan MW (2012) Optimal placement of mobile antenna in an urban area using evolutionary multiobjective optimization. Microw Opt Technol Lett 54(3):737–743

    Google Scholar 

  142. Nebro AJ, Durillo JJ, Garcia-Nieto J, Coello Coello CA, Luna F, Alba E (2009) SMPSO: a new PSO-based metaheuristic for multi-objective optimization. In: 2009 IEEE symposium on computational intelligence in multi-criteria decision-making (MCDM’2009), Nashville. IEEE Press, pp 66–73. ISBN:978-1-4244-2764-2

    Google Scholar 

  143. Neumann F (2007) Expected runtimes of a simple evolutionary algorithm for the multi-objective minimum spanning tree problem. Eur J Oper Res 181(3):1620–1629

    Google Scholar 

  144. Neumann F (2012) Computational complexity analysis of multi-objective genetic programming. In: 2012 genetic and evolutionary computation conference (GECCO’2012), Philadelphia. ACM Press, pp 799–806. ISBN:978-1-4503-1177-9

    Google Scholar 

  145. Ning X, Lam KC (2013) Cost-safety trade-off in unequal-area construction site layout planning. Autom Constr 32:96–103

    Google Scholar 

  146. Olmo JL, Romero JR, Ventura S (2012) Classification rule mining using ant programming guided by grammar with multiple Pareto fronts. Soft Comput 16(12):2143–2163

    Google Scholar 

  147. Ong YS, Nair PB, Keane AJ, Wong KW (2004) Surrogate-assisted evolutionary optimization frameworks for high-fidelity engineering design problems. In: Jin Y (ed) Knowledge incorporation in evolutionary computation. Studies in fuzziness and soft computing. Springer, Berlin, Germany, pp 307–332

    Google Scholar 

  148. Oyama A, Shimoyama K, Fujii K (2007) New constraint-handling method for multi-objective and multi-constraint evolutionary optimization. Trans Jpn Soc Aeronaut Space Sci 50(167):56–62

    Google Scholar 

  149. Pacheco J, Marti R (2006) Tabu search for a multi-objective routing problem. J Oper Res Soc 57(1):29–37

    Google Scholar 

  150. Pardalos PM, Siskos Y, Zopounidis C (eds) (1995) Advances in multiciteria analysis. Springer-Science+Business Media, B.V. ISBN:978-1-4419-4748-2

    Google Scholar 

  151. Pardalos PM, Žilinskas A, Žilinskas J (2017) Non-convex multi-objective optimization. Springer, Cham. ISBN:978-3-319-61005-4

    Google Scholar 

  152. Pareto V (1896) Cours D’Economie Politique, vol I and II. F. Rouge, Lausanne

    Google Scholar 

  153. Parsopoulos KE, Taoulis DK, Pavlidis NG, Plagianakos VP, Vrahatis MN (2004) Vector evaluated differential evolution for multiobjective optimization. In: 2004 congress on evolutionary computation (CEC’2004), Portland, vol 1. IEEE Service Center, pp 204–211

    Google Scholar 

  154. Phan DH, Suzuki J (2013) R2-IBEA: R2 indicator based evolutionary algorithm for multiobjective optimization. In: 2013 IEEE congress on evolutionary computation (CEC’2013), Cancún. IEEE Press, pp 1836–1845. ISBN:978-1-4799-0454-9

    Google Scholar 

  155. Pierrard T, Coello Coello CA (2012) A multi-objective artificial immune system based on hypervolume. In: Coelo Coello CA, Greensmith J, Krasnogor N, Liò P, Nicosia G, Pavone M (eds) Artificial immune systems, 11th international conference (ICARIS 2012). Lecture notes in computer science, vol 7597. Springer, Taormina, pp 14–27. ISBN:978-3-642- 33756-7

    Google Scholar 

  156. Pierret S (1999) Turbomachinery blade design using a Navier-Stokes solver and artificial neural network. ASME J Turbomach 121(3):326–332

    Google Scholar 

  157. Pilato C, Loiacono D, Tumeo A, Ferrandi F, Lanzi PL, Sciuto D (2010) Speeding-up expensive evaluations in high-level synthesis using solution modeling and fitness inheritance. In: Tenne Y, Goh C-K (eds) Computational intelligence in expensive optimization problems. Springer, Berlin, pp 701–723. ISBN:978-3-642-10700-9

    Google Scholar 

  158. Rahimi-Vahed AR, Javadi B, Rabbani M, Tavakkoli-Moghaddam R (2008) A multi-objective scatter search for a bi-criteria no-wait flow shop scheduling problem. Eng Optim 40(4): 331–346

    Google Scholar 

  159. Rakshit P, Konar A, Nagar AK (2014) Artificial bee colony induced multi-objective optimization in presence of noise. In: 2014 IEEE congress on evolutionary computation (CEC’2014), Beijing. IEEE Press, pp 3176–3183. ISBN:978-1-4799-1488-3

    Google Scholar 

  160. Rao ARM, Lakshmi K (2008) Multi-objective scatter search algorithm for combinatorial optimisation. In: Thulasiram R (ed) ADCOM: 2008 16th international conference on advanced computing and communications, Chennai. IEEE Press, pp 303–308. ISBN:978-1-4244- 2962-2

    Google Scholar 

  161. Rao BS, Vaisakh K (2013) Multi-objective adaptive clonal selection algorithm for solving environmental/economic dispatch and OPF problems with load uncertainty. Int J Electr Power Energy Syst 53:390–408

    Google Scholar 

  162. Rasheed K, Ni X, Vattam S (2005) Comparison of methods for developing dynamic reduced models for design optimization. Soft Comput 9(1):29–37

    Google Scholar 

  163. Ratle A (1998) Accelerating the convergence of evolutionary algorithms by fitness landscape approximation. In: Eiben AE, Bäck T, Schoenauer M, Schwefel H-P (eds) Parallel problem solving from nature—PPSN V, 5th international conference, Amsterdam. Lecture notes in computer science, vol 1498. Springer, pp 87–96

    Google Scholar 

  164. Reyes Sierra M, Coello Coello CA (2005) Fitness inheritance in multi-objective particle swarm optimization. In: 2005 IEEE swarm intelligence symposium (SIS’05), Pasadena. IEEE Press, pp 116–123

    Google Scholar 

  165. Reyes Sierra M, Coello Coello CA (2005) Improving PSO-based multi-objective optimization using crowding, mutation and 𝜖-dominance. In: Coello Coello CA, Hernández Aguirre A, Zitzler E (eds) Evolutionary multi-criterion optimization. Third international conference (EMO 2005), Guanajuato. Lecture notes in computer science, vol 3410. Springer, pp 505–519

    Google Scholar 

  166. Reyes Sierra M, Coello Coello CA (2005) A study of fitness inheritance and approximation techniques for multi-objective particle swarm optimization. In: 2005 IEEE congress on evolutionary computation (CEC’2005), Edinburgh, vol 1. IEEE Service Center, pp 65–72

    Google Scholar 

  167. Reyes-Sierra M, Coello Coello CA (2006) Multi-objective particle swarm optimizers: a survey of the state-of-the-art. Int J Comput Intell Res 2(3):287–308

    Google Scholar 

  168. Rodríguez Villalobos CA, Coello Coello CA (2012) A new multi-objective evolutionary algorithm based on a performance assessment indicator. In: 2012 genetic and evolutionary computation conference (GECCO’2012), Philadelphia. ACM Press, pp 505–512. ISBN:978-1-4503-1177-9

    Google Scholar 

  169. Rohling G (2008) Methods for decreasing the number of objective evaluations for independent computationally expensive objective problems. In: 2008 congress on evolutionary computation (CEC’2008), Hong Kong. IEEE Service Center, pp 3304–3309

    Google Scholar 

  170. Romero CEM, Manzanares EM (1999) MOAQ an ant-Q algorithm for multiple objective optimization problems. In: Banzhaf W, Daida J, Eiben AE, Garzon MH, Honavar V, Jakiela M, Smith RE (eds) Genetic and evolutionary computing conference (GECCO’99), San Francisco, vol 1. Morgan Kaufmann, pp 894–901

    Google Scholar 

  171. Romero-Garcia V, Sanchez-Perez JV, Garcia-Raffi LM (2012) Molding the acoustic attenuation in quasi-ordered structures: experimental realization. Appl Phys Express 5(8). Article number:087301

    Google Scholar 

  172. Ronco CCD, Ponza R, Benini E (2014) Aerodynamic shape optimization in aeronautics: a fast and effective multi-objective approach. Arch Comput Methods Eng 21(3):189–271

    Google Scholar 

  173. Rosenberg R (1967) Simulation of genetic populations with biochemical properties. PhD thesis, Department of Communication Sciences, University of Michigan, Ann Arbor

    Google Scholar 

  174. Rudolph G, Agapie A (2000) Convergence properties of some multi-objective evolutionary algorithms. In: Proceedings of the 2000 conference on evolutionary computation, Piscataway, vol 2. IEEE Press, pp 1010–1016

    Google Scholar 

  175. Saha I, Maulik U, Bandyopadhyay S, Plewczynski D (2011) Unsupervised and supervised learning approaches together for microarray analysis. Fundamenta Informaticae 106(1): 45–73

    Google Scholar 

  176. Sahoo NC, Ganguly S, Das D (2012) Fuzzy-Pareto-dominance driven possibilistic model based planning of electrical distribution systems using multi-objective particle swarm optimization. Expert Syst Appl 39(1):881–893

    Google Scholar 

  177. Santana-Quintero LV, Arias Montaño A, Coello Coello CA (2010) A review of techniques for handling expensive functions in evolutionary multi-objective optimization. In: Tenne Y, Goh C-K (eds) Computational intelligence in expensive optimization problems. Springer, Berlin, pp 29–59. ISBN:978-3-642-10700-9

    Google Scholar 

  178. Schaffer JD (1984) Multiple objective optimization with vector evaluated genetic algorithms. PhD thesis, Vanderbilt University, Nashville

    Google Scholar 

  179. Schaffer JD (1985) Multiple objective optimization with vector evaluated genetic algorithms. In: Genetic algorithms and their applications: proceedings of the first international conference on genetic algorithms. Lawrence Erlbaum, pp 93–100

    Google Scholar 

  180. Schuetze O, Laumanns M, Tantar E, Coello Coello CA, Talbi E (2007) Convergence of stochastic search algorithms to gap-free Pareto front approximations. In: Thierens D (ed) 2007 genetic and evolutionary computation conference (GECCO’2007), London, vol 1. ACM Press, pp 892–899

    Google Scholar 

  181. Schuetze O, Laumanns M, Tantar E, Coello Coello CA, Talbi E (2010) Computing gap free Pareto front approximations with stochastic search algorithms. Evol Comput 18(1):65–96. Spring

    Google Scholar 

  182. Schütze O, Lara A, Coello Coello CA (2011) On the influence of the number of objectives on the hardness of a multiobjective optimization problem. IEEE Trans Evol Comput 15(4):444–455

    Google Scholar 

  183. Schütze O, Esquivel X, Lara A, Coello Coello CA (2012) Using the averaged hausdorff distance as a performance measure in evolutionary multiobjective optimization. IEEE Trans Evol Comput 16(4):504–522

    Google Scholar 

  184. Schwefel H-P (1965) Kybernetische evolution als strategie der experimentellen forschung in der strömungstechnik. Dipl.-Ing. thesis (in German)

    Google Scholar 

  185. Schwefel H-P (1981) Numerical optimization of computer models. Wiley, Chichester

    Google Scholar 

  186. Sharifi S, Massoudieh A (2012) A novel hybrid mechanistic-data-driven model identification framework using NSGA-II. J Hydroinf 14(3):697–715

    Google Scholar 

  187. Sharma D, Collet P (2013) Implementation techniques for massively parallel multi-objective optimization. In: Tsutsui S, Collet P (eds) Massively parallel evolutionary computation on GPGPUs. Springer, pp 267–286. ISBN:978-3-642-37958-1

    Google Scholar 

  188. Shaw KJ, Fleming PJ (1996) Initial study of practical multi-objective genetic algorithms for scheduling the production of chilled ready meals. In: Proceedings of mendel’96, the 2nd international mendel conference on genetic algorithms, Brno

    Google Scholar 

  189. Singh HK, Isaacs A, Ray T, Smith W (2008) A simulated annealing algorithm for constrained multi-objective optimization. In: 2008 congress on evolutionary computation (CEC’2008), Hong Kong. IEEE Service Center, pp 1655–1662

    Google Scholar 

  190. Smith KI (2006) A study of simulated annealing techniques for multi-objective optimisation. PhD thesis, University of Exeter

    Google Scholar 

  191. Smith RE, Forrest S, Perelson AS (1992) Searching for diverse, cooperative populations with genetic algorithms. Technical report TCGA No. 92002, University of Alabama, Tuscaloosa

    Google Scholar 

  192. Smith RE, Forrest S, Perelson AS (1993) Population diversity in an immune system model: implications for genetic search. In: Whitley LD (ed) Foundations of genetic algorithms 2. Morgan Kaufmann Publishers, San Mateo, pp 153–165

    Google Scholar 

  193. Srinivas N, Deb K (1994) Multiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput 2(3):221–248. Fall

    Google Scholar 

  194. Suman B, Kumar P (2006) A survey of simulated annealing as a tool for single and multiobjective optimization. J Oper Res Soc 57(10):1143–1160

    Article  Google Scholar 

  195. Surry PD, Radcliffe NJ (1997) The COMOGA method: constrained optimisation by multiobjective genetic algorithms. Control Cybern 26(3):391–412

    MATH  Google Scholar 

  196. Sweetapple C, Fu G, Butler D (2014) Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions. Water Res 55:52–62

    Article  Google Scholar 

  197. Tagawa K, Shimizu H, Nakamura H (2011) Indicator-based differential evolution using exclusive hypervolume approximation and parallelization for multi-core processors. In: 2011 genetic and evolutionary computation conference (GECCO’2011), Dublin. ACM Press, pp 657–664

    Google Scholar 

  198. Talbi E-G (ed) (2009) Metaheuristics. From design to implementation. Wiley, New Jersey. ISBN:978-0-470-27858-1

    MATH  Google Scholar 

  199. Talukder AKMKA, Kirley M, Buyya R (2009) Multiobjective differential evolution for scheduling workflow applications on global Grids. Concurrency Comput-Pract Exp 21(13):1742–1756

    Article  Google Scholar 

  200. Tan KC, Lee TH, Khor EF (2001) Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization. IEEE Trans Evol Comput 5(6):565–588

    Article  Google Scholar 

  201. Tan KC, Khor EF, Lee TH (2005) Multiobjective evolutionary algorithms and applications. Springer, London. ISBN:1-85233-836-9

    MATH  Google Scholar 

  202. Toscano Pulido G, Coello Coello CA (2003) The micro genetic algorithm 2: towards online adaptation in evolutionary multiobjective optimization. In: Fonseca CM, Fleming PJ, Zitzler E, Deb K, Thiele L (eds) Evolutionary multi-criterion optimization. Second international conference (EMO 2003), Faro. Lecture notes in computer science, vol 2632. Springer, pp 252–266

    Google Scholar 

  203. Toscano Pulido G, Coello Coello CA (2004) using clustering techniques to improve the performance of a particle swarm optimizer. In: Deb K et al (ed) Genetic and evolutionary computation–GECCO 2004. Proceedings of the genetic and evolutionary computation conference. Part I, Seattle, Washington. Lecture notes in computer science, vol 3102. Springer, pp 225–237

    Google Scholar 

  204. Tušar T, Filipič B (2007) Differential evolution versus genetic algorithms in multiobjective optimization. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T (eds) Evolutionary multi-criterion optimization, 4th international conference (EMO 2007), Matshushima. Lecture notes in computer science, vol 4403. Springer, pp 257–271

    Google Scholar 

  205. Ulmer H, Streicher F, Zell A (2003) Model-assisted steady-state evolution strategies. In: Cantú-Paz E et al (ed) Genetic and evolutionary computation—GECCO 2003. Proceedings, Part I. Lecture notes in computer science, vol 2723. Springer, pp 610–621

    Google Scholar 

  206. Ulmer H, Streichert F, Zell A (2003) Evolution startegies assisted by Gaussian processes with improved pre-selection criterion. In: Proceedings of the 2003 IEEE congress on evolutionary computation (CEC’2003), Canberra, vol 1. IEEE Press, pp 692–699

    Google Scholar 

  207. Vargas DEC, Lemonge ACC, Barbosa HJC, Bernardino HS (2013) Differential evolution with the adaptive penalty method for constrained multiobjective optimization. In: 2013 IEEE congress on evolutionary computation (CEC’2013), Cancún. IEEE Press, pp 1342–1349. ISBN:978-1-4799-0454-9

    Chapter  Google Scholar 

  208. Venske SM, Goncalves RA, Delgado MR (2014) ADEMO/D: multiobjective optimization by an adaptive differential evolution algorithm. Neurocomputing 127:65–77

    Article  Google Scholar 

  209. Villalobos-Arias M, Coello Coello CA, Hernández-Lerma O (2006) Asymptotic convergence of metaheuristics for multiobjective optimization problems. Soft Comput 10(11):1001–1005

    Article  Google Scholar 

  210. Wang J, Terpenny JP (2005) Interactive preference incorporation in evolutionary engineering design. In: Jin Y (ed) Knowledge incorporation in evolutionary computation. Springer, Berlin/Heidelberg, pp 525–543. ISBN:3-540-22902-7

    Chapter  Google Scholar 

  211. Wang X, Tang J, Yung K (2009) Optimization of the multi-objective dynamic cell formation problem using a scatter search approach. Int J Adv Manuf Technol 44(3–4):318–329

    Article  Google Scholar 

  212. Woldesenbet YG, Tessema BG, Yen GG (2007) Constraint handling in multi-objective evolutionary optimization. In: 2007 IEEE congress on evolutionary computation (CEC’2007), Singapore. IEEE Press, pp 3077–3084

    Chapter  Google Scholar 

  213. Won KS, Ray T (2004) Performance of kriging and cokriging based surrogate models within the unified framework for surrogate assisted optimization. In: 2004 congress on evolutionary computation (CEC’2004), Portland, vol 2. IEEE Service Center, pp 1577–1585

    Google Scholar 

  214. Xu J, Li Z (2012) Multi-objective dynamic costruction site layout plannig in fuzzy random environment. Autom Constr 27:155–169

    Article  Google Scholar 

  215. Yong W, Zixing C (2005) A constrained optimization evolutionary algorithm based on multiobjective optimization techniques. In: 2005 IEEE congress on evolutionary computation (CEC’2005), Edinburgh, vol 2. IEEE Service Center, pp 1081–1087

    Google Scholar 

  216. Zapotecas Martínez S, Coello Coello CA (2011) A multi-objective particle swarm optimizer based on decomposition. In: 2011 genetic and evolutionary computation conference (GECCO’2011), Dublin. ACM Press, pp 69–76

    Google Scholar 

  217. Zapotecas Martínez S, Coello Coello CA (2013) Combining surrogate models and local search for dealing with expensive multi-objective optimization problems. In: 2013 IEEE congress on evolutionary computation (CEC’2013), Cancún. IEEE Press, pp 2572–2579. ISBN:978-1-4799-0454-9

    Chapter  Google Scholar 

  218. Zavala GR, Nebro AJ, Luna F, Coello Coello CA (2014) A survey of multi-objective metaheuristics applied to structural optimization. Struct Multidiscip Optim 49(4):537–558

    Article  MathSciNet  Google Scholar 

  219. Zeng SY, Kang LS, Ding LX (2004) An orthogonal multi-objective evolutionary algorithm for multi-objective optimization problems with constraints. Evol Comput 12(1):77–98. Spring

    Google Scholar 

  220. Zhang D, Gao Z (2012) Forward kinematics, performance analysis, and multi-objective optimization of a bio-inspired parallel manipulator. Robot Comput Intregr Manuf 28(4): 484–492

    Article  Google Scholar 

  221. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731

    Article  Google Scholar 

  222. Zhang Q, Liu W, Tsang E, Virginas B (2010) Expensive multiobjective optimization by MOEA/D with Gaussian process model. IEEE Trans Evol Comput 14(3):456–474

    Article  Google Scholar 

  223. Zheng Y-J, Chen S-Y (2013) Cooperative particle swarm optimization for multiobjective transportation planning. Appl Intell 39(1):202–216

    Article  MathSciNet  Google Scholar 

  224. Zhu J, Cai X, Pan P, Gu R (2014) Multi-objective structural optimization design of horizontal-axis wind turbine blades using the non-dominated sorting genetic algorithm II and finite element method. Energies 7(2):988–1002

    Article  Google Scholar 

  225. Žilinskas A (2013) On the worst-case optimal multi-objective global optimization. Opt Lett 7:1921–1928

    Article  MathSciNet  Google Scholar 

  226. Žilinskas A (2014) A statistical model-based algorithm for ‘black-box’ multi-objective optimisation. Int J Syst Sci 45(1):82–93

    Article  MathSciNet  Google Scholar 

  227. Žilinskas A, Fraga ES, Mackuté A (2006) Data analysis and visualisation for robust multi-criteria process optimisation. Comput Chem Eng 30:1061–1071

    Article  Google Scholar 

  228. Žilinskas J, Goldengorin B, Pardalos PM (2015) Pareto-optimal front of cell formation problem in group technology. J Glob Optim 61:91–108

    Article  MathSciNet  Google Scholar 

  229. Zitzler E, Künzli S (2004) Indicator-based selection in multiobjective search. In: Yao X et al (ed) Parallel problem solving from nature – PPSN VIII, Birmingham. Lecture notes in computer science, vol 3242. Springer, pp 832–842

    Google Scholar 

  230. Zitzler E, Deb K, Thiele L (1999) Comparison of multiobjective evolutionary algorithms on test functions of different difficulty. In: Wu AS (ed) Proceedings of the 1999 genetic and evolutionary computation conference. Workshop program, Orlando, pp 121–122

    Google Scholar 

  231. Zitzler E, Laumanns M, Thiele L (2002) SPEA2: improving the strength Pareto evolutionary algorithm. In: Giannakoglou K, Tsahalis D, Periaux J, Papailou P, Fogarty T (eds) EUROGEN 2001. Evolutionary methods for design, optimization and control with applications to industrial problems, Athens, pp 95–100

    Google Scholar 

  232. Zitzler E, Thiele L, Laumanns M, Fonseca CM, da Fonseca VG (2003) Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput 7(2):117–132

    Article  Google Scholar 

  233. Zitzler E, Laumanns M, Bleuler S (2004) A tutorial on evolutionary multiobjective optimization. In: Gandibleux X, Sevaux M, Sörensen K, T’kindt V (eds) Metaheuristics for multiobjective optimisation, Berlin. Lecture notes in economics and mathematical systems, vol 535. Springer, pp 3–37

    Google Scholar 

Download references

Acknowledgements

The author acknowledges support from CONACYT project no. 221551.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Coello Coello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Coello, C.A.C. (2018). Multi-objective Optimization. In: Martí, R., Pardalos, P., Resende, M. (eds) Handbook of Heuristics. Springer, Cham. https://doi.org/10.1007/978-3-319-07124-4_17

Download citation

Publish with us

Policies and ethics