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Type Soundness and Race Freedom for Mezzo

Thibaut Balabonski, Francois Pottier, and Jonathan Protzenko
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Abstract. The programming language Mezzo is equipped with a rich
type system that controls aliasing and access to mutable memory. We
incorporate shared-memory concurrency into Mezzo and present a mod-
ular formalization of its core type system, in the form of a concurrent
A-calculus, which we extend with references and locks. We prove that well-
typed programs do not go wrong and are data-race free. Our definitions
and proofs are machine-checked.

1 Introduction

Strongly-typed programming languages rule out some programming mistakes
by ensuring at compile-time that every operation is applied to arguments of
suitable nature. As per Milner’s slogan, “well-typed programs do not go wrong”.
If one wishes to obtain stronger static guarantees, one must usually turn to static
analysis or program verification techniques. For instance, separation logic [13] can
prove that private state is properly encapsulated; concurrent separation logic [10]
can prove the absence of interference between threads; and, in general, program
logics can prove that a program meets its specification.

The programming language Mezzo [12] is equipped with a static discipline
that goes beyond traditional type systems and incorporates some of the ideas
of separation logic. The Mezzo type-checker reasons about aliasing and owner-
ship. This increases expressiveness, for instance by allowing gradual initializa-
tion, and rules out more errors, such as representation exposure or data races.
Mezzo is descended from ML: its core features are immutable local variables,
possibly-mutable heap-allocated data, and first-class functions. In this paper, we
incorporate shared-memory concurrency into Mezzo and present its meta-theory.

A race. In order to illustrate Mezzo, let us consider the tiny program in Fig. 1.
This code exhibits a data race, hence is incorrect, and is rejected by the type
system. Let us explain how it is type-checked. At line 1, we allocate a reference

val r = newref O
val f (| r @ ref int)
(I r @ ref int) = Fig. 1. Ill-typed code. The function f increments
r := !r + 1 the global reference r. The main program spawns
val () = two threads that call £. There is a data race: both

spawn f; spawn f threads may attempt to modify r at the same time.
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(i.e., a memory cell), and store its address in the global variable r. In the eyes
of the type-checker, this gives rise to a permission, written r @ ref int. This
permission has a double reading: it describes the layout of memory (i.e., “the
variable r denotes the address of a cell that stores an integer”) and grants exzclusive
read-write access to this cell. That is, the type constructor ref denotes a uniquely-
owned reference, and the permission r @ ref int is a unique token that one must
possess in order to dereference r. This token exists at type-checking time only.

A permission r @ ref int looks like a traditional assumption r : ref int.
However, a type assumption would be valid everywhere in the scope of r, whereas
a permission is a token: it can be passed from caller to callee, returned from
callee to caller, passed from one thread to another, etc. If one gives away this
token, then, even though r is still in scope, one can no longer read or write it.

Although r @ ref int is an affine permission (i.e., it cannot be copied), some
permissions are duplicable. For instance, x @ int is a duplicable permission. If
one can get ahold of such a permission, then one can keep it forever (i.e., as
long as x is in scope) and pass copies of it to other threads, if desired. Such a
permission behaves like a traditional type assumption x : int.

The function £ in Fig. 1 takes no argument and returns no result. Its type is not
just OO -> O, though. Because f needs access to r, it must explicitly request the
permission r @ ref int and return it. (The fact that this permission is available
at the definition site of £ is not good enough: a closure cannot capture an affine
permission.) This is declared by the type annotation! at lines 2 and 3. Thus, at
line 5, in conjunction with r @ ref int, we get a new permission, f @ (| r @ ref
int) -> (| r @ ref int). This means that £ is a function with zero (runtime)
argument and result, which (at type-checking time) requires and returns the
permission r @ ref int. The type T | P denotes a package of a value of type T
and the permission P. We write (| P) for (() | P), where () is the unit type.

At line 6, the type-checker analyzes the sequencing construct in a manner
analogous to separation logic: the second spawn instruction is checked using the
permissions that are left over by the first spawn. An instruction spawn f requires
two permissions: a permission to invoke the function £, and r @ ref int, which
£ itself requires. It does not return these permissions: they are transferred to the
spawned thread. Thus, in line 6, between the two spawns, we no longer have a
permission for r. (We still have £ @ (]...) -> (l...), because it is duplicable.)
Therefore, the second spawn is ill-typed. The racy program of Fig. 1 is rejected.

A fix. In order to fix this program, one must introduce enough synchronization
so as to eliminate the race. A common way of doing so is to introduce a lock
and place all accesses to r within critical sections. In Mezzo, this can be done,
and causes the type-checker to recognize that the code is now data-race free.
In fact, this common pattern can be implemented abstractly as a polymorphic,
higher-order function, hide (Fig. 2).

! In the surface syntax of Mezzo, in the absence of a consumes keyword, a permission
that is taken by a function is considered also returned, so one need not repeat r @
ref int in the header or in the type of £. In this paper, we do not use this convention.
We work in a simpler, lower-level syntax where functions consume their arguments.



© 0 N o oA W N =

-
[S)

Type Soundness and Race Freedom for Mezzo 3

val hide [a, b, s : perm]
(f : (a |l 8) -=> (v | s) | s) Fig. 2. The polymorphic, higher-order

(a -> b) = function hide takes a function £ of type

let 1 : lock s = newlock() in (a | s) -> (b | s), which means that

release 1; f needs access to some state represented

fun (x : a) : b = by the permission s. The function hide
acquire 1; requires s, and consumes it. It returns
let y = £ x in a function of type a -> b, which does
release 1; not require s, hence can be invoked by
y multiple threads concurrently.

In Fig. 2, £ is a parameter of hide. It has a visible side effect: it requires and
returns a permission s. When hide is invoked, it creates a new lock 1, whose role
is to guard the use of the possibly affine permission s. This is materialized by a
duplicable permission 1 @ lock s, which is produced by the newlock instruction,
and added to the two permissions s and £ @ (a | s) -> (b | s) already present
at the beginning of line 4. The fact that 1 @ lock s is duplicable is a key point: this
enables multiple threads to compete for the lock even if the guarded permission
is affine. The lock is created in the “locked” state, and released at line 5. This
consumes s: when one releases a lock, one must give up and give back the
permission that it controls. The permissions for £ and 1 remain, and, because
they are duplicable, they are also available within the anonymous function defined
at line 6. (A closure can capture a duplicable permission.)

The anonymous function at line 6 does not require or return s. Yet, it needs s
in order to invoke £. It obtains s by acquiring the lock, and gives it up by releasing
the lock. Thus, s is available only to a thread that has entered the critical section.
The side effect is now hidden, in the sense that the anonymous function has type
a -> b, which does not mention s.

It is easy to fix the code in Fig. 1 by inserting the redefinition val £ = hide f
before line 5. This call consumes r @ ref int and produces £ @ () -> (), so the
two spawn instructions are now type-checked without difficulty.

Channels. Acquiring or releasing a lock produces or consumes a permission:
a transfer of ownership takes place between the lock and the active thread.
This can be used to encode other patterns of ownership transfer. For example,
a (multiple-writer, multiple-reader) communication channel, which allows ex-
changing messages and permissions between threads, is easily implemented as
a FIFO queue, protected by a lock. Let us briefly describe the interface and
implementation of this user-defined abstraction.

Channels are described by the interface in Fig. 3. Line 1 advertises the
existence of an abstract type channel a of channels along which values of type a
may be transferred. Line 2 advertises the fact that this type is duplicable. (We
explain below why the definition of channel satisfies this claim.) This means
that the permission to use a channel (for sending or receiving) can be shared
between several threads. The type of send means that sending a value x along a
channel c of type channel a consumes the permission x @ a. Symmetrically, the
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abstract channel a
fact duplicable (channel a)

val new: [al () -> channel a
val send: [a]l] (channel a, a) -> ()
val receive: [a] (channel a) -> a

Fig. 3. An interface for communication channels

alias channel a =
(q: unknown, lock (q @ fifo a))
val new [a]l () : channel a =
let q = queue::create () in
let 1 : lock (q @ fifo a) = mnewlock() in
release 1;
(q, 1)
val send [a] (c: channel a, x: a) : () =
let (q, 1) = c in
acquire 1;
queue::insert (x, q);
release 1
val receive [a]l (¢ : channel a) : a =
let (q, 1) = c in
acquire 1;
let rec loop (| q @ fifo a * 1 @ locked) : a =
match queue::retrieve q with

| None -> loop ()
| Some { contents = x } -> release 1; x
end

in loop ()

Fig. 4. A simple implementation of channels using a queue and a lock

type of receive means that receiving a value x along such a channel produces
the permission x @ a. It is important to note that the type a of messages is not
necessarily duplicable. If it is not, then a transfer of ownership, from the sender
thread to the receiver thread, is taking place.

Fig. 4 implements channels using a FIFO queue and a lock. The lock guards
the exclusive permission to access the queue. In lines 1-2, the type channel a is
defined as an abbreviation for a pair? of a value q of a priori unknown type (i.e.,
no permission is available for it) and a lock of type lock (q @ fifo a). Acquiring
the lock produces the permission q @ fifo a, so that, within a critical section, q
is recognized by the type-checker as a queue, which can be accessed and updated.
The type-checker accepts the claim that the type channel a is duplicable because
it is defined as a pair of two duplicable types, namely unknown and lock (...).

2 The dependent pair notation used in this definition is desugared into existential types
and singleton types, which are part of Mezzo’s core type discipline (§2).
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Contributions. Mezzo appeared in a previous paper by Pottier and Protzenko [12].
That paper does not cover concurrency. It presents Mezzo’s type discipline in
a monolithic manner, and does not contain any details about the proof of type
soundness. In the present paper, Mezzo includes shared-memory concurrency, and
its presentation is modularly organized in several layers. We identify a kernel layer:
a concurrent, call-by-value A-calculus extended with a construct for dynamic
thread creation (§2). In its typed version, it is a polymorphic, value-dependent
system, which enjoys type erasure: values exist at runtime, whereas types and
permissions do not. The system provides a framework for handling duplicable as
well as affine permissions, and is equipped with a rich set of subsumption rules
that are analogous to separation logic entailment. Although this calculus does not
have explicit side effects, we endow it with an abstract notion of machine state,
and we organize the proof of type soundness in such a way that the statements
of the main lemmas need not be altered as we introduce new forms of side effects.
The next two layers, which are independent of one another, are heap-allocated
references (§3) and locks (§4). Our definitions and proofs are machine-checked [2].

2 Kernel

2.1 Machine states and resources

The kernel calculus does not include any explicit effectful operations. Yet, in
order to later add such operations without altering the statements of the main
lemmas that lead to the type soundness result, we build into the kernel calculus
the idea of a machine state s. At this stage, the nature of machine states is
unspecified. Later on, we make it partially concrete, by specifying that a machine
state is a tuple of a heap (§3), a lock heap (§4), and possibly more: the type of
machine states is informally considered open-ended. The execution of a program
begins in a distinguished machine state initial.

A program under execution is composed of multiple threads, each of which
has partial knowledge of the current machine state and partial rights to alter
this state. In the proof of type soundness, we account for this by working with
a notion of resource, of which one can think as the “view” of a thread [7]. At
this stage, again, the nature of resources is unspecified. One should think of
a resource as a partial, instrumented machine state: a resource may contain
additional information that does not exist at runtime, such as an access right for
a memory location (§3), or the invariant associated with a lock (§4).

We require resources to form a monotonic separation algebra [11, §10]. That
is, we assume the following:

— A composition operator * allows two resources (i.e., the views of two threads)
to be combined. It is total, commutative, and associative.

— A predicate, R ok, identifies the well-formed resources. It is preserved by
splitting, i.e., Ry x Ry ok implies R ok. R

— A total function ~ maps every resource R to its core R, which represents the
duplicable (shareable) information contained in R.
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e This element is a unit for R, i.e., R % R=R.

e Two compatible elements have a common core, i.e., Ry x Ry = R and
R ok imply R, = R. R

e A duplicable resource is its own core, i.e., R x R = R implies R = R.

e Every core is duplicable, i.e., R x R = R.

— A relation Ry < Rs, the rely, represents the interference that “other” threads
are allowed to inflict on “this” thread. For instance, the allocation of new
memory blocks, or of new locks, is typically permitted by this relation.

e This relation is reflexive.

e It preserves consistency, i.e., Ry ok and Ry < Ry imply Ro ok.
e It is preserved by core, i.e., Ry <@ Ry implies R; <1 Rs.

e Finally, it is compatible with *, in the following sense:

Rl*RQQR/ R1 x Ry ok
IR\R), Ry « Ry =R ARy <Ry ARy < R}

We assume that a connection between machine states and resources is given
by a relation s ~ R. In the case of heaps, for instance, this would mean that the
heap s and the instrumented heap R have a common domain and that, by erasing
the extra information in R, one finds s. We assume that the initial machine state
corresponds to a distinguished void resource, i.e., initial ~ void. We assume that
s ~ R implies R ok. No other assumptions are required at this abstract stage.

2.2 Syntax

Values, terms, types, and permissions form a single syntactic category. There is a
single name space of variables. Within this universe, defined in Fig. 5, we impose
a kind discipline, so as to distinguish the following sub-categories?.

The values v have kind value. They are the variables of kind value (the A
binder introduces such a variable) and the \-abstractions.

The terms ¢ have kind term. They encompass values. Function application
v t and thread creation spawn w1 vy are also terms (the latter is meant to
execute the function call v; vy in a new thread). The sequencing construct
let © = t; in t2 is encoded as (A\x.t3) t;. We reduce the number of evaluation
contexts by requiring the left-hand side of an application to be a value. This does
not reduce expressiveness: t1 ty can be encoded as let x =ty in x to.

The soups, also written ¢, have kind soup. They are parallel compositions of
threads. A thread takes the form thread (¢), where ¢ has kind term.

The types T, U have kind type; the permissions P, () have kind perm. We
write 0 for a syntactic element of kind type or perm.

The types T include the singleton type =v, inhabited by the value v only; the
function type T'— U; and the conjunction T | P of a type and a permission.

3 For the sake of conciseness, we omit the definition of the well-kindedness judgement,
and omit the well-kindedness premises in the definition of the typing judgement.
Instead, we use conventional metavariables (v, t, etc.) to indicate the intended kind
of each syntactic element.
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K = value | term | soup | type | perm (Kinds)
v,t, T,U,P,Q,0 == x (Everything)
| Az.t (Values: v)
| vt | spawnv v (Terms: t)
| thread () | t || ¢ (Soups: t)
| =v | T—>T | (T|P) (Types: T, U)
| vQT | empty | P x P | duplicable 0 (Permissions: P, Q)
| Ve : k.0 | 3z : k.0 (Types or permissions: 0)
E = v (Shallow evaluation contexts)
D == [ | E[D] (Deep evaluation contexts)

Fig. 5. Kernel: syntax of programs, types, and permissions

initial configuration new configuration side condition

s/ (Az.t)v — s /[ [v/z]t

s/ E[t] — s’/ E[t'] s/t— s/t

s / thread (t) — &’ / thread (t) s/t— s/t

s/t t2 — s/t |t s/t1— s/t
s/t t2 — s [t ||t s/ ta — s/t

s / thread (D[spawn v1 v2]) — s / thread (D[()]) || thread (v1 v2)

Fig. 6. Kernel: operational semantics

The permissions P include the atomic form v @ T, which can be viewed as
an assertion that the value v currently has type T, or can be used at type T
the trivial permission empty; the conjunction of two permissions, P * @Q; and the
permission duplicable #, which asserts that the type or permission 6 is duplicable.
A permission of the form duplicable 8 is typically used as part of a constrained
quantified type. For instance, Va : type.(z | (duplicable )) — ... describes a
polymorphic function which, for every duplicable type x, is able to take an
argument of type z.

Universal and existential quantification is available in the syntax of both
types and permissions. The bound variable x has kind &, which is restricted to
be one of value, type, or perm: that is, we never quantify over terms or soups.

2.3 Operational semantics

The calculus is equipped with a small-step operational semantics (Fig. 6). The
reduction relation acts on configurations ¢, which are pairs of a machine state s
and a closed term or soup t. In the kernel rules, the machine state is carried
around, but never consulted or modified.

2.4 Typing judgement and interpretation of permissions

The main two judgements, which depend on each other, are the typing judgement
R;K; P F t: T and the permission interpretation judgement R; K I+ P. The
kind environment K is a finite map of variables to kinds. It introduces the
variables that may occur free in P, ¢, and T*. The kind environment K contains

4 The parameter K is used only in the well-kindedness premises, all of which we have
elided in this paper. Nevertheless, we mention K as part of the typing judgement.
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FRAME Funcrion
SINGLETON R K;P+-t:T RiK,z:value; P x 2QT -¢:U
R;K;PFwv:=v
R;K;P*QFt:T|Q R; K; (duplicable P) * P+ Az.t : T — U
ForaLLINTRO Cur
t is harmless Ex1sTSINTRO Ry Ky Py« PobEt: T
R;K,x:rk;PFHt:T R;K; Pt wv:[U/z|T Riy; K- Py
R;K;Vx : k.P+H1t:Vx:r.T R;K;PFwv:3x: kT Ri x Ro; K;PoHt: T
ExistsELim SUBLEFT SuBRIGHT
RiK,x :x;PFHt:T KFP <P RyK;Po+t:T RyK;PFt:Th KrT, <Ty
R;K;3z:k.PFHt:T RyK;PyHt:T RyK;PFt:Ts

APPLICATION
RiK;QFt:T Spawn
R;K;(viQT — U) % (v2QT) | spawn vy vo : T
R K;(v@QT - U) *x QFvt: U

Fig. 7. Kernel: typing rules

information that does not evolve with time (i.e., the kind of every variable)
whereas the precondition P contains information that evolves with time (i.e., the
available permissions).

The typing judgement R; K; P -t : T states that, under the assumptions
represented by the resource R and by the permission P, the term ¢ has type T
One can view the typing judgement as a Hoare triple, where R and P form the
precondition and 7" is the postcondition. The resource R plays a role only when
reasoning about programs under execution: it is the “view” that each thread has
of the machine state. When type-checking source programs, R is void.

The permission interpretation judgement R; K I P means that R justifies,
or satisfies, the permission P. If one thinks of R as an (instrumented) heap
fragment and of P as a separation logic assertion, one finds that this judgement is
analogous to the interpretation of assertions in separation logic. It gives meaning,
in terms of resources, to the syntax of permissions.

The typing judgement is defined in Fig. 7. The first five rules are introduction
rules: they define the meaning of the type constructors. SINGLETON states that v
is one (and the only) inhabitant of the singleton type =v. Frame can be applied
to a value v or to a term t. In the latter case, it is a frame rule in the sense of
separation logic. Because every function type is considered duplicable, a function
body must be type-checked under duplicable assumptions. For this reason, in
Funcrion, P is required to be duplicable and R is replaced in the premise with
its core R. FORALLINTRO can be applied to a value or to a term: there is no
value restriction. Once hidden state is introduced (§4), polymorphism must be
restricted to a syntactic category of harmless terms. For now, every term is
harmless. ExisTsINTRO is standard.

Cut moves information between the parameters P and R of a judgement. In
short, it says, if ¢t is well-typed under the assumption P;, then it is well-typed
under Ry, provided the resource R; satisfies the permission P;.
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AToMIC STAR
Ri;K;Prov:T Ry K IF P %MI}?II{ Ri; K IF Py Ro; K IF P
H empt
Ri« Ro; K FoQ@T i Ri x Ro;KIF P, % Ps
DUPLICABLE ForaLL ExisTs
0 is duplicable R;K,z: kP R; K I+ [U/z]P
R; K I duplicable 6 R;KIFVz: k.P R;KIF3zx: k.P

Fig. 8. Kernel: the interpretation of permissions

MixSTARINTROELIM FRrRAME

(v@QT) «x P=vQ@QT | P vQT) > To <v@(Ty | P) = (T2 | P)
DupPLICATE DUPSINGLETON DupARROW
(duplicable P) x P < P % P empty < duplicable =v empty < duplicable (T — U)

Fig. 9. Kernel: permission subsumption (a few rules only; K F omitted)

Next, we find three non-syntax-directed rules, namely ExisTsELiM, SUBLEFT,
SuBRIGHT. An important part of the type soundness proof consists in proving
that every well-typed, closed value can be type-checked without using these rules.

AppLICATION is standard. SPAwWN states that spawn v; vy is type-checked just
like a function application vy vo, except a unit value is returned in the original
thread. We write T for the type Jz : value.=x.

We now review the interpretation of permissions (Fig. 8). These rules play a
role in the proof of type soundness, where they establish a connection between the
syntax of permissions and their intended meaning in terms of resources. EmMpTY,
STAR, ForaLL, ExisTs correspond to the interpretation of assertions in separation
logic. ATomic states, roughly, that the resource R satisfies the permission v @ T
if the value v has type T under R. DupricaBLE defines the meaning of the
permission duplicable # in terms of a meta-level predicate, 6 is duplicable. The
latter is defined by cases over the syntax of #, as follows: a variable x is not
duplicable; a singleton type =v is duplicable; a function type T" — U is duplicable;
a conjunction T | P is duplicable if T and P are duplicable; and so on. We omit
the full definition.

2.5 Subsumption

The permission subsumption judgement takes the form K + P < Q. It is
inductively defined by many rules, of which, by lack of space, we show very few
(Fig. 9). MixStarINTROELIM is a compact way of summing up the relationship
between the two forms of conjunction. FRAME is analogous to the typing rule
by the same name (Fig. 7), and means that a function that performs fewer side
effects can be passed where a function that performs more side effects is allowed.
DupLICATE states that if P is provably duplicable, then P can be turned into
P % P. DuPSINGLETON, DUPARROW, and a family of similar rules (not shown)
allow constructing permissions of the form duplicable 6.
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THREAD Par JConF
R;D;empty -t : T Ry F tq Ro - to s~ R RFt
R - thread (t) Ri x Ro bty || to s/t

Fig. 10. Kernel: typing rules for soups and configurations

The subtyping judgement used in SUBRIGHT is defined in terms of permission
subsumption: we write K T < U when K,x : value 2 QT < x@QU holds.

2.6 Typing judgements for soups and configurations

The typing judgement for soups R F t (Fig. 10, first two rules) ensures that
every thread is well-typed (the type of its eventual result does not matter) and
constructs the composition of the resources owned by the individual threads. It
means that, under the precondition R, the thread soup ¢ is safe to execute.

The typing judgement for configurations s / ¢t (Fig. 10, last rule) ensures
that the thread soup t is well-typed under some resource R that corresponds to
the machine state s. This judgement means that s / t is safe to execute.

2.7 Type soundness

The kernel calculus is quite minimal: in its untyped form, it is a pure A-calculus. As
a result, there is no way that a program can “go wrong”. Nevertheless, it is useful
to prove that (the typed version of) the kernel calculus enjoys subject reduction
and progress properties. Because abstract notions of machine state s, resource R,
and correspondence s ~ R have been built in, our proofs are parametric in these
notions. Instantiating these parameters with concrete definitions (as we do when
we introduce references, §3, and locks, §4) does not require any alteration to the
statements or proofs of the main lemmas. Introducing new primitive operations
(such as the operations that manipulate references and locks) does not require
altering the statements either; naturally, it does create new proof cases.
For the sake of brevity, we state only the main two lemmas.

Theorem 1 (Subject reduction). If ¢; — ca, then b ¢q implies b co.
Theorem 2 (Progress). b ¢ implies that ¢ is acceptable.

At this stage, a configuration is deemed acceptable if every thread either has
reached a value or is able to take a step. This definition is later extended (§4) to
allow for the possibility for a thread to be blocked (i.e., waiting for a lock).

3 References

We extend the kernel calculus with heap-allocated references. We show how the
type system is extended and prove that it ensures data-race freedom.
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v, t, T,P == .. (Everything)
(4 (Values: v)
| newrefv | W | vi=wv (Programs: t)
| ref, T (Types: T)
m = D | X (Modes)
Fig. 11. References: syntax

initial config. new configuration side condition

h / newref v — h4++wv / limit h

h /W — h /v h(€) =v

h/t:=v — hil—']/() h(€) =v

Fig. 12. References: operational semantics

Syntax. We extend the syntax as per Fig. 11. Values now include the memory
locations ¢, which are natural numbers. Terms now include the three standard
primitive operations on references, namely allocating, reading, and writing. Types
now include the type ref,, T of references whose current content is a value of
type T. The mode m indicates whether the reference is shareable (duplicable, D)
or uniquely-owned (exclusive, X). Only the latter mode allows writing: this is
key to enforcing data-race freedom. The type ref T' (§1) is short for refx T'.

Operational semantics. A heap h is a function of an initial segment of the natural
numbers to values. We write limit h for the first unallocated address in the heap h.
We write h4++ v for the heap that extends h with a mapping of limit h to the
value v. If the memory location ¢ is in the domain of h, then h[¢ — v] is the heap
that maps £ to v and agrees with h elsewhere.

We specify that a machine state s is a tuple, one of whose components is a
heap h. In Fig. 12, we abuse notation and pretend that a machine state is a heap;
thus, the reduction rules for references are written in a standard way. In Coq, we
use overloaded “get” and “set” functions to mediate between the two levels.

Assigning types to terms. The typing rules for the operations on references appear
in Fig. 13. A memory allocation expression newref v consumes the permission
v @QT and produces a new memory location of type ref,, T with mode m. Reading
or writing a reference = requires a permission x @ref,, 7', which guarantees that
z is a valid memory location, and holds a value of type T'. Because reading a
reference creates a new copy of its content without consuming x Qref,, T, READ
requires 7' to be duplicable. WRITE requires the exclusive mode X, in which the
permission z @ ref x T" ensures that “nobody else” has any knowledge of (or access
to) z. The rule allows strong update: the type of x changes to ref x T/, where T’
is the type of v'. All three operations are harmless: there is no adverse interaction
between polymorphism and uniquely-owned references [4,11].

Subsumption. Subsumption is extended with new rules for reasoning about
references (Fig. 14). DEcoMPoseREF introduces a fresh name x for the content
of the reference v. This allows separate reasoning about the ownership of the
reference cell and about the ownership of its content. This step is reversible. CoOREF
states that ref is covariant. For uniquely-owned references, this is standard [4,11].
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NeEwREF READ
R;K;vQT I newref v : ref,, T R; K; (duplicable T') * (v Qref,, T) F 10 : T | (vQrefy, T)
Loc
WRITE Ri;KIFv@T  Ry(f) =mw

R K;(vQrefx T "@TYruvi=v T Qrefx T’
(v @refx T) * (v Jhv=w [ (v @refx T7) Ry % Ra; KiPF € :vefn T

Fig. 13. References: typing rules for terms and values

DECOMPOSEREF CoREF
vV Qref,, T T<U
= 3z : value.((v Qref,y, =) * (2 QT)) ¥ Qrefn T < v Qrefm U

Fig. 14. References: subsumption rules

Resources. An instrumented value is 4, N, Dv, or Xv, where v is a value. N
represents no information and no access right about a memory location, whereas
for any m € {D, X}, m v represents full information (one knows that the value
stored there is v). Dv (resp. Xv) moreover indicates a shared read-only access
right (resp. an exclusive read /write access right). The type of instrumented values
forms a monotonic separation algebra, where Dv x Dv is Dv, Nx Xv and Xv x N
are Xv; N x Nis N; and every other combination yields 4.

A heap resource is either 4 or an instrumented value heap. Heap resources
form a monotonic separation algebra, whose * operation requires agreement of
the allocation limits (i.e., the next unallocated location is shared knowledge)
and is defined pointwise. A heap resource is essentially a heap fragment in the
sense of separation logic [13] and « is a union operation that requires disjointness
at mutable locations and agreement at immutable locations. We specify that a
resource R is a tuple of several components, one of which is a heap resource.

A notion of agreement between a value and an instrumented value is defined
by “v and m v agree’. This is lifted to agreement between a heap and a heap
resource, and is taken as the definition of correspondence between a machine
state and a resource, s ~ R.

Assigning types to values. Loc (Fig. 13) is the introduction rule for the type
constructor ref. It splits R: intuitively, the type ref,, T represents the separate
ownership of the memory cell at address ¢ and of the value v that is currently
stored there, to the extent dictated by the type T

Data-race freedom. The auxiliary jugdement ¢ accesses £ for am (whose definition
is omitted) means that the term ¢ (which represents either a single thread or a
thread soup) is ready to access the memory location ¢ for reading or writing, as
indicated by the access mode am, which is R or W. A racy thread soup t is one
where two distinct threads are ready to access a single memory location ¢ and at
least one of these accesses is a write.

The key reason why racy programs are ill-typed is the following lemma. If a
thread soup t is well-typed with respect to R and is about to access ¢, then the
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v, t, T,P == ... (Everything)
| k (Values: v)
| newlock | acquire v | release v (Programs: t)
| lock P | locked (Types: T)
Fig. 15. Locks: syntax

initial config. new configuration side condition

kh / newlock — kh++ L / limit kh

kh / acquire k — k}h[k} = L] / () k}h(k)) =U

kh / release Kk — kh[k — U] / () kh(k) =1L

Fig. 16. Locks: operational semantics

instrumented heap R must contain a right to access £; moreover, in the case of a
write access, this access right must be exclusive.

Lemma 3 (Typed access). Every memory access is justified by a suitable
access Tight.
REt t accesses { for am R ok

Im, Ju, (R({) =mv)A(am= W= m = X)

Theorem 4 (Data-race freedom). A well-typed configuration is not racy.

4 Locks

We extend the kernel calculus with dynamically-allocated locks. This extension is
independent of the previous one (§3), although references and locks are of course
intended to be used in concert.

Syntax. We extend the syntax as per Fig. 15. Values now include lock addresses k,
which are implemented as natural numbers. (We allocate references and locks in
two separate heaps, with independent address spaces.) Terms now include the
three standard primitive operations on locks, namely allocating, acquiring, and
releasing. Types now include the type lock P of a lock whose invariant is the
permission P. The type lock P is duplicable, regardless of P. Types now also
include the type locked. This type is not duplicable. It serves as a proof that a
lock is held and (hence) as a permission to release the lock.

Operational semantics. We specify that a machine state s comprises a lock
heap kh. A lock heap maps a valid lock address to a lock status: either U
(unlocked) or L (locked). The reduction rules for locks appear in Fig. 16.

Assigning types to terms. We create new locks in the locked state, because this
is more flexible: a lock of type lock P can be created before the invariant P is
established. The expression newlock creates a new lock, say x, and produces the
permissions x @lock P and z @ locked® (Fig. 17). The former guarantees that
x is a lock and records its invariant, whereas the latter guarantees that x is

% In surface Mezzo, the type of newlock is written (x: lock p | x @ locked).
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NewLock
R; K; Q F newlock : 3 : value.(=z | (z Qlock P) * (x @ locked))

ACQUIRE RELEASE
R; K;vQlock P I acquire v : T | P % (v @ locked) R; K; P % (v@Qlocked) % (v@lock P) I release v : T

Fig. 17. Locks: typing rules for terms

Lock LOCKED
R(k) =(P,_) R(k)=(_,%)
R;K;QF k :lock P R; K;QF k : locked

Fig. 18. Locks: typing rules for values

held and represents a permission to release it. The expressions acquire z and
release x have the precondition x @Qlock P, which guarantees that x is a valid lock
with invariant P. acquire  produces the permissions P and x @ locked, whereas,
symmetrically, release x requires (and consumes) these permissions.

The interaction between polymorphism and hidden state is unsound. When a
new lock is allocated by newlock, its invariant (a permission P) becomes hidden,
and it is necessary, at this point, to ensure that P is closed: newlock must not
be allowed to execute under ForaLLINTRO. This is why this rule is restricted
to a class of harmless terms. This class does not contain any term of the form
Dlnewlock]; encompasses the values; and is stable by substitution and reduction.
It is nevertheless possible to use the typing rule NewLock with a permission P
that is not closed, as illustrated by hide (§1).

Resources. An instrumented lock status is a pair of a closed permission P and an
access right, one of 4, N, and X. (These are the same as the instrumented values
of §3, except this time X does not carry an argument and D does not appear.) The
permission P is the lock invariant. The access right indicates whether releasing
the lock is permitted: N represents no right, whereas X means that the lock is
held and represents an exclusive right to release the lock. Instrumented lock
statuses form a monotonic separation algebra, where, e.g., (P, X) x (P, N) is
(P, X). That is, the lock invariant is shared (and immutable) information, whereas
the ownership of a held lock is exclusive.

A lock resource is 4 or an instrumented lock status heap. Lock resources form
a monotonic separation algebra. Agreement between a lock status and an instru-
mented lock status is defined by “U and (P, N) agree” and “L and (P, X) agree”.
This is lifted to agreement between a lock heap and a lock resource.

To summarize, if we extend the kernel with both references (§3) and locks,
then a machine state s is a pair of a value heap and a lock heap; a resource R
is a pair of an instrumented value heap and an instrumented lock heap. The
agreement relation s and R agree requires agreement between each heap and the
corresponding instrumented heap.
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Hidden state. One might expect the correspondence relation s ~ R to be just
agreement, i.e., s and R agree, as in the previous section (§3). However, there is
something more subtle to locks. Locks introduce a form of hidden state: when
a lock is released, its invariant P disappears; when the lock is acquired again
(possibly by some other thread), P reappears, seemingly out of thin air. While
the lock is unlocked, the resource that justifies P is not available to any thread.

This leads us to refine our understanding of the correspondence s ~ R. The
assertion should no longer mean that R is the entire instrumented (value/lock)
heap; instead, it should mean that R is the fragment of the instrumented heap
that is visible to the program, while the rest is hidden.

To account for this, we define the relation s ~ R as follows.

s and R « R' agree  R'; @ I hidden invariants of (R x R’)
s~R

The machine state s represents the entire (value/lock) heap. Thus, the agree-
ment assertion s and R x R’ agree implies that R « R’ represents the entire
instrumented (value/lock) heap. We split this resource between a visible part R,
which appears in the conclusion, and a hidden part R’, which must justify the
conjunction of the invariants of all currently unlocked locks. This conjunction
is constructed by inspection of R x R’. We omit its definition, and denote it
hidden invariants of (R * R').

Assigning types to values. The typing rules Lock and Lockep (Fig. 18) assign
types to lock addresses, thus giving meaning to the types locked P and locked.
Their premises look up the (lock) resource R. A lock address k& whose invariant
(as recorded in R) is P receives the type lock P. A lock address k whose access
right (as recorded in R) is X receives the type locked.

Soundness. A configuration is now deemed acceptable if every thread either (i)
has reached a value; or (ii) is waiting on a lock that is currently held; or (iii) is
able to take a step. The statements of type soundness are unchanged. Well-typed
programs remain acceptable (§2.7) and are data-race free (§3).

5 Related work

Mezzo has close ties with L3 [1]. Both are affine A-calculi with strong references.
They distinguish between a pointer and a capability to dereference it; the former
is duplicable, the latter affine. Both record must-alias information via singleton
types. However, Mezzo is meant to be a surface language, as opposed to a low-
level calculus, and this leads to different designs. For instance, L? has type-level
names o for values, whereas, for greater conciseness and simplicity, Mezzo allows
types to depend directly on values. Also, L3 views capabilities as unit values,
which one hopes can be erased by the compiler, whereas Mezzo views permissions
as purely static entities, and has no syntax for manipulating them.
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Mezzo is strongly inspired by separation logic [13] in its treatment of heap-
allocated data and by concurrent separation logic [10] and its successors [8,3] in
its treatment of locks. Like second-order separation logic, as found at the core
of CaReSL [14], Mezzo supports higher-order functions and quantification over
permissions (assertions) and types (predicates). Our duplicable permissions are
analogous to Turon et al.’s necessary assertions, and our function hide (§1) is
essentially identical to their mkSync [14, §3.2].

Although the formalization of Mezzo was carried out independently, and in
part grew out of earlier work by the second author [11], it is in several ways closely
related to the Views framework [7]. In both cases, an abstract calculus is equipped
with a notion of machine state; a commutative semigroup of views, or resources;
and a projection, or correspondence, between the two levels. This abstract system
is proven sound, and is later instantiated and extended to accommodate features
such as references, locks, and more.

We have emphasized the modular organization of the meta-theory of Mezzo.
When one extends the kernel in a new direction (references; locks), one must
of course extend existing inductive definitions with new cases and extend the
state with new components. However, one does not need to alter existing rules,
or to alter the statements of the main type soundness lemmas. Of course, one
sometimes must add new cases to existing proofs—only sometimes, though, as it
is often possible to express an Ltac “recipe” that magically takes care of the new
cases [5, chapter 16].

The manner in which this modularity is reflected in our Coq formalization
reveals pragmatic compromises. We use monolithic inductive types. Delaware et
al. [6] have shown how to break inductive definitions into fragments that can be
modularly combined. This involves a certain notational and conceptual overhead,
as well as a possible loss of flexibility, so we have not followed this route. A
moderate use of type classes allows us to access or update one component of the
state without knowing what other components might exist. A similar feature
is one of the key strengths of the MSOS notation [9]. As often as possible, we
write statements that concern just one component of the state, and in the few
occasions where it seems necessary to explicitly work with all of them at once, we
strive to write Ltac code in a style that is insensitive to the number and nature
of these components. It has been our experience that each extension (references;
locks) required very few undesirable amendments to the existing code base.

6 Conclusion

We have presented a formalisation of three basic layers of Mezzo, namely:

— a concurrent call-by-value A-calculus, equipped with an affine, polymorphic,
value-dependent type-and-permission system;

— an extension with strong (i.e., affine, uniquely-owned) mutable references;

— an extension with dynamically-allocated, shareable locks.

This paper is accompanied with a Coq proof [2]|, which covers just these three
layers. It is about ten thousand (non-blank, non-comment) lines of code. Out of
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this, a de Bruijn index library and a monotonic separation algebra library, both
of which are reusable, occupy about 2Kloc each. The remaining 6Kloc are split
between the kernel (4Kloc), references (1Kloc), and locks (1Kloc).

The full Mezzo language offers more features, including richer memory blocks,
carrying a tag and multiple fields; the possibility of turning a mutable block
into an immutable one; iso-recursive types; and adoption and abandon [12], a
mechanism that allows the unique-owner policy to be relaxed and enforced in
part at runtime. All of these features are covered by an older Coq proof. In the
future, we plan to port these features into the new proof without compromising
its modularity. In particular, we wish to revisit the treatment of adoption and
abandon so as to better isolate it from the treatment of memory blocks.
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