Skip to main content

Artificial Bee Colony Algorithm Used for Reconstructing the Heat Flux Density in the Solidification Process

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8468))

Included in the following conference series:

  • 2145 Accesses

Abstract

Scope of the paper is the procedure reconstructing the heat flux density in the solidification on the grounds of temperature measurements in selected points of the cast. Elaborated method is based on two procedures: finite difference method with application of the generalized alternating phase truncation method used for solving the appropriate direct solidification problem and the Artificial Bee Colony algorithm used for minimizing some functional representing the crucial part of the procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall, Englewood Cliffs (1995)

    MATH  Google Scholar 

  2. Bäck, T., Fogel, D., Michalewicz, Z.: Handbook of Evolutionary Computation. Oxford Univ. Press (1997)

    Google Scholar 

  3. Gurney, K.: An Introduction to Neural Networks. Routledge, London (1997)

    Book  Google Scholar 

  4. Eberhart, R.C., Shi, Y., Kennedy, J.: Swarm Intelligence. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  5. Dorigo, M., Blum, C.: Ant colony optimization theory: a survey. Theoretical Computer Science 344, 243–278 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Duran Toksari, M.: Ant Colony Optimization for finding the global minimum. Applied Mathematics and Computation 176, 308–316 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Krishnanand, K.N., Ghose, D.: Glowworm swarm optimization for multimodal search spaces. In: Panigrahi, B.K., Shi, Y., Lim, M.-H. (eds.) Handbook of Swarm Intelligence. ALO, vol. 8, pp. 451–467. Springer, Berlin (2011)

    Chapter  Google Scholar 

  8. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Computing 8, 687–697 (2007)

    Article  Google Scholar 

  9. Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 214, 108–132 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Słota, D.: Solving the inverse Stefan design problem using genetic algorithm. Inverse Problems in Science and Engineering 16, 829–846 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ma, M., Liang, J., Guo, M., Fan, Y., Yin, Y.: SAR image segmentation based on Artificial Bee Colony algorithm. Applied Soft Computing 11, 5205–5214 (2011)

    Article  Google Scholar 

  12. Bai, J., Yang, G.-K., Chen, Y.-W., Hu, L.-S., Pan, C.-C.: A model induced max-min ant colony optimization for asymmetric traveling salesman problem. Applied Soft Computing 13, 1365–1375 (2013)

    Article  Google Scholar 

  13. Lučic̀, P., Teodorovic̀, D.: Computing with Bees: attacking complex transportation engineering problems. Int. J. Artificial Intelligence Tools 12, 375–394 (2003)

    Article  Google Scholar 

  14. Tereshko, V.: Reaction-diffusion model of a honeybee colony’s foraging behaviour. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 807–816. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  15. Özbakir, L., Baykasoǧlu, A., Tapkan, P.: Bees algorithm for generalized assignment problem. Appl. Math. Comput. 215, 3782–3795 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gabryel, M., Woźniak, M., Nowicki, R.K.: Creating Learning Sets for Control Systems Using an Evolutionary Method. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) EC 2012 and SIDE 2012. LNCS, vol. 7269, pp. 206–213. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Beck, J.V., Blackwell, B., St.Clair, C.R.: Inverse Heat Conduction: Ill Posed Problems. Wiley Intersc., New York (1985)

    Google Scholar 

  18. Mochnacki, B., Suchy, J.S.: Numerical Methods in Computations of Foundry Processes. PFTA, Cracow (1995)

    Google Scholar 

  19. Mochnacki, B.: Numerical modeling of solidification process. In: Zhu, J. (ed.) Computational Simulations and Applications, pp. 513–542. InTech, Rijeka (2011)

    Google Scholar 

  20. Santos, C.A., Quaresma, J.M.V., Garcia, A.: Determination of transient interfacial heat transfer coefficients in chill mold castings. J. Alloys and Compounds 319, 174–186 (2001)

    Article  Google Scholar 

  21. Słota, D.: Identification of the cooling condition in 2-D and 3-D continuous casting processes. Numer. Heat Transfer B 55, 155–176 (2009)

    Article  Google Scholar 

  22. Słota, D.: Restoring boundary conditions in the solidification of pure metals. Comput. & Structures 89, 48–54 (2011)

    Article  Google Scholar 

  23. Ionescu, D., Ciobanu, I., Munteanu, S.I., Crisan, A., Monescu, V.: 2D mathematical model for the solidification of alloys within a temperature interval. Metalurgia International 16(4), 39–44 (2011)

    Google Scholar 

  24. Piasecka Belkhayat, A.: Numerical modelling of solidification process using interval boundary element method. Archives of Foundry Engineering 8(4), 171–176 (2008)

    Google Scholar 

  25. Hetmaniok, E., Słota, D., Zielonka, A.: Experimental verification of immune recruitment mechanism and clonal selection algorithm applied for solving the inverse problems of pure metal solidification. Int. Commun. Heat Mass Transf. 47, 7–14 (2013)

    Article  Google Scholar 

  26. Hetmaniok, E.: Invasive weed optimization algorithm applied for solving the inverse Stefan problem. Hutnik 81(1), 76–79 (2014)

    Google Scholar 

  27. Hetmaniok, E., Słota, D., Zielonka, A.: Solution of the inverse heat conduction problem by using the ABC algorithm. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS, vol. 6086, pp. 659–668. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  28. Zielonka, A., Hetmaniok, E., Słota, D.: Using of the Artificial Bee Colony Algorithm for determining the heat transfer coefficient. In: Czachórski, T., Kozielski, S., Stańczyk, U. (eds.) Man-Machine Interactions 2. AISC, vol. 103, pp. 369–376. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  29. Hetmaniok, E., Słota, D., Zielonka, A., Wituła, R.: Comparison of ABC and ACO algorithms applied for solving the inverse heat conduction problem. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) EC 2012 and SIDE 2012. LNCS, vol. 7269, pp. 249–257. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  30. Mochnacki, B., Majchrzak, E., Kapusta, A.: Numerical model of heat transfer processes in solidifying and cooling steel ingot (on the basis of BEM). In: Wrobel, L.C., Brebbia, C.A. (eds.) Computational Modelling of Free and Moving Boundary Problems 2, Heat Transfer, pp. 177–189. Computational Mech. Publ., Southampton (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hetmaniok, E., Słota, D., Zielonka, A. (2014). Artificial Bee Colony Algorithm Used for Reconstructing the Heat Flux Density in the Solidification Process. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2014. Lecture Notes in Computer Science(), vol 8468. Springer, Cham. https://doi.org/10.1007/978-3-319-07176-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07176-3_32

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07175-6

  • Online ISBN: 978-3-319-07176-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics