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Abstract 
In STEM domains, robust learning includes not only fluency with procedures, but also 
recognition and application of the conceptual principles that underlie them. Grounded feedback 
is one instructional approach proposed to help students integrate conceptual knowledge into 
their learning of procedures. Grounded feedback functions primarily by having students take an 
action in the target domain (often symbolic) and receiving feedback in a representation that is 
easier to reason with. This thesis defines grounded feedback and evaluates its effectiveness. 

I define grounded feedback with four characteristics: (1) The feedback reflects students’ 
inputs according to rules that are inherent to the topic of study. For example, an inputted 
equation with two variables may be shown as a graph.  (2) The feedback facilitates self-
evaluation - by examining the feedback, students can evaluate for themselves if their answers 
are correct or not. (3) Students do not directly manipulate the feedback representation. Instead, 
the inputs are in a format that matches the domain learning goals. (4) The feedback conveys 
information about the nature of errors, not just that a particular action was incorrect. For 
example, the feedback may indicate the direction or magnitude of the error.  

Some prior experiments on systems with the four characteristics of grounded feedback 
found greater learning of target procedures (Nathan 1998) and greater transfer (Mathan & 
Koedinger 20015), relative to robust controls. Over four studies with 4th and 5th graders, this 
thesis explores three tutor designs for fraction addition that incorporate visualizations of 
magnitude, including grounded feedback. Two studies of grounded feedback show effects of 
robust learning relative to correctness feedback, including greater future learning (in study 2) 
and transfer (in study 3). Another study found little difference between grounded feedback with 
and without correctness. In the last study, relative to correctness feedback, two implementations 
of dynamically linked concrete representations (variations on grounded feedback) showed 
greater robust learning (pre-test to delayed test). The correctness feedback tutor, used in three 
of these studies, is a high-bar control, including immediate step-level correctness feedback and 
adaptive on-demand hints. Indications of more robust learning with the grounded feedback 
tutor are promising, though not conclusive. 

Grounded feedback is intended to leverage concrete representations to elicit students’ prior 
knowledge of relevant concepts. Over two Difficulty Factor Assessments, 5th graders 
demonstrated difficulty incorporating magnitude information when evaluating fraction addition 
equations. In particular, students could generally evaluate an equation correctly when it was 
represented with fraction bars. However, including symbols with the bars interfered with 
students’ evaluations by triggering incorrect transfer from whole-number addition. Students 
also did not fully grasp that when two positive fractions are added, the resulting sum is bigger 
than each addend alone. These findings may help explain why the benefits of grounded feedback 
are not as strong as proponents of concrete representations might hope. Namely, the target 
population may not be able to take full advantage of the magnitude visualization because they 
lack pre-requisite knowledge of how fraction addition involves magnitude. 
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1  Introduction: Grounded Feedback 

Summary. How can we design feedback that supports students in connecting steps 
in a procedure to conceptual principles? This chapter examines one approach that is 
present in many computer-based educational activities, but has been under-studied. 
Based on common characteristics, these systems are grouped together and the 
approach is termed “grounded feedback.” In grounded feedback, students’ inputs are 
in the target, to-be-learned representation, and their actions are reflected in a linked 
representation that is intrinsic to the domain and more familiar to students. To 
highlight the unique features of grounded feedback, I contrast it with similar 
instructional approaches for supporting sense making: correctness feedback, 
manipulatives, and linked representations. While experiments comparing grounded 
feedback to other approaches are limited, robust benefits of grounded feedback over 
correctness feedback are promising, and indicate that grounded feedback warrants 
further investigation. 

1.1 Feedback for Sense Making 
How can feedback best support learning in science, technology, engineering, and 
math (STEM) domains? In STEM domains, robust learning includes not only fluency 
with procedures, but also recognition of the conceptual principles that underlie them, 
and the appropriate application of those concepts (Schoenfeld, 1988). One obstacle to 
robust learning may be the notation in which these domains are communicated. 
Math, for example, is a language of its own with arbitrary conventions (e.g., ‘-’ means 
‘subtract’, but ‘=’ does not mean ‘subtract twice’). Students may learn the concepts 
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underlying these abstract symbols more easily when the unfamiliar symbols are 
connected to already-familiar representations that make relevant features more 
salient and, thus, are easier to reason with. For example, a student may think that 
9/10 equals 11/12, since the second fraction is obtained by adding two to the 
numerator and denominator of the first fraction. When the two fractions are plotted 
on a number line, their magnitudes become more salient, and the student may reason 
that the two fractions are not equivalent.   

Using multiple or non-symbolic representations is not a new idea. However, how 
to use these representations is still an open question. One promising approach is to 
use representations that support qualitative thinking, such as strip diagrams in 
Singapore Math (Fig. 1.1; Beckmann, 2004). Such diagrams are not intended to help 
students execute symbolic procedures, but rather are intended to support students in 
qualitative reasoning (e.g., Which amounts are bigger?) and planning (e.g., Which 
operation is needed?). Grounded feedback extends this idea of using an additional 
representation to support reasoning.  Grounded feedback functions primarily by 
having students take an action in the target domain (often symbolic) and receiving 
feedback in a representation that is easier to reason with. The first representation is 
less familiar, and having students act in that representation forces students to engage 
with the target content. The second, easier-to-reason-with feedback representation is 
hypothesized to help students think conceptually about the problem. The link 
between the target representation and the feedback representation is hypothesized to 
help students see the connections between the less-familiar target representation and 
the underlying concepts of the domain. Grounded feedback is intended to support 
conceptual reasoning, even in drill-and-practice environments. To highlight the 
features of grounded feedback, I contrast it with similar approaches: correctness 
feedback, manipulatives, linked representations, and situational feedback. 
Experiments comparing grounded feedback to correctness feedback have shown 
benefits for grounded feedback; I have not found experiments comparing grounded 
feedback directly to the other approaches.  

               
Fig. 1.1 Strip diagrams support qualitative reasoning (Orly had more than 
$10 at first) and planning (find half of $10, then multiply that amount by 7 
to find the original amount). However, the diagram does not directly 
support using abstract symbolization to solve the problem. 
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1.1.1 Defining Grounded Feedback 
Grounded feedback as I define it has four criteria, which are domain-general:  

1) The feedback is intrinsic to the domain and semantically equivalent to the 
students’ inputs. The connection between the input and the feedback is governed 
by rules that are inherent to the topic of study. For example, an inputted equation 
with two variables may be shown as a graph.    

2) Students can easily envision the feedback state that indicates a correct answer to a 
given problem. Therefore, by examining the feedback, students can evaluate for 
themselves if their answers are correct or not. Further, the feedback 
representation must facilitate evaluation: the task of deciding if a problem has 
been solved correctly or not must be easier with the inclusion of the feedback 
representation than without it (that is, just looking at the inputs alone). This 
feature depends on the prior knowledge of the students.  

3) Students do not directly manipulate the feedback representation. Instead, the 
inputs are in a format that matches the domain learning goals. This design feature 
ensures that students engage with the new representation. 

4) The feedback affords inferences on errors. The feedback conveys information 
about the nature of errors, not just that a particular action was incorrect. For 
example, the feedback may indicate the direction or magnitude of the error.  

1.1.2 Darts: An Example of Grounded Feedback 
Dugdale’s Darts program (1992) is one example of grounded feedback (Simcalc is 
another – see Roschelle, Kaput, & Stroup, 2000). Students attempt to pop balloons on 
a number line by shooting darts, aimed by entering a number or expression. The dart 
flies to that location on the number line and stays there, with the original numeric 
input beside it (Fig. 1.2). If a dart touches a balloon, the balloon pops. This example 
illustrates the four characteristics of grounded feedback:  

1) The feedback is intrinsic to the domain. The placement of the dart on the 
number line is governed by the underlying mathematics, and the same 
magnitude information is conveyed in both the symbolic and graphical 
representations. The feedback is intrinsic because there is a consistent mapping 
from the inputs in the target representation to the displayed responses in the 
feedback representation (Dugdale, 1992). Intrinsic feedback shows students the 
workings of the domain, and therefore is the same whether or not the input is 
correct: A dart will always land at its specified location on the number line, even 
if no balloon is there. 

2) Students can envision a correct goal state for the feedback. A correct input will 
result in a dart that lands in the same location as the balloon the student is 
aiming for, and will pop the balloon. This indication of correctness is quite 
explicit, yet the feedback is more than simple verification. 
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3) The input format matches the domain learning goals. Students input numbers 
and expressions instead of, say, popping the balloons by clicking on them.  

4) The feedback affords inferences on errors. This feedback conveys more 
information than simply if the input has the same magnitude as the target 
balloon. By comparing the dart’s location to that of the target balloon, the 
student can tell if a larger or smaller number is needed. Further, the feedback 
representation facilitates a rich set of inferences, for example, the student could 
infer that “1/3 + 1/6” is about halfway between 1/3 and the balloon target above, 
and thus infer that “1/3 + 2/6” might be a good next entry.  

 

1.1.3 Theoretical Context 
Grounded feedback is grounded both in a different representation and in student’s 
prior knowledge. Darts dynamically translates a student’s intention (estimate a 
balloon’s location with a number or expression) to a representation (the number line) 
that may help the student see if that action matched the original intention (is the 
target balloon located at that spot?). It lets the system ask “is this what you mean?” 
perhaps giving pause when the feedback is not what the student expected. Grounded 
feedback environments allow students to iterate on their work through cycles of 
generation and feedback. Through this iteration, the feedback encourages students to 
evaluate their own work, and the act of evaluation may deepen conceptual knowledge.  

Cognitive tutors often give immediate explicit feedback that tells students 
whether an answer is correct, for example by changing the color of incorrect answers 
to red. The tutor considers any input that is not on a solution path to be incorrect. 
Ohlsson, (1996) termed this interpretation of errors the “objective view of errors.” 
Novices may not recognize objective errors on their own. However, novices can 
recognize when the consequences of an action violate their expectations, which 

       
Fig. 1.2 Sample reconstructed screenshot illustrating the 
feedback in Darts with a number line from 0 to 1. The 
student has already popped a balloon at .9. 
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Ohlsson called the “subjective view of errors” (Ohlsson, 1996). Students can learn 
from subjective errors when they adjust their mental model to reconcile their previous 
understanding with the actual results of their actions. Grounded feedback provides 
the context in which these subjective errors can occur. If students can recognize 
subjective errors, why do they make them in the first place? Ohlsson (1996) 
hypothesizes that the skills needed to produce versus evaluate correct actions are 
distinct and may draw on different knowledge bases (that is why we often correct 
mistakes when we check our own work, even without new information). Therefore, 
when students evaluate their own work, they may be activating knowledge that was 
not available while they produced the answer. Such evaluation may help with 
knowledge acquisition by reminding students of what they already know and 
prompting them to engage with what they think is true. Grounded feedback may help 
by making that evaluation step more explicit and by providing information, which a 
novice can interpret, about why their action was in error (Powers, 1973). Other 
supports for self-evaluation, such as prompted self-explanations, are also intended to 
support sense making, but grounded feedback is distinguished in being a reflection of 
student actions rather than an instructional prompt.  

Feedback that flags actions as correct or incorrect also facilitates evaluation – by 
doing it for the student. When such feedback indicates an action is incorrect, the 
student learns a negative example. Grounded feedback not only shows errors as 
negative examples for that step, but also as positive examples for something else. For 
example, the dart at 1/3 + 1/6 provides a negative example for the balloon (the 
balloon is not at 1/3 + 1/6) and provides a positive example for 1/3 + 1/6 (showing 
where it is located on the number line). Since the goal is for students to understand 
how the novel representation maps to the more familiar one, each example of 
mapping is an opportunity for learning, even if the input being mapped is incorrect 
for that particular problem or step. In addition to using incorrect inputs as positive 
examples, grounded feedback allows for a rich set of inferences based on those 
mistakes: 1/3 + 1/6 is smaller than the two-part balloon; it is about halfway between 
1/3 and the two-part balloon; 2/3 + 1/6 might hit the two-part balloon, etc. Although 
some of these inferences could be given as text feedback, enumerating all of them 
would be overwhelming. Further, with grounded feedback the students actively make 
these inferences themselves.  

Grounded feedback uses two representations for a specific aim: to show feedback 
in a familiar representation that facilitates students’ evaluation of their own work in 
the novel target representation. Multiple representations in general can have much 
broader aims and different types of structures. For example, the goal for an activity 
with multiple representations may be for students to discover the mapping from one 
to another, to construct one from the other, or to use each separately. This diversity in 
types and uses of multiple representations helps explain why research in this area can 
appear to show contradictory results: Research on one use of multiple representations 
may not generalize to other uses (Ainsworth, 1999). Ainsworth (1999) described three 
categories of functions of multiple representations: (1) providing complimentary 
information (e.g., different map projections of the earth, one with accurate shapes and 
the other with accurate sizes); (2) constraining potential misinterpretations (e.g., a 
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linked representation of an object moving according to a velocity-time graph to 
address a common misconception that a horizontal line indicates an object at rest); 
and (3) constructing deeper understanding (e.g., combining base-10 blocks with 
symbolic numbers to encourage students to extract principles of the base-10 number 
system). Grounded feedback has elements of the second and third categories: The 
grounded representation facilitates correct interpretation of the novel representation, 
and by mapping between both representations, students construct deeper 
understanding of the domain. One goal in defining grounded feedback is to indicate a 
particular kind of multiple representation use that may be effective in supporting 
learning of procedures with understanding. 

Grounded Feedback is also a type of formative feedback (Shute, 2008). Shute 
suggests several dimensions for categorizing feedback. Facilitative feedback helps 
“guide students in their own revision and conceptualization” (Shute, 2008, p. 157) 
while directive feedback “tells the student what needs to be fixed or revised” (Shute, 
2008, p. 157). Two other related categories are verification (right/wrong feedback), 
and elaboration, which is “the informational aspect of the message, providing relevant 
cues to guide the learner toward a correct answer” (Shute, 2008, p. 158). Grounded 
feedback gives implicit verification (the student can compare the grounded feedback 
to its expected goal state), elaboration (it shows the nature of errors), and is 
facilitative, helping students come to their own understanding of the domain through 
repeatedly seeing their input matched to a more familiar representation. Facilitative 
and elaborative feedback often leads to better learning than simple verification (Shute 
2008). However, Shute’s review focused on explicit feedback. Grounded feedback’s 
elaborative aspects are implicit in students’ interpretation of the grounded 
representation. A key goal of this chapter is to explore when students’ interpretation 
of such representations may lead to better learning than their interactions with 
explicit feedback. 

1.2 Contrasting Grounded Feedback with Similar 
Instructional Approaches 
How is grounded feedback different from other common types of feedback? This 
section compares and contrasts grounded feedback with correctness feedback, 
manipulatives, and multiple representations (both linked and non-linked). Table 1.1 
indicates which of the four features of grounded feedback are present in the other 
feedback types. The first two features are characteristics of the feedback design, and 
the last two features depend on the students’ responses.  

Some entries may appear counter-intuitive. For the non-linked representation, 
students’ envisioning of the correct goal state is Not Applicable: Since the non-input 
representation is not linked to anything, it only displays one state and therefore there 
is nothing to envision. Additionally, the second representation does not directly give 
feedback on the input representation, so feedback is intrinsic is listed as no. However, 
students can sometimes use the non-linked representation to diagnose errors, so the 
last feature is listed as sometimes. The goal of this set of contrasts is to highlight the 
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features of grounded feedback. In several cases we hypothesize that grounded 
feedback may be more beneficial than the contrasted approach. However, in all of 
these comparisons, there is little or no empirical evidence for the superiority of one 
approach or the other. One goal of this review is to call for experiments that would 
provide such evidence.  

 

1.2.1 Verbal and Correctness Feedback in Tutoring Systems  
How is grounded feedback different from correctness feedback? Consider the 
correctness feedback provided by the Algebra Cognitive Tutor (Koedinger & Aleven, 
2007) shown in Fig. 1.3. The tutor marks incorrect inputs, such as .13t in the second 
column, and prevents students from progressing in the problem until that error is 
fixed. For recognized common errors, the system provides text feedback. Here, the 
tutor explains that the student’s expression for the cost of t minutes of phone calls, 
.13t, does not include the base charge of $14.95 per month. While several features of 
this learning environment match the requirements of grounded feedback, one does 
not.  Starting with features in common: students’ inputs are in a representation that 

 

 

Design Features Likely Student Responses 
Input 
matches 
domain 
learning 
goals 

Feedback reflects 
the inputs, and 
affords inferences 
on errors 

Students can use 
the feedback to 
decide if their 
work is correct 

Students can 
interpret the 
feedback on 
their errors 

Grounded 
Feedback Yes Yes Yes Yes 

Step-level 
Correctness Yes No Yes Yes 

Manipulatives No Yes Yes Yes 

Non-linked 
Representations Sometimes No Not Applicable Sometimes 

Linked 
Representations, 
Other Direction 

No Somewhat Unlikely Limited 

Situational 
Feedback Yes Yes Sometimes Sometimes 

Table 1.1 Comparing grounded feedback to other instructional approaches. 
 



 16 

matches the domain learning goals; students can envision a correct goal state for the 
feedback (if inputs change to green, they are correct); and students can interpret the 
feedback the system provides (green means correct, red means wrong). 
 

 
The key difference between grounded feedback and the Algebra Cognitive Tutor 

feedback is that correctness feedback is not intrinsic to the domain and thus does not 
promote the same degree of inferences on the nature of the students’ errors. Fig. 1.4 
shows one possible redesign to make this tutor grounded. First, before constructing 
the expression, students calculate the cost of the current cell phone plan for various 
numbers of minutes. While it may seem counter-intuitive, it is actually easier for 
novices to provide a numerical answer to a story problem than it is to construct the 
symbolic expression that yields that answer (Heffernan & Koedinger, 1998). To guard 
against slips, students could get correctness feedback on the calculated costs. After 
finding the correct costs, students propose an expression, which the tutor evaluates 
for each of the given number of minutes. This allows the students to judge the 
correctness of the expression by comparing its results to the correct cost that they just 
calculated. In the grounded feedback version, students can see what the costs would 
be if the charges were only 13 cents per minute. By comparing the values derived from 
the expression to the ones they calculated, the students are likely to determine for 
themselves if they have made an error. Upon considering the zero-minute row, this 
student is likely to see for himself which part of the expression he forgot.  

              
Fig. 1.3. Reconstructed sample work and feedback with the algebra 
cognitive tutor. The student’s symbolization .13t is immediately marked as 
wrong, without giving the student the opportunity to evaluate his own work. 
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Intelligent tutoring systems use immediate correctness feedback to reduce the 

unproductive cognitive load that comes from floundering. However, as Fig. 1.4 shows, 
grounded feedback can be implemented in a way that is compatible with cognitive 
load theory. Since grounded feedback is calibrated to students’ prior knowledge, the 
tasks and decisions students are given are ones for which the students have a high 
probability of success. This is in line with cognitive load theory design principles, 
which propose that students should perform problem-solving steps (including 
evaluating their work) if they are likely to do so efficiently. Experiments comparing 
grounded to correctness feedback have found benefits for grounded feedback (see 
section 1.3, ‘Evidence on the Effectiveness of Grounded Feedback’). 

1.2.2 Manipulatives 
Like grounded feedback, manipulatives are intended to support student inference and 
sense making. For example, when solving a problem such as 20 – 7 with blocks, a 
student would see that they cannot take away seven unit blocks from two ten blocks 
(Fig. 1.5a). Trading one of the ten blocks for ten unit blocks (Fig. 1.5b) makes the 
subtraction possible: take seven of those unit blocks away, and 13 units remain (Fig. 
1.5c). This use of manipulatives is intended to show the conceptual basis for 
borrowing. 

While student use of manipulatives involves cognitive processes that are 
analogous to the target cognitive processes (e.g., borrowing with blocks is analogous 
to borrowing in the place value representation of multi-digit numbers), such use does 
not directly require and may not involve those target processes (Sarama & Clements, 
2009). In other cases, the strategy that students practice may not generalize to all 

 

 

Fig. 1.4. Proposed implementation for grounded feedback in an algebra tutor, showing 
the same student error as Fig. 1.3. First, the student calculates the charges for various 
numbers of minutes. After inputting an expression for the current cost, the computer 
uses that expression to generate the costs for the given numbers of minutes. This 
allows the student to evaluate her own work, and to see what costs are generated by 
incorrect expressions. 
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problem types (e.g., picture-division strategies for fraction division are ill-suited to 
numbers that do not divide evenly; Rittle-Johnson & Koedinger, 2001). Further, in 
some cases students may not even realize what the manipulatives are intended to 
model - for example, students moving a token a set distance along a number line may 
not realize their actions are intended to model addition (Suh, Moyer, & Heo, 2005).  

 
Additional evidence that manipulatives do not always involve target cognitive 

processes is the lack of transfer between learning with manipulatives and posttests 
with paper and pencil. In a study on subtraction with base ten blocks, Resnick & 
Omanson (1987) found that students’ ability to solve subtraction problems with the 
blocks was not predictive of proficiency with paper-and-pencil subtraction problems. 
While students seemed to learn subtraction concepts with the blocks, the procedures 
they acquired did not directly transfer to the multi-digit number representation. It 
seems the concepts they may have acquired were either not flexible enough or 
required too much cognitive load for novices to adapt them to numbers. From a 
situated cognition perspective (Lave, 1988), manipulatives produce knowledge that is 
tied to the use and affordances of the manipulatives and will thus be difficult to access 
without them. Uttal et al. (2013) found that this problem of transfer between 
manipulatives and paper-and-pencil tasks works both ways: rising second graders 
taught two-digit subtraction with one method performed significantly worse when 
tested in the other method (adjusted mean scores for posttests in the other method 
were less than 40%, while adjusted mean scores for the same method were above 
85%). Together, this set of work indicates that manipulatives do not provide full 
support for students to connect concepts to procedures with abstract representations. 

In contrast to manipulatives, with grounded feedback students are required to 
engage with the target representation, with the aim that the procedures and concepts 
they acquire are situated within that representation. I hypothesize that students will 

 
Fig. 1.5. Solving 20 minus 7 with base-ten blocks: a) 2 sticks of 10; b) trading one 
stick of 10 for 10 unit blocks; c) taking away 7 of the unit blocks. 
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primarily use the input representation to generate responses and the feedback 
representation to check their work. Therefore, as students develop competence with 
the new representation, errors should reduce and self-evaluation should get faster. 
Thus, the need to attend to the grounded feedback representation should fade. This 
progression contrasts with manipulatives, which need to be actively withdrawn. While 
I hypothesize that grounded feedback is more beneficial than manipulatives, I am not 
aware of any studies that compare the two. 

1.2.3 Non-Linked Representations 
This section discusses two systems that use non-linked representations, as they are 
similar to grounded feedback. One uses physical models as the more-familiar 
representation (similar to Izsak, 2000), and the other is entirely on the computer. In 
both cases, students work primarily in the less-familiar representation and use the 
more-familiar representation to check their work. Unlike grounded feedback, the two 
representations are not linked. Instead of showing the student’s current work, the 
familiar representation only shows the correct answer.  

In Padalkar & Hegarty’s chemistry instruction (2012), students started with a 
diagram of a molecule, and were asked to draw the same molecule with a different 
type of diagram. Students were also given a three-dimensional ball-and-stick model of 
the molecule. Students completed six such problems as a pretest. After the pretest, the 
intervention group was instructed in how to use the 3-D models to check their work 
(the other group got a five-minute break). During the instruction, students were told 
to map between the 3-D model and the given diagram in the problem to verify that 
they represented the same molecule. Then, they were told to map between the 3-D 
model and their generated diagram. If the mapping was not possible, that indicated 
that the student’s solution was incorrect. After this brief instruction, students 
completed a matched post-test with molecules that were mirror images of the pretest 
molecules, and a transfer task with new molecules. 

While the chemistry instruction required students to perform the mapping 
between the two representations, this mapping step was done automatically in the 
QUADRATIC tutor (Wood & Wood, 1999). In this tutor, students expand quadratic 
expressions such as (x + 1)2. As students form symbolic expressions, the tutor maps 
correct components onto a geometric model (Fig. 1.6) Students can verify that their 
work is correct when all terms have been mapped. The main difference between these 
non-linked approaches and grounded feedback is that the more-familiar 
representation does not reflect the student’s actions if those actions are incorrect. It is 
not clear which approach is better for learning, and I am unaware of any experiments 
that compare grounded feedback to non-linked representations. I offer two competing 
perspectives: (1) The non-linked approach is better because it encourages students to 
actively integrate the two representations; (2) The grounded approach is better 
because it helps students diagnose their own errors in mapping between the two 
representations.  
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To learn effectively from multiple representations, students must integrate them 
and know how to map between them (Ainsworth, Bibby, & Wood, 2002).  In 
grounded feedback systems, a computer often does this mapping by generating a 
reflection of the student’s actions in the feedback representation. In non-linked 
representations where a mapping is not provided, the student must do this mapping 
to evaluate her work. It is possible that this active student integration is a key 
ingredient for student learning with these systems, a view supported by evidence 
showing that students learn more when they integrate static representations rather 
than view pre-integrated ones (Bodemer, Plötzner, Bruchmüller, & Häcker, 2005). If 
active student integration improves learning, students would learn more from a non-
linked system where the mapping is not provided than from either a non-linked 
system where mapping is provided or from grounded feedback. 

On the other hand, students may not spontaneously map between the two 
representations, and may not do so correctly. Padalkar & Hegarty (2012) found that 
students who were explicitly taught how to use the 3-D models to check their work 
ended up using those models more on the post-test than they did on the pretest (the 
difference in the control group’s usage of the models between the two tests was not 
significant). Further, the instruction group improved more from pre- to post-test than 
the control group (Padalkar & Hegarty, 2012). This indicates that on their own, 
students were not benefitting from the opportunity to actively integrate the two 
representations. Indeed, students in a pilot study often did not bother to check their 

 
Fig. 1.6. In the QUADRATIC tutor, students expand expressions such as (x+n)2. 
Correct terms are mapped to a geometric model. 
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work at all because they were (over) confident in their answers (Padalkar & Hegarty, 
2012). Even when students do map between the two representations on their own, 
they may do so incorrectly. For example, an algebra student trying to convey “40 
subtracted from 800” may write “40 - 800,” not realizing that the minus sign can only 
mean “subtract” and never “subtracted from” (Koedinger, personal communication). 
In that case, a familiar representation showing 760 would not help the student realize 
that her work was incorrect – she thinks that 40 - 800 does equal 760. Further, the 
unfamiliar representation itself may trigger misconceptions. For example, Roschelle, 
Kaput, & Stroup (2000) discuss students’ misconceptions around an elevator 
simulation, where an elevator goes up and down at various speeds, represented by a 
piecewise linear function of velocity. While interpreting these graphs, students often 
confuse “going down” with “slowing down,” thinking that a decrease in velocity 
represents the elevator moving downward, when it actually represents the elevator 
moving upward, but more slowly (Roschelle, Kaput, & Stroup 2000, p. 18). If the 
student is left to interpret these unfamiliar representations on her own, she may do so 
incorrectly and not realize it. If students are likely to map incorrectly or not at all, 
grounded feedback systems would be more beneficial than non-linked systems, as the 
student would see the familiar representation behave differently than expected, giving 
the student feedback on the meaning of the unfamiliar representation.  

1.2.4 Linked Representations, from Concrete to Abstract 
The Equivalent Fractions applet (illuminations.nctm.org/Activity.aspx?id=3510; Fig. 1.7) 
is one example of a linked representation that connects a familiar representation 
(fraction rectangles) to an unfamiliar representation (fraction symbols). The key 
difference between this feedback and grounded feedback is the direction of the link: 
grounded feedback uses the unfamiliar representation as input and the familiar one 
as feedback, while this applet does the reverse. This example illustrates the 
differences between the two link directions. The equivalence applet presents one 
fraction and asks the student to generate two equivalent fractions with different 
denominators. Each proper fraction n/d is represented in three ways: as a fraction 
rectangle with d equal pieces, n of which are colored in; as a location on a zero-to-one 
number line, and as a symbolic fraction. Students generate equivalent fractions by 
moving the horizontal and vertical sliders next to each fraction rectangle to create 
equal divisions. Next, the student clicks on the divisions to color them in. As the 
student manipulates the rectangles, the corresponding symbolic fractions show the 
numerator and denominator, and move along the number line as the student adjusts 
the number of colored-in pieces. When all of the fractions are equivalent, all three 
points will overlap on the number line. To confirm that the fractions are equivalent, 
the student can press the check button. 
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  What are the differences in design features between this type of linked 
representation and grounded feedback, and the likely differences in student learning? 
With the applet, students directly manipulate the more-familiar rectangle 
representation instead of the less-familiar symbolic fractions. All three 
representations reflect the underlying mathematics of fractions, and therefore the 
feedback is intrinsic to the domain. However, while the feedback representations 
afford some inferences on errors, they do not support as many types of inferences as 
the rectangle representation, which is the original input representation. The number 
line representation indicates if the fractions are equivalent or not and the magnitude 
differences between the fractions. However, these inferences would be available with 
the rectangle representation if all three rectangles were aligned and pieces were 
colored in consecutively.  

Further, with the number line representation, students do not get feedback on 
whether they have an incorrect denominator, numerator, or both. If the rectangles 
were all aligned, they could show this type of information. Since the feedback 
representation is unfamiliar, it is unlikely that students will be able to envision the 
correct goal state for the feedback. In this example, students would probably be able 
to envision the correct goal state for the number line representation: the points 
should overlap. It is less likely that a novice would be able to envision the correct goal 
state for the fraction symbols. If they could, this lesson would most likely not be 

   

                          
Fig. 1.7. Students input fractions by using the sliders to generate equal-sized pieces 
and clicking on each piece to color it in. The symbolic and number line 
representations are dynamically linked to the rectangles. The feedback is not 
grounded since students manipulate the more-familiar representation and get 
feedback in the unfamiliar representation. 
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necessary! Since students are unlikely to be able to determine if their work is correct 
from the fraction symbols alone, it is very unlikely that students would be able to use 
the symbols to generate meaningful inferences about their errors. 

As with manipulatives, when students directly manipulate a more-familiar 
representation, they may be tempted to ignore the unfamiliar representation. With 
this applet, a student could generate equivalent fractions without considering the 
symbolic representations at all: the student could count the divisions in the red 
fraction, set the horizontal sliders to that number, set the vertical sliders to two 
different numbers greater than one, and color in pieces until the three points overlap 
on the number line. Though the applet may help students solidify equivalence 
concepts, it does not give students practice with procedures for generating equivalent 
fractions with symbols, and thus is unlikely to lead to robust learning of the 
procedures or robust understanding of how the procedures and concepts are 
connected.  

One way to make this activity grounded is presented in Fig. 1.8. Students input 
symbolic numbers in the areas marked with black boarders. The equations encourage 
students to multiply, but the interface does not require it. If students choose to 
multiply the denominator, the original horizontal divisions are overlaid with vertical 
divisions. If the student chooses not to multiply, the rectangle shows only horizontal 
divisions. The number of colored pieces is driven by the student-entered numerator, 
and pieces are colored consecutively. Since the rectangles are aligned, students can 
compare the magnitudes without the number line. Alignment also should facilitate 
comparison of denominators (e.g., eighths do not line up with fourteenths). Although 
I hypothesize that grounded feedback will be more beneficial than familiar-to-
unfamiliar linked representations, I hasten to add that I have not found experiments 
comparing these two designs. Linked representations from the more-familiar to the 
less-familiar is a popular design choice (e.g., phet.colorado.edu, shodor.org, 
nlvm.usu.edu), and evidence is needed on whether this is the most beneficial choice 
for learning. 
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1.2.5 Situational Feedback 
Situational feedback draws on theories of a problem model and a situation model 
when students encounter story problems. While the problem model “represents the 
mathematical structures needed to solve the problem” (Nathan, 1998, p. 139), the 
situation model “draws on the reader’s prior knowledge of events and semantic 
knowledge” (Nathan, 1998, p. 139). Experts draw on both models. When novices rely 
on the problem model to the exclusion of the situation model, they may generate 
nonsensical answers. For example, an 8th grade question from the third National 
Assessment of Educational Progress asked, “An army bus holds 36 soldiers. If 1128 
soldiers are being bussed to their training site, how many busses are needed?” 29% of 
students answered “31 remainder 12” (Schoenfeld, 1988. p. 6). Situational feedback 
aims to help student connect the mathematics in the problem model to the situation 
model. Nathan’s ANIMATE system (1998)is one implementation of situational 
feedback. 

The ANIMATE tutoring system teaches students how to model a story problem 
with algebra equations.  Students set up equations, which drive animations, which the 
student can then compare to the situation in the story. A sample problem: a train 
leaves its station going 75 miles per hour. A helicopter leaves from the same station 
two hours later, going 300 miles per hour, to warn the train that there is a broken 

 
Fig. 1.8. Proposed re-design of equivalence applet that uses grounded feedback. 
Students enter symbolic numbers in the black-bordered input areas, and see the 
rectangle representation of the fractions as feedback. The equations encourage 
students to multiply, and to think about multiplication when they interpret the 
feedback. Since the fraction rectangles are aligned, students can compare their 
fractions without the number line. 
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bridge 60 miles ahead. Can the helicopter catch up with the train in time? Fig. 1.9 
shows a sequence of example student work and feedback for this problem.  

 
Fig. 1.9a shows the student’s expectation that after an hour, the train will have 

traveled 75 miles and the helicopter will not have left the city yet. Fig. 1.9b shows the 
system of equations the student has entered to model the story problem: D1 = D2 
(both vehicles have traveled the same distance once the helicopter catches up with the 
train); D1 = 75 * T1 (the train’s distance is its speed multiplied by its travel time); D2 
= 300 * T2 (likewise for the copter). T1 = T2 – 2 relates the amount of time that the 
two vehicles have been traveling, demonstrating a common misconception. The 
student tried to model that the copter leaves two hours after the train, perhaps 
thinking if the train left at 9am, the helicopter would have left at 11am, and 9 = 11 – 2. 
However, the equation requires that T1 and T2 represent the amount of time each 
vehicle has been traveling, not the clock time when they left. Therefore, the correct 
equation is “T1 = T2 + 2” since the train travels for 2 hours more than the helicopter. 
These entered equations drive animations of the train and the helicopter. Fig. 1.9c 
shows the animation for the positions of the train and helicopter after an hour. Unlike 
the student’s expected outcome in Fig. 1.9a, Fig. 1.9c shows that the helicopter 
travelled 300 miles and the train stayed at the station.  A full reconstruction of the 
ANIMATE interface at this point is shown in Fig. 1.10. In this example, the animation 
would show the chase helicopter leaving before the train, which does not match the 
problem. Ideally, the student reconsiders the equations he entered to locate the error.  

 
Fig. 1.9. a) Student’s expectation that after one hour, the train will have gone 75 miles and 
the helicopter will not have left. b) Student’s inputted equations for modeling the story 
problem. c) ANIMATE’s feedback, based on the entered equations, does not match the 
student’s expectations. The feedback supports qualitative reasoning, while the input format 
supports algebraic symbolization. 
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The ANIMATE system is both situational and grounded. The ANIMATE system 
has no student model, does not mark answers as correct or incorrect, does not provide 
text hints, and does not force students to attain the correct answer before moving on 
to the next problem. Instead, its key feature is providing student-meaningful 
situational feedback “in such a way that the learner can use her prior knowledge to 
identify solution errors, re-examine prior conceptions, and propose and test 
hypotheses about the causes of errors.” (Nathan, 1998, p. 138). This is also a key 
feature of grounded feedback. However, it is not always present in situational 
feedback environments, for example in Horwitz and Barowy’s RelLab (1994).  

The RelLab simulation environment (Horwitz & Barowy, 1994) is an example of 
situational feedback that is not grounded. RelLab was designed to teach physics 
concepts to high school students, and performs simulations of events at normal and 
relativistic speeds. In many ways RelLab is similar to ANIMATE: students read a 
scenario, input parameters to a computer program, and watch an animation play out. 
However, since RelLab’s problem scenarios often challenge students’ preconceptions, 
the animations are not sufficient feedback for students to know that they set up the 
problem incorrectly, violating the second criterion of grounded feedback. When the 
target content involves conceptual change, students are unlikely to correctly envision 
the goal state, meaning that they cannot effectively use their expectations to evaluate 
the situational feedback. Indeed, while RelLab was successful in prompting 
discussions and helping students understand physics, Horwitz & Barowy describe 
cases where the RelLab animations were not sufficient to alert students to errors, 

                      

 
Fig. 1.10. Reconstructed ANIMATE screenshot. The student’s entered equations are 
in the box at the bottom right; the clock at the left shows one hour has been 
simulated; the animation at the top shows the movement of the train and helicopter 
as governed by the student’s equations. The animation does not match the story 
description. 
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because the students did not have a prior conception of what a correct animation 
would look like (1994). 

RelLab illustrates how situational feedback is different from grounded feedback. 
Situational feedback is a property of the learning environment, but grounded 
feedback is a property of the match between the learning environment and students’ 
prior knowledge. Our point is not to say that RelLab is a poor learning environment, 
but rather that story problems and feedback given in a situated context does not 
necessarily make it easier for students to tell if their work is correct. Conversely, Darts 
is an example of a system that is grounded but not situational. While Darts does 
involve grounded feedback, it does not involve a story problem or require the student 
to generate a “situation model” based on semantic relationships and prior knowledge 
of events. Therefore, I argue that grounded feedback and situational feedback may 
overlap, but one is not necessary or sufficient for the other.  

1.3 Evidence on the Effectiveness of Grounded Feedback 

1.3.1 Animate: Comparing Grounded Feedback to Error 
Messages 
ANIMATE (discussed in detail above) is one of the few grounded feedback systems 
that has been compared to a control, with learning measured with pre- and post-tests 
outside the tutors (Nathan, 1998).  Instead of running simulations, the control tutor 
gave three pop-up hints when the student made an error (e.g., at the error depicted in 
Fig. 1.10, the first hint reads “It is common to over-generalize ‘later than’ to mean 
minus. Please check your current work.”) An experiment with 31 college students 
using a pretest-intervention-posttest design showed that while both groups improved 
in modeling story problems from pre- to posttest, the situational feedback group 
improved more. The tests included one problem of each type: travel (example show in 
Fig. 1.10); investment (e.g., $750 is invested at an interest rate of 5%, compounded 
annually. How much is in the account at the end of the second year?); and work (e.g., 
Tom can paint the entire fence in two hours while it takes Huck four hours. If Tom 
arrives one hour late from fishing, how long will it take the two boys to complete the 
job?). Separate ANCOVAs for each problem type with pretest performance and total 
SAT (the standardized test) as covariates and treatment as a between-subjects factor 
showed a significant difference for treatment (p < .05) on travel and investment 
problems, with .76 for the standardized gain for the situational feedback condition on 
both types and .57 and .43 for the control, respectively. The ANCOVA for work 
problems did not show a significant difference between conditions.  

While Nathan’s 1998 study shows strong overall benefits for 
situational/grounded feedback (relative to the pop-up text hints), student learning 
was not significantly different on work problems. Work problems differed from the 
other types in that students were given a whole number in the problem statement 
(Tom can paint 2 fences per hour) but they needed to use the reciprocal in the 
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equation (Tom needs 1/2 an hour per fence). ANIMATE students could see that using 
the original number was incorrect, but did not know what to try next. This finding 
suggests that grounded feedback may only be more beneficial than right/wrong 
feedback or pop-up text hints when students are able to both recognize that they have 
made an error and make useful inferences on those errors to guide them on what to 
try next. Alternatively, a system that provides both grounded feedback and text hints 
(when students are stuck) may be more powerful than either type of support on its 
own. Mathan and Koedinger’s Excel tutor (2005) is one such system.  

1.3.2 Excel Tutor: Comparing Grounded Feedback to 
Correctness Feedback 
Mathan and Koedinger’s 2005 Excel tutor teaches students how to write spreadsheet 
formulas with absolute and relative cell references. In the grounded feedback version 
of the tutor, Excel evaluates each formula that the student enters. From Excel’s 
feedback (providing the calculated values for each formula), the student can 
determine if the original formula was correct. For example, one problem asks 
students to calculate the interest owed on a loan of $10,000, at various interest rates 
(Fig. 1.11). The problem content was designed so that students would likely be able to 
calculate each of the interests owed, or at least recognize clearly incorrect values (Fig. 
1.11a). Fig. 1.11b shows the student-entered formula “=B2*A5” in the cell B5 (entry 
shown at the top), which multiplies the loan amount by the 1% interest rate. Excel 
responds with “$100” in B5 and this value matches the student’s expectations.  
However, when the student copies the formula from B5 and pastes it in cells B6 
through B8 (Fig. 1.11c), Excel’s values do not match the student’s expectations. The 
interest owed at the 5% rate is shown to be $0. Upon inspecting the formula for that 
erroneous cell (top of Fig. 1.11c), the student is intended to see that the interest rate is 
not being multiplied by the loan amount, but by the cell directly underneath. Excel 
multiplied the wrong cells because the student used a relative instead of an absolute 
reference (the correct formula for B5 is “=B$2*A5”). If the student cannot fix the 
error independently, the tutor provides step-by-step guidance. The grounded 
feedback tutor (which Mathan and Koedinger called an “Intelligent novice model 
spreadsheet tutor”) was compared to a version that gave explicit interactive support 
as soon as students entered an incorrect formula. In this control condition, students 
had to generate the correct formula before pasting it into multiple cells. In both 
conditions, the tutor offered text hints if students needed them. In the intelligent 
novice condition, students could (1) see how Excel responded to incorrect formulas; 
and (2) try to recognize and correct their own errors before the tutor jumped in. 

An experiment with 49 adult job seekers using a pretest-intervention-posttest 
design showed that, like the ANIMATE experiment, while both groups improved from 
pre- to posttest, the grounded feedback group improved more (Mathan & Koedinger, 
2003, 2005). Students in the grounded feedback condition showed significantly better 
learning from pretest to posttest on all of their measures, with substantial effect sizes 
(across all treatment-to-control comparisons) for problem solving (effect size: .50), 
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conceptual understanding (effect size: .59), transfer (effect size .43), and retention 
(effect size: .33). These strong results show the additive benefit of grounded feedback 
in a learning environment that already provides text hints.  

1.3.3 Invention: Grounded Feedback for Learning Principles 
Though the previous examples of grounded feedback were intended to teach content 
immediately, grounded feedback can also prepare students for future learning. One 
example is an invention activity for finding formulas for variance and mean deviation 
(Schwartz & Martin, 2004). The expectation was not that students would be able to 
find the correct formulas on their own, but rather that the process of invention would 
help students find the features that such formulas would need to include, and would 
then provide a solid foundation for learning the correct formula from a teacher. In the 
invention activity, students were given a set of contrasting cases of points on graphs, 
which the students could rank intuitively by spread (Fig. 1.12). The students then 
generated formulas and could see if their invented formulas produced the same 
rankings. Here, the rankings are the grounded feedback. If students saw that their 
invented formulas produced rankings that differed from their initial intuition, they 
would know the formula was not correct. When students looked more carefully at the 
incorrectly ranked graphs, they were intended to see important differences between 
the graphs that the invented formulas would need to take into account (e.g., number 
of data points). While the comparison between a formula’s expected and actual 
rankings allows students to check their own work, the carefully constructed 
contrasting cases allow for inferences about the formula’s errors. 

 
Fig. 1.11. a) The student mentally calculates the interest rates. b) The student multiplies the 
first interest rate (cell B2) by the loan amount (cell A5), yielding the correct interest for cell 
B5. c) When that formula is copied and pasted in cells B6-B8, it multiplies the interest rates 
by cells under the loan amount. This result does not match the student’s expectations. 
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Schwartz and Martin (2004) compared two instructional sequences: the 
invention activity followed by a 5-10 minute lecture on the correct formula followed 
by practice with the correct formula vs. a lecture on the correct formula followed by 
practice (with the same total amount of time allotted for both sequences). 
Assessments measured not only students’ target knowledge on the correct formulas, 
but also for their ability to learn from a worked example: The posttest included a far-
transfer question that required knowledge of concepts presented in an embedded 
worked example. A pre-to-post test comparison of the two conditions found that while 
both groups learned about the same amount of target knowledge, the invention 
students were better able to learn from the worked example (Schwartz & Martin, 

 
Fig. 1.12. An invention activity. The intuitive rankings of reliability provide 
grounded feedback. 
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2004). In other words, the invention activity helped prepare the students for a future 
learning opportunity.  

Why didn’t Schwartz and Martin’s study show a learning benefit for target 
knowledge for the invention group, which learned with grounded feedback, when the 
ANIMATE and Excel studies did show such a benefit? The key difference is the 
subject of the grounded feedback. With ANIMATE and Excel, the purpose of the 
instruction was for students to generate correct systems of equations and formulas 
(respectively), and the two systems gave students grounded-feedback practice with 
those target skills. In the invention activity, the goal was not to have students practice 
the correct use of the formula. Instead, the goal was to help students explore how the 
inclusion of different features affected their invented formulas, and that was the 
subject of the grounded feedback. Both groups practiced using the correct formula in 
the same way, with the same kind of feedback, which explains why the 
invention/grounded group had similar scores on target posttest items as the control 
group. However, the invention group, which got grounded feedback on the principles, 
did demonstrate better understanding of those domain principles, as indicated by 
their ability to learn from an embedded worked example on the posttest. Since 
students working with invention activities almost never come up with the canonical 
solutions, such activities fall under the umbrella of “productive failure” (Kapur, 
2009). We hypothesize that grounded feedback is a necessary element for making 
failure productive. For example, if Schwartz and Martin’s experiment had used the 
charts in Fig. 1.13, students would have had much more difficulty producing intuitive 
rankings for the charts. When comparing their calculated rankings to the intuitive 
ones, students would not necessarily trust their intuitive rankings more. Note that 
Fig. 1.13 preserves the four contrasting cases: B shows the most reliable machine, but 
points are not centered around the X; A shows points clustered around the X; C shows 
a cluster of four and an outlier; D has four points instead of five, is clustered around 
the X, and is least reliable. Yet without the grounded feedback provided by the 
intuitive rankings, students would likely flounder unproductively. However, as with 
previous hypothesized comparisons in this review, I am not aware of experiments that 
compared grounded and ungrounded forms of invention activities. 



 32 

 

1.3.4 Experiments with Inconclusive Results or No Differences in 
Learning 
While the experiments discussed above showed robust learning benefits for grounded 
feedback, other related work has found no differences in learning or inconclusive 
results. One study on fractions found that linked representations did not outperform 
worked examples (in the context of a larger investigation of learning with multiple 
representations; Rau, Aleven, Rummel, & Rohrbach, 2012). The linking was similar to 
grounded feedback in that students worked with number lines (a less-familiar 
representation) and got feedback on their actions with fraction rectangles or circles. 
However, the linking was not a consistent implementation of grounded feedback: in 
some cases the second representation was static and only depicted the correct answer, 
and in some cases the dynamic representations could only reflect a subset of students’ 
inputs on the number line. This study suggests that worked examples may be more 
effective than grounded feedback when three representations are involved, but due to 
the inconsistent implementation of grounded feedback in this system the results 
remain inconclusive.  

Another study, on algebraic transformations, compared four conditions: 
grounded feedback, problem-level right/wrong feedback, problem-level right/wrong 

 
Fig. 1.13. Charts with non-intuitive rankings of mean deviation do not 
provide grounded feedback. 
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feedback with on-demand demonstration of transformation steps, and no feedback 
(Yerushalmy, 1991). In each version of the tutor, students were given an algebraic 
expression and had to transform it into a different format (e.g., given x(x-2)3+7(x-2), 
change it into the format Ax2+Bx+C). In the grounded feedback condition, students 
were shown three graphs: one of the original expression, one of the student’s current 
work, and one showing the difference between them. An experiment with 7th graders 
used a pretest-intervention-posttest design to measure learning outside the tutor; test 
data was reported for 17 students. All groups improved from pre- to posttest on the 
target content, without significant differences in learning between the conditions. 
While this study is quite small and likely underpowered, Yerushalmy identified some 
qualitative pros and cons of the grounded feedback. First, it appeared that the 
feedback was indeed useful in helping students evaluate if their attempts were correct 
– compared to the no-feedback condition, grounded feedback students performed 
more steps per problem, did more relevant debugging, left fewer uncorrected errors, 
and ultimately solved more problems correctly during tutoring. For students with 
high prior knowledge, the graph feedback helped them locate which term was the 
source of their error. However, other students, especially those with low prior 
knowledge, reacted to the grounded feedback as problem level right/wrong feedback 
or simply tried to eliminate the difference graph without looking for the source of the 
error, a form of gaming the system.  

1.4 Conclusions 
This chapter presents grounded feedback, defined by four criteria: 1) The feedback is 
intrinsic to the domain and semantically equivalent to the student’s inputs; 2) 
Students can easily envision a correct goal state for the feedback; 3) The input format 
matches the domain learning goals; and 4) The feedback affords inferences on errors. 
Prior work provides experimental support for grounded feedback  (Nathan’s 
ANIMATE, 1998; Mathan & Koedinger’s Excel tutor, 2003), but also shows that 
grounded feedback is not simple to implement (Rau et al., 2012). From a theoretical 
perspective, grounded feedback is likely to lead to more robust learning than related 
forms of feedback, but sufficient empirical comparisons have not yet been conducted. 
Overall, I believe there is enough promising support for grounded feedback to warrant 
further investigation. In particular, future work should examine if each feature of 
grounded feedback is important; how grounded feedback and explicit supports are 
best combined; and how students interact with grounded feedback. I hypothesize that 
students learning with grounded feedback will engage in sense making through 
mapping: from the input representation to the feedback representation, and from the 
target knowledge to their prior knowledge. In this manner, grounded feedback would 
provide students practice in building knowledge through inference and in checking 
their work using their own prior knowledge. If grounded feedback does indeed 
strengthen these skills, over time it may help students learn both domain knowledge 
and the metacognitive skills necessary to become more reflective learners. 
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2  Grounded Feedback for a Fraction 
Addition Tutor 

Summary. Standard intelligent tutoring systems give immediate feedback on 
whether students’ answers are correct. This prevents unproductive floundering, but 
may also prevent the development of useful error detection and correction skills. This 
chapter presents the first iteration of the grounded feedback tutor for fraction 
addition. In two think-aloud studies with 6 and 5 fifth-graders, students were able to 
solve more fraction addition problems with the tutor than with paper and pencil. 
Further, students were able to correctly interpret the feedback, and used it to find and 
fix their mistakes – without correctness feedback. 

2.1 Initial Tutor Design 
In the fraction addition tutor, the grounded feedback takes the form of rectangular 
fraction bars. For each proper fraction n/d, a fraction bar is divided into d parts, with 
n colored in. The tutor shows fraction bars representing the two addends, and shows 
the sum as a combination of those magnitudes. As the students enter the converted 
and sum fractions, the tutor reflects those quantities in the fraction bars (Fig. 2.1). 
The rectangles are intended to allow for easy comparison between the given fractions 
in the problem and student-generated converted and sum fractions. This example-
tracing tutor was built with the Cognitive Tutor Authoring Tools (CTAT; Aleven, 
Mclaren, Sewall, & Koedinger, 2009).  
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The fraction bars are intended to show meaningful consequences of students’ 
actions that make visible the intermediate and goal states of the problem solution, 
without giving away the answer. The design goal is that visual feedback will allow 
students to see if original addends and converted fractions are equivalent, and 
whether their answer fraction is equivalent to the sum of the two given fractions. The 
tutor does not give explicit feedback on the correctness of intermediate steps during 
problem solving. 

 

2.2 Study 1a: Think-Aloud 
In a think aloud study, participants are asked to perform a task while verbalizing their 
thoughts (Gomoll, 1990), a useful technique for designing tutoring systems (Lovett, 
1998). The first think aloud assessed whether the fraction bar feedback met the 
student-based criterion for grounding: if students could use the feedback to detect 
errors, and if that detection was easier with the feedback than with the numeric 
symbols alone. Further, the think-aloud explored what prior knowledge the grounded 
feedback elicited, and if students would integrate a representation of magnitude with 
their procedural steps for solving a fraction addition problem. With a collaborator, I 
conducted the initial think aloud, with paper-and-pencil problems followed by tutor 
problems.  

2.2.1 Participants, Materials, and Procedure 
Six fifth graders from an all-girls school in Pittsburgh volunteered to participate in the 
think alouds at their school during the school day. According to their math teacher, 
the girls had learned about fractions but not fraction addition. Each student 
participated individually in a 20-25 minute think aloud session with the 
experimenters. Students were asked to solve fraction addition problems with pencil 

                   
Fig. 2.1. The grounded feedback tutor interface.  The fraction bars in the 
first row are given, and include both addends and the multi-colored sum 
fraction. The bars in the second row update based on the student’s 
entries in the bottom row.  
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and paper, explaining their thoughts and steps out loud. Next, they were asked to 
explore the fraction addition interface and explain out loud what they understood to 
be happening. Then they solved up to three tutor problems. At times, if students were 
stuck the experimenters would provide verbal hints, though the experimenters did not 
evaluate students’ work. Students solved the following tutor problems in order: 2/8 + 
3/8 (same denominator), 1/3 + 2/9 (one denominator is a multiple of the other), and 
1/4 + 1/6  (unrelated denominators). Paper problems were also given from those 
categories in that order, though problems were not all the same. This think aloud was 
intended to get an initial sense for how students interacted with the tutor.  The 
inconsistencies with experimenters’ hints and differences in paper problems were 
resolved in the next think aloud. 

2.2.2 Results and Discussion 
Students appeared to understand that the fraction bars reflected the quantities that 
the students entered, and when the colored areas of two fractions were equal, the 
fractions were equivalent. Table 2.1 shows the percentage of students who correctly 
solved each problem without verbal hints from the experimenters. 

 
Problem Type Paper Tutor 
Same denominator 4  (66%)  6 (100% ) 
One multiple of other 2  (50%) 3 (50%) 
Unrelated denominators 0  (0%) 1 (20%) 
Total 6/13 (46%) 10/17 (58%) 

Table 2.1 Number of participants who correctly solved each problem without 
verbal hints from the experimenters. 
 
The problem categories were progressively harder for students.  On paper, four 

out of six students correctly solved the same denominator problem, two out of four 
solved the one-multiple-of-other problem and none out of three solved the unrelated 
denominators problem. With the visual feedback tutor, all six students solved the 
same denominator problem, three out of six solved the one-multiple-of-other 
problem, and one out of five solved the unrelated denominator problem. When 
students got stuck with the tutor, the experimenters gave them verbal hints.  With 
hints, all students correctly solved the one-multiple-of-other problem and four out of 
five correctly solved the unrelated denominator problem. 

Students used the fraction bars to evaluate their initial attempts and to generate 
answers. One student solving 2/8 + 3/8 initially added the numerators and 
denominators, yielding 5/16. The grounded feedback produced a fraction bar for 5/16 
that was smaller than the multi-colored bar representing the target sum. The student 
noticed and she correctly changed her answer to 5/8. One student who wanted to 
convert 1/3 to ninths entered nine as the denominator, and then counted the divisions 
to see how many ninths equaled one third.  She explained that she found 3/9 both 
from the pictures and because three times three was 9 (Fig. 2.2).  
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Students looked surprised when the visual feedback showed that their fractions 
were smaller or larger than the target fractions, indicating that the consequences of 
the students’ actions contradicted their expectations. Students made, recognized, and 
corrected errors on their own. Students used the visual feedback both to evaluate 
fraction equivalence and produce numerators. If the colored areas of two fraction bars 
were the same, the students took the two fractions being represented as equivalent. 
This caused one misconception when a student thought 3/7 was equal to the sum of 

1/4 and 1/6. The difference between those two amounts is so small that the fractions 
bars appeared equal. Students also used the visual feedback to test possible 
denominators by generating images with two consecutive numerators. For example, 
one student tried 12 as a denominator for the sum of 1/3 + 2/9. She found that 6/12 
was too small but 7/12 was too big, so 12 could not be the appropriate denominator 
for the answer. 

Students’ behaviors indicated that the feedback was grounded: students expected 
their converted fractions to be equivalent to the original addends, and expected their 
sum fractions to be equal to the combined magnitudes of the two addends. They 
noticed when corresponding fraction bars did not align, and interpreted that state as 
an error. The strategies that students used with the grounded feedback would not 
have been possible without it. It is possible that engaging with the visual feedback 
allows students to explore properties of fractions that are not self-evident from pencil 
and paper alone. However, the fraction bar feedback could encourage students to 
guess until the bars look the same, a form of gaming the system. Finally, the visual 
feedback can be misleading when differences between two fractions are very small, 
which could harm students’ learning. 

Students correctly solved more problems with the tutor than they did with pencil 
and paper. However, the fraction bars alone not sufficient for guiding all students. 
These students benefitted from verbal hints from the experimenters, and overall 
students correctly solved 17/18 tutor problems. Further, two students who completed 
all three tutor problems returned to their paper problems and corrected their 
mistakes without additional hints. These successes are consistent with the hypothesis 
that these students developed better understanding of fraction addition from the 
grounded feedback. 

 

           
Fig. 2.2 Using visual feedback to convert 1/3 to 3/9 
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Although the grounded feedback was useful for some problem steps, it was not 
sufficient for students to solve all of the problems. Students did not get any support in 
choosing a next step or picking a denominator. Students got stuck when they did not 
know to convert the given fractions to ones with a common denominator. Students 
who knew they were supposed to convert the fractions also got stuck because there 
was no support from the interface to tell them which denominator to try. The next 
iteration of the tutor aimed to address these issues. 

2.3 Study 1b: Revised Tutor and Think-Aloud 
Since students floundered when they did not know to find a common denominator 
and when they did not know which denominator to try, the second version of the tutor 
included a 3-level succession of on-demand text hints that first told students to find a 
common denominator and then gave a general and then problem-specific suggestion 
for how to do so. The hints did not tell students the answer.  

2.3.1 Participants, Materials, and Procedure 
Five students from the first study volunteered to participate in the second (the last 
student was sick). Students solved one problem from each category on paper  (1/9 + 
4/9, 2/3 + 1/6, and 1/2 + 1/5) and with the tutor  (1/7 + 2/7, 1/4 + 3/8, and 2/5 + 
1/3). One student did not have time for the last tutor problem. 

2.3.2 Results and Discussion 
For each problem category, the five students correctly solved more problems with the 
tutor than on paper (Table 2.2). One student did not start the unrelated denominators 
tutor problem. 

 

Problem Type Paper Tutor First 
Attempt 

Tutor 

Same denominator 4 (80%) 4 (80%) 5 (100%) 
One multiple of other 3 (60%) 1 (20%) 4 (80%) 
Unrelated denominators 1 (20%) 1 (25%) 3 (75%) 
Total 8/15 (53%) 6/14  (43%) 12/14 (86%) 

Table 2.2 Problems solved correctly without text hints. 
 

As in the first think-aloud, the problem categories were successively more 
difficult: on paper, four students correctly solved the same denominator problem and 
only one correctly solved the unrelated denominators problem. Students’ first 
attempts with the tutor reflect their problem solving without the grounded feedback. 
Students’ first attempts with the tutor were no more successful than their work with 
paper, suggesting the tutor problems were at least as difficult as the paper problems, 
and students did not do better with the tutor because it came after the paper. With the 
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grounded feedback alone, all five students solved the same denominator problem, 
four solved the one multiple of other problem, and three of the four solved the 
unrelated denominator problem correctly. With the text hints built into the tutor, 
students solved all attempted tutor problems. 

Students’ comments during the think aloud showed how they connected the 
tutor’s grounded feedback to their prior knowledge.  For example, one student 
converted 1/4 to 1/8, but then changed it to 2/8 after seeing the fraction bar. The 
student explained, “a) I looked at the picture and realized they weren’t matched up 
and b) I realized that I’d doubled the bottom but not the top.” The interface already 
displayed the given fraction 1/4, and the student saw that the fraction she had 
entered, 1/8, was much smaller than 1/4. The difference between her expectation 
(that the pictures should match) and the consequences of her action (that they did not 
match) prompted her to review her procedure and check for errors.  

Another student’s comment illustrates the benefit of the built-in verbal hints and 
how students used the grounded feedback for evaluation. One student got stuck on 
the unrelated denominator problem, and the experimenter told her to ask the tutor 
for a hint. The student read two hint levels, which first told her to find a common 
denominator and then to think about multiples of the two given denominators. The 
student tried 15 as a common multiple of three and five, explaining, “I put 15 here to 
see how many fifteenths. I think five fifteenths going to for one third. I’m not sure.” 
After seeing the feedback, she exclaimed “Oh yeah! I was right.” The visual feedback 
convinced her that she was correct. The student then used this strategy to go back and 
correct the corresponding paper problem. 

Again, this think aloud found good evidence of the feedback being grounded for 
these students, including recognizing errors from the visual display. Further, students 
seemed to engage in productive sense making and error-correction. Students 
demonstrated some positive use of the next-step hints available in this version, but 
also non-use in cases where they were clearly stuck.  

2.4 Limitations and Conclusion 
Students’ interactions with the fraction bar feedback indicate that the student-based 
criterion for grounding is met: students were able to use the fraction bars to evaluate 
their own work. The grounded feedback tapped students’ prior knowledge of the role 
of magnitude in the fraction addition procedure. Specifically, students knew that their 
converted fractions should be equivalent to the original addends, and their sum 
fractions should equal the combined magnitude of the addends. The grounded 
feedback alerted students to most magnitude discrepancies, and students interpreted 
those discrepancies to mean that their work was incorrect. However, these 
participants came from an academically rigorous private school and are likely not a 
representative sample of 5th graders in general. Further, although I used three paper 
problems as a crude pre-test, since I did not assess any other prior knowledge I do not 
know what other prior knowledge is needed for students to successfully interpret the 
feedback. Finally, because of the nature of a think-aloud study, students worked with 
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the tutor while continuously giving self-explanations, which may have made the tutor 
appear more effective. This study did not examine learning effects, though students 
did self-correct while using the tutor and there were six instances of students 
correcting their errors on the paper problems after working with the tutor (out of 14 
incorrect paper problems). These outcomes suggest that a grounded feedback tutor 
can help students learn, a hypothesis that will be tested experimentally in the next 
chapter.  
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3  Comparing Grounded and 
Correctness Feedback in Fraction 
Addition Tutors 

Summary. 128 fifth graders completed an experiment comparing two types of 
feedback in an intelligent tutoring system for fraction-addition. Correctness feedback 
indicated when each step was right or wrong, and grounded feedback showed fraction 
bars as conceptual scaffolds, requiring more student interpretation. Correctness 
students solved the tutor problems more efficiently. Grounded feedback students 
improved more than correctness students overall between the pre-test and delayed-
test, suggesting that grounded feedback may be more beneficial for long-term 
learning. 

3.1 Grounded Feedback Tutor Design 
The grounded feedback tutor for this study was based on the initial design presented 
in Chapter 2. New interface elements were added to support problem-planning and 
fraction conversion. Upon starting a problem, the tutor shows the fractions in the 
problem statement, with a question mark representing the sum. Under each addend, 
a checkbox states, “I need to convert this fraction,” with “I’m ready to add” under the 
sum (Fig. 3.1).  When the student selects a fraction to convert, a conversion interface 
opens, with input areas for the intermediate multiplication step (Fig. 3.2). Creating 
separate interface elements for fraction multiplication is intended to make this step 
more explicit for students, and to allow students actions with this step to be captured 
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by the tutor logs. When the student checks the box “I’m ready to add,” the tutor copies 
the converted fractions to the addition area. If the student has not converted one of 
the fractions, the original addend is copied to the addition area (Fig. 3.3).  

To prevent unproductive floundering, the tutor incorporates three levels of on-
demand text hints, with the last hint giving the answer for the current step. A three-

level hint sequence is given based on which steps the student has already completed, 
starting with deciding what initial action to take (convert if the fractions have 
different denominators, add if the denominators are the same). If conversion is 
necessary, the hints start with identifying a common denominator, finding the 
numbers to multiply by, and then finding the numerator for the converted fraction. 

The model of desired performance with the grounded feedback tutor is based on 
engagement with “subjective” errors (Ohlsson 1996), also termed “intelligent novice” 
(Mathan & Koedinger 2005). That is, students are permitted to make mistakes in the 
hope that students will recognize when the consequences of those actions violate their 
expectations. For example, if a student started the problem 2/4 + 1/8 by checking the 
“I’m ready to add” button and entering 3/12, the grounded feedback would show that 
the student’s answer is much smaller than the target sum. While this action is 
objectively incorrect, it may be a good action to take from the perspective of engaging  

 

 

Fig. 3.1 Upon starting a problem, the student sees the problem statements and 
prompts for planning the next problem-solving step. 
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the student as an active learner: seeing the consequence of the mistake and 
recognizing the action as incorrect may be a more powerful learning opportunity than 
simply being prevented from going down that path in the first place. However, if a 
student does not expect their sum to have the same magnitude as the multi-colored 
fraction bar, a mismatch will not be recognized as an error. Conversely, a student may 

 

Fig. 3.2 After selecting “I need to convert this fraction” for 2/4, the converting 
interface opens. The original addend is copied at the left, with input areas for 
multiplication next to it. The converted fraction, to the right of the equal signs, 
drives the fraction bar immediately above. 

 

 

Fig. 3.3 After converting 2/4 to 8/16 and selecting “I am ready to add,” the 
addition interface opens, copying the converted fraction 8/16. Since 1/8 was not 
converted, the original addend is copied. The sum fraction, to the right of the 
equal sign in the addition area, drives the fraction bar immediately above it. 
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solve a problem inefficiently, such that the magnitude constraints are not violated 
(e.g., converting both 2/4 and 1/8 to sixteenths). In that case, a student might miss 
the learning goal of that problem (e.g., to illustrate that when one denominator is a 
multiple of the other, only one fraction needs to be converted). Therefore, while 
correctness feedback is not provided for any intermediate problem steps, problem-
level correctness feedback is provided when the student presses the “done” button. If 
the problem has been solved correctly, the student moves on to the next problem. If 
the student made a mistake, or solved the problem inefficiently, a message appears in 
the hint window tell the student that they are not done yet, and suggesting they ask 
for a hint if they’re not sure what to do. To solve a problem efficiently, students must 
use the given denominator for addends with the same denominator; the larger 
denominator when one is a multiple of the other; and the least common multiple or 
the product when the two denominators are unrelated. 

3.2 Correctness Feedback Tutor Design 
The correctness feedback tutor uses the same basic interface as the grounded 
feedback tutor, but without the fraction bars. Students see the same checkboxes for 
converting and adding when the problem starts. However, this tutor provides 
immediate correctness feedback on each step, coloring inputs green if correct, and red 
otherwise. The correctness feedback tutor follows the “objective” (Ohlsson, 1996) 
model of errors, also called the “expert model” (Mathan & Koedinger 2005). That is, if 
a student’s action is not on an efficient solution path, it is marked as incorrect. At the 
problem-planning stage, incorrect paths are closed off. The tutor only permit students 
to open the conversion and addition interfaces if those actions are objectively correct 
given the current problem state: students may only convert fractions when the 
addends have different denominators, and only the fraction with the smaller 
denominator when one denominator is a multiple of the other. Students may only 
open the addition interface when starting a same-denominator problem, or after the 
necessary fractions have been converted correctly. Showing the same inputs as Fig. 
3.3, the correctness feedback tutor marks all of the converting inputs as incorrect, and 
does not allow the student to add, since the student has not yet converted the first 
fraction to eighths (Fig. 3.4). Unlike the grounded feedback tutor, the correctness 
tutor does not allow students to erase correct inputs. Like the grounded feedback 
tutor, the correctness tutor ensures that students have solved the problem correctly 
before moving on to the next problem. The correctness tutor also offers three levels of 
on-demand texts hints for each problem step. 
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3.3 Study 2: Comparing Correctness and Grounding 
This study uses paper assessments to measure learning outside the tutor, and 
compares the grounded feedback tutor to a robust control – correctness feedback. The 
target student for this study can convert fractions but is not yet fluent with the 
addition of proper fractions with sums below one. This study also examined the effect 
of introducing the fraction bars by first relating them to another concrete 
representation.  

3.3.1 Materials: Tutor Introduction 
Students are introduced to the tutor with simple arithmetic problems to practice 
using the tutor interface.  Students are asked to explicitly acknowledge that the tutor 
is intended to help them learn and practice, not test them. Students are also 
encouraged to ask for hints if they get stuck (Fig. 3.5). 

                                  

 

Fig. 3.4 The correctness tutor marks the conversion of 2/4 to 8/16 as 
incorrect, since the efficient denominator is 8. The tutor will not 
permit the student to open the addition area until 2/4 is correctly 
converted to eighths. 
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3.3.2 Materials: Addition Instruction 
After the introduction to the tutor, students are given brief instruction on naming 
fractions and fraction addition with like and unlike denominators, with immediate 
correctness feedback and on-demand text hints. This instruction is presented in the 
context of measurement, to provide a concrete representation that is different from 
the fraction bars. That way, the addition instruction will not give students practice 
with the grounded feedback. The first instruction page asks students for the length of 
two bugs sitting on rulers with each inch divided in thirds. Then students are asked to 
find the combined length of both bugs (Fig. 3.6). In the next instruction page, 
students name the lengths of two bugs sitting on rulers with the same unit size, one 
where the unit is divided in two pieces and the other in three pieces. Students are 
shown the combined length of both bugs first on one ruler and then the other, to 
illustrate that the numerators cannot be added when the denominators are not equal 
(Fig. 3.7). Students are guided through converting both fractions to a common 
denominator (Fig. 3.8) and then adding (Fig. 3.9).  
 

                  
Fig. 3.5 The tutor introduces students to the input elements (text 
input, checkboxes, and radio buttons) before teaching new content. 
Students are encouraged to view the tutor as a learning opportunity. 
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Fig. 3.6 After naming the lengths of each bug, the student adds to find the 
total length. Interface elements appear in sequence as the student moves 
through the problem steps, to prevent the student from being 
overwhelmed. 

 
Fig. 3.7 After naming the lengths of each bug, the student is shown the 
combined length of both bugs, first on a ruler divided in thirds and then on 
a ruler divided in halves, to illustrate that one cannot add the numerators 
when the denominators are not the same. 
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Fig. 3.8 The student is guided through converting both fractions to a 
common denominator. The illustrations show each bug being measured by 
two different rulers, corresponding to the original addend and the 
converted fraction. 

                    
Fig. 3.9 After converting the fractions, the student adds them to find the 
combined length of both bugs. After finding the sum, the addition is 
illustrated with both bugs on a ruler where the unit is divided in sixths. 
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3.3.3 Materials: Transition from Bugs to Rectangles 
After the addition instruction, students in one condition are given guidance on 
relating the concrete bug and ruler representation to the more abstract fraction bar 
representation (Fig. 3.10). The multi-colored sum fraction is related to the combined 
length of both bugs (Fig. 3.11). Students in this condition are also encouraged to 
convert fractions by multiplying instead of by counting the fraction bar pieces after 
finding a denominator.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p 

                    
Fig. 3.10 Transitional instruction relates the bug representation to the 
fraction bar representation in the context of equivalence. 

                    
Fig. 3.11 Transitional instruction relates the bug representation to the 
multi-colored sum fraction bar. 
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3.3.4 Participants and Method 
Six fifth grade classes from a public school near Pittsburgh elected to participate in 
the study (138 students participated in the first study day). Two classes each were 
high, average, and low achieving. The study took place in school’s computer lab, 
during the normal school day. Over one double period (80 minutes), students 
completed a 15-minute pretest, worked with a randomly assigned tutor for up to 40 
minutes, and then took a 15-minute post-test. Two weeks later, students took a 
delayed post-test. The three assessment forms were matched and counter-balanced. 
The paper-and-pencil tests included four fraction addition items, three evaluation 
items, three prior knowledge items, and three conceptual items based on released 
items from standardized tests (NAEP, PSSA, and MCAS). Students completed the 
addition section before starting the other questions to ensure that performance on the 
addition items did not reflect learning from other test items. Additionally, the pre-test 
included a reading comprehension item based on the tutor’s text hints. However, 
some test forms inadvertently did not include the reading comprehension item, so it is 
not included in the analyses below. The three test forms were counter-balanced 
between assessment times as follows: 16 students completed the tests with an ABC 
order; 21 with ACB, 10 with BAC, 16 with BCA, 21 with CAB, and 20 with CBA. 15 
students were inadvertently given the same test form either at pre-test and post-test 
or post-test and delayed-test. 9 students were inadvertently given questions from two 
test forms during at least one test time (e.g., the addition items from form A paired 
with the non-addition items from form B). In analyses for overall scores that include 
test form, the cases with questions from more than one test form are coded as a 
separate category (mixed). 

This study included three tutoring conditions: Correctness, Grounded, and 
Grounded with Guidance. All tutors started with the tutor introduction, followed by 
the addition instruction. The Grounded with Guidance condition included the 
transitional instruction before the fraction addition problems. Each tutor included the 
same 20 fraction addition problems: 5 where the denominators were the same, 5 
where one denominator was a multiple of the other, and 10 with unrelated 
denominators. Before starting the regular tutor problems, students saw the problem 
1/2 + 1/3, to ease them into the tutor interface, since they had been guided through 
solving that problem with the bugs. Within each tutor condition, students were 
randomly assigned to one of three subsequent problem sequences of six problems 
each: one with two same-denominator problems, followed by two one-multiple-of-
the-other problems, and then two unrelated-denominator problems; one with two 
same-denominator problems, followed by two unrelated-denominator problems, and 
then two one-multiple-of-the-other problems; and a randomly-determined sequence: 
same, one-multiple-of-the-other, unrelated, unrelated, one-multiple-of-the-other, 
same. The subsequent problem sequence was determined randomly. 
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3.3.5 Hypotheses 
1) The brief instruction in the Grounded with Guidance condition will improve 

students’ learning compared to the Grounded condition. 
2) Compared to the Correctness condition, both Grounded conditions will result in 

greater overall learning. 
3) Students in the two grounded conditions will understand the grounded feedback. 
4) Initial question sequence will affect students’ learning.  

3.3.6 Overall Results 

Of the 138 students who participated in the first study day, 9 students did not take the 
delayed post-test, and the anonymous ID matching of one student was lost between 
the first study day and the delayed test (although the student participated on both 
days). Attrition from each study condition was 8.3% for Correctness (4/47), 1.9% for 
Grounded (1/51) and 12.8% for Grounded with Guidance (5/40). Fisher’s exact test on 
the number of students who completed all versus some of the study for each condition 
indicates that the differences between conditions are not significant (p=.13). The 
results that follow are based on the 128 students who completed all parts of the study 
(45, 48, and 35 students in the Correctness, Grounded, and Guided conditions, 
respectively). The reading comprehension item was inadvertently left off of 6 test 
forms, so that item is not included in the analysis. The PFL items are also not 
included in these analyses, as there were no matched questions for those items at the 
pre and post test. Figure 3.11 shows the mean scores for each assessment time, by 
condition, and Figure 3.12 shows the mean scores for the addition items. Table 3.1 
shows process measures: mean number of tutor problems started, mean number of 

 
Fig. 3.11 Mean scores on each overall assessment, by condition, per test 
time, with bars showing standard error of the mean. 
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hints per regular tutor problem, and mean number of seconds spent on the pre-
instruction (tutor introduction, addition instruction, guided transition, and repetition 
of the problem ½ + 1/3). Two students each in the Grounded and Guided conditions 
did not start any regular tutor problems.   

 

3.3.7 Results and Analysis for Hypothesis 1 
To determine if the additional guided instruction caused a difference in students’ 
progression through the tutor, I ran ANCOVAs on the number of regular tutor 
problems students started, seconds per tutor problem, hints requested per regular 
tutor problem, and duration of the total pre-instruction (tutor introduction, addition 
instruction, guided transition, and repetition of the problem ½ + 1/3). The ANCOVAs 

Condition Pre-instruction 
duration (min:sec) 

Regular tutor 
problems attempted 

Hints per regular 
tutor problem 

Correctness 10:08 (0:29) 17.7 (.51) 2.4 (.47) 
Grounded 18:34 (1:19) 10.7 (1.0) 8.5 (1.4) 
Guided 22:45 (1:47) 7.3 (1.1) 7.3 (1.6) 

Table 3.1 Mean number of seconds spent on the pre-instruction (tutor 
introduction, addition instruction, guided transition, and repetition of 
the problem ½ + 1/3), mean number of tutor problems started, and 
mean number of hints per regular tutor problem, with standard error of 
the mean in parentheses. 

 

 
Fig. 3.12 Mean scores on the addition items, by condition, per test time, 
with bars showing standard error of the mean. 

 



 53 

included pre-test score as a covariate, with class achievement level and condition as 
fixed factors, and a condition by class achievement interaction term.  

For the number of regular tutor problems attempted, the interaction was not 
significant (p>.2) so the model was re-run without it. In both models (with and 
without the interaction term) pre-test score was significant at p<.005, class 
achievement level was significant at p<.04 and condition was significant at p<.01. 
Estimated marginal means for the model without the interaction term show the 
Grounded condition solving more regular tutor problems than the Guided condition 
(10.87 vs. 7.25, evaluated with pre-test score at .349).   

For the number of seconds per regular tutor problems attempted, the interaction 
was not significant (p>.3) so the model was re-run without it. In both models (with 
and without the interaction term) pre-test score was significant (p<.016), class 
achievement level was not significant (p>.4) and condition was not significant (p>.1). 
Estimated marginal means for the model without the interaction term show the 
Grounded condition taking 37 fewer seconds per problem than the Guided condition 
(2 minutes 30 seconds vs. 3 minutes 7 seconds, evaluated with pre-test score at .354).  
This model was run with 46 students in the Grounded condition and 33 students in 
the Guided condition, since two students in each condition did not complete any 
regular tutor problems. 

For the number of hints requested per regular tutor problem attempted, the 
interaction was not significant (p>.2) so the model was re-run without it. In the model 
with the interaction term, pre-test score was significant at p=.033; without it, pre-test 
score was marginal at p=.06. In both models (with and without the interaction term), 
condition was not significant at p>.5. With the interaction term, achievement level 
was marginal at p=.06; without it, achievement level was significant at p=.038. 
Estimated marginal means for the main-effects model show the Grounded condition 
requesting slightly more hints per regular tutor problems than the Guided condition 
(8.6 vs. 7.7, evaluated with pre-test score at .355). This model was run with 46 
students in the Grounded condition and 33 students in the Guided condition, since 
two students in each condition did not complete any regular tutor problems. 

For the duration of total pre-instruction time, the interaction was not significant 
so the model was re-run without it. In both models (with and without the interaction 
term) pre-test score was significant at p=.028, achievement level was not significant 
at p>.17, and condition was significant at p<.03. Estimated marginal means from the 
main-effect model show the Grounded condition took about 4.5 minutes less for the 
pre-instruction than the Guided condition (18 minutes and 6 seconds vs. 22 minutes 
and 41 seconds, evaluated with pre-test score at .35).  

To determine if the additional guided instruction caused a difference in students’ 
learning from the tutor, I ran ANCOVAs on post-test score and delayed post-test 
score. The ANCOVAs included pre-test score as a covariate, with class achievement 
level and condition as fixed factors, and a condition by achievement interaction term. 
For post-test score, the interaction was not significant so the test was re-run without 
it. In both models, pre-test score was significant (p<.0005) and condition was not 
(p=.13 in the main-effects model and p=.19 in the model with the interaction term). 
With the interaction term, class achievement level was marginal (p=.07) and without 
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it, class achievement level was significant (p=.038). For delayed-test score, the 
interaction was not significant so the test was re-run without it. In both models, pre-
test score and class achievement level were both significant (p<.01) and condition was 
not (p>.7). These tests were repeated on the addition items alone (post and delayed 
addition scores as dependent, pre addition score as covariate). On the post addition 
scores, the interaction term was not significant. In both models, pre score was 
significant (p<.0005) and class achievement level was not (p>.6). In the model with 
the interaction term, condition was not significant (p>.1), and in the main-effects 
model condition was marginal (p=.08). Estimated marginal means for the main-
effects model are .397 for the Grounded condition and .317 for Guided, evaluated at a 
pre-test addition score of .285. On the delayed addition scores, the interaction term 
was not significant. In both models, pre score was significant (p<.035), as was class 
achievement level (p<.0005), while condition was not significant (p>.4). 

These results indicate that the Guided students did not benefit from the 
additional transition instruction. Guided students took longer on the pre-instruction 
overall compared with Grounded students (a difference of about four and a half 
minutes, marginal significance), and, likely due to the reduced time left for the rest of 
the intervention, completed fewer regular tutor problems. There was no significant 
difference in the number of hints requested by the Guided and Grounded students 
during the regular tutor problems, or the amount of time taken per problem, 
indicating that the addition instruction did no help students solve the tutor problems. 
Further, there were no significant differences in learning with the tutor, on the overall 
test or on the addition items alone, from pre-test to post-test or from pre-test to 
delayed test. These results do not support hypothesis 1, and it cannot be concluded 
that the addition instruction the Guided students received benefitted their learning. 
As the two conditions had no differences in learning, they will be collapsed into one 
condition for further analysis, and will be referred to as Grounded. 

3.3.8 Results and Analysis for Hypothesis 2 
To examine the differences between the correctness condition and the collapsed 
grounded condition (grounded and grounded with guidance together), I re-calculated 
the process and outcome measures, now for two conditions. Table 3.2 shows process 

 Correctness Grounded 
Pre-instruction duration (min:sec) 10:09 (0:30) 20:10 (1:04) 
Regular tutor problems attempted 17.6 (.53) 9.5 (.79) 
Hints per regular tutor problem 2.5 (.48) 7.8 (1.0) 
Time per regular tutor problem (min:sec) 1:10 (0:06) 2:44 (0:13) 

Table 3.2 Process measure means for correctness and grounded 
conditions: duration of number of pre-instruction (tutor introduction, 
addition instruction, guided transition, and repetition of the problem ½ + 
1/3), number of tutor problems started, number of hints per regular tutor 
problem, and time spent per regular tutor problem, with standard error of 
the mean in parentheses. 
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measures by condition (time taken on the pre-instruction, number of regular tutor 
problems attempted, hints requested per regular tutor problem, and amount of time 
taken per regular tutor problem. Figures 3.13 and 3.14 show the mean scores at each 
test time, for the assessments overall and for the addition items, respectively.  
 

 

 
Fig. 3.13 Mean scores on each overall assessment, by condition, per test 
time, with bars showing standard error of the mean. 

 

  
Fig. 3.14 Mean scores on the addition items, by condition, per test 
time, with bars showing standard error of the mean. 
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Process Differences. To determine if the differences in the process measures are 
significant, I ran ANCOVAs on the pre-instruction duration, number of regular tutor 
problems attempted, hints requested per regular tutor problem, and time per regular 
tutor problem, with condition and class achievement level as fixed factors and pre-test 
score as a covariate, and a condition by achievement level interaction term. For the 
pre-instruction duration, the interaction term was not significant so the model was re-
run without it. With the main-effects model, condition was significant (p<.0005) as 
was pre-test score (p=.044). Class achievement level was marginal (p=.089). 
Estimated marginal means were 10 minutes and 59 seconds for Correctness, and 19 
minutes and 47 seconds for Grounded (evaluated at a pre-test score of .377). For the 
number of tutor problems attempted, there was a significant effect of condition 
(p<.0005) and pre-test score (p=.006), with a marginal class achievement level by 
condition interaction (p=.050), and a marginal effect of class achievement level 
(p=.069). Estimated marginal means by condition and class achievement level were 
17 problems attempted for Correctness (the range across all classes was 16.9 to 17.4) 
and, for Grounded, 7.4, 8.4, and 13.6 problems attempted for the low, middle, and 
high classes, respectively (evaluated at a pre-test score of .377). For the hints 
requested per regular tutor problem, the condition by class achievement level 
interaction was not significant, so the model was re-run without it. With a main-
effects model, condition was significant (p=.002), pre-test score was marginal 
(p=.061), and class achievement level was significant (p=.012). Estimated marginal 
means were 3.6 hints requested per regular tutor problem for Correctness, and 7.8 for 
Grounded (evaluated at a pre-test score of .38). For the time taken per regular tutor 
problem, the condition by class achievement level interaction was not significant, so 
the model was re-run without it. With a main-effects model, condition was significant 
(p<.0005), as was pre-test score (p=.015). Class achievement level was not significant 
(p=.19). Estimated marginal means are 1 minute 20 seconds per problem for 
Correctness, and 2 minutes 40 seconds for Grounded (evaluated at a pre-test score of 
.38). 

 
Differences in learning: overall scores. To determine if the different conditions 
led to differences in learning, I ran ANCOVAs on the pre, post and delayed scores. 
First, I ran an ANOVA to check for differences at pre-test, with class achievement 
level, condition, and pre-test form as fixed factors. Interactions were not significant in 
a full factorial model. A main-effects model showed that class achievement level was 
significant (p<.0005) as was pre-test form (p=.005). Condition was not significant 
(p=.111). Since test form was significant, it will be included in analyses that examine 
learning.   

To examine immediate learning, I ran an ANCOVA on the post-test scores, with 
pre-test score as a covariate, and class achievement level, condition, pre-test form, 
and post-test form as fixed factors, with all two-way interactions for the fixed factors 
and a pre-test by condition interaction term. None of the interactions were 
significant. With a main-effects model, pre-test score was significant (p<.0005), as 
was class achievement level (p=.004). Condition, pre-test form, and post-test form 
were not significant (p>.4).  
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To examine retention and future learning, I ran an ANCOVA on the delayed-test 
scores, with post-test score as a covariate, and class achievement level, condition, 
delayed-test form, and post-test form as fixed factors, with a full factorial model on 
the fixed factors. None of the interactions were significant (another model, with all 
two-way interactions for the fixed factors also showed that none of the interactions 
were significant). In a main-effects model, post-test score and class achievement level 
are significant (p<.0005), as is condition (p=.036). Post-test form was not significant 
(p>.4), but delayed-test form was significant (p=.047).  Estimated marginal means for 
delayed score by condition are .470 for correctness and .523 for grounded, evaluated 
at a post-test score of .460. The estimated marginal means for delayed score are .470 
for correctness and .532 for grounded (evaluated at a post-test score of .460). 
Estimated marginal means for the delayed post-test form were lowest for students 
with a mix of questions from more than one test form (.433) and highest for students 
with the C form (.573).  

To determine if there was a significant difference in test form distribution 
between the two conditions, I ran Chi-Square tests. A Chi-Square test on the 
distribution of forms for the fraction addition portion of the test shows no significant 
difference between the conditions (p>.2), as does a Chi-Square test on the 
distribution of forms for the other test questions (p>.2). Students were intended to 
have the same test form for both parts of the test (e.g., the form A for the fraction 
addition items was meant to always be paired with the form A for the other test items) 
but some students received mixed test forms, for example with form A for the fraction 
addition items and form B for the other test questions. Categorizing those cases as 
Mixed, a Fisher Exact test on the test forms for the delayed tests overall again shows 
no significant difference in test form distribution between the two conditions (p>.5).  

To examine learning across the entire study, I ran an ANCOVA on the delayed-
test scores, with pre-test score as a covariate, and class achievement level, condition, 
delayed-test form, and pre-test form as fixed factors, with a full factorial model for the 
fixed factors. None of the interactions were significant. With a model including all 
two-way interactions of the fixed factors and a condition by pre-test interaction term, 
there was a marginal effect for the condition by pre-test interaction term (p=.085) but 
none of the other interactions were significant. With a model that included main 
effects and a condition by pre-test interaction term, the interaction term and the pre-
test and delayed-test forms were not significant (p>.15); class achievement level and 
pre-test score were significant (p<.005), as was condition (p=.013). With a model that 
included class achievement level, condition, and pre-test score as main effects, class 
achievement level and pre-test score were significant (p<.0005), as was condition 
(p=.039). Estimated marginal means were .469 for Correctness and .532 for 
Grounded (evaluated a pre-test score of .377).  

Since there was no significant difference in addition learning from pre-test to 
delayed-test between the conditions (see below), I ran a MANOVA on the remaining 
parts of the test to investigate on which section grounded students were improving 
more. Questions were organized into groups based on pre-existing hypotheses of what 
the questions were assessing: pre-requisite knowledge, evaluation of fraction addition 
equations, and transfer items from standardized tests. With the number of questions 
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correct for each sub-group at delayed-test as the dependent measures and the number 
correct at pre-test as covariates, and condition, pre-test form, delayed-test form, and 
class achievement level as fixed factors, a full-factorial model shows that none of the 
interactions are significant at the multivariate level (Pillai’s Trace). With main effects 
only, condition is significant at the multivariate level (p=.013), as are class 
achievement level (p<.0005), delayed-test form (p=.002), and number of pre-test 
questions correct on the evaluation and transfer items (both p<.025). Number of 
questions correct on the pre-requisite items (p>.2) and pre-test form (p>.7) were not 
significant. Tests of between-subject effects show a significant effect of condition on 
delayed-test transfer items (p=.002), and a marginal effect on evaluation items 
(p=.077). Test form for the delayed test (A, B, C, or Mixed) had a significant effect on 
transfer items (p<.0005) but not on the other question groups. Estimated marginal 
means for the evaluation questions at post-test were 1.36 for Correctness and 1.62 for 
Grounded (out of a maximum of 3, evaluated at a pre-test score of 1.12), and 
estimated marginal means for the transfer items were 1.49 for Correctness and 1.99 
for Grounded (also out of a maximum of 3, evaluated at a pre-test score of 1.5). 
 
Differences in learning: addition scores. I repeated these analyses on the 
addition scores alone, to determine if there was a difference in learning by condition 
for the content the tutors were intended to target. First, I ran an ANOVA to check for 
addition differences at pre-test, with class achievement level, condition, and test form 
as fixed factors (full-factorial model). None of the interactions were significant, so I 
re-ran the model with main effects only. In both models, class achievement level was 
significant at p<.0005, condition was not significant (p>.5) and test form was 
marginal (p=.083 in the full-factorial model and p=.067 in the main effects model).  

To examine immediate learning, I ran an ANCOVA on the addition post-test 
scores, with class achievement level, condition, pre-test form and post-test form as 
fixed factors, and pre-test addition score as a covariate. With the full-factorial model 
for the fixed factors, none of the interactions were significant. In a model with all two-
way interactions for the fixed factors and a condition by pre-test addition score 
interaction term, there was a marginal interaction between condition and class 
achievement level (p=.09), but none of the other interactions were significant. In a 
model with main effects and the condition by class achievement level interaction, 
there is a significant effect of class achievement level (p=.029) and pre-test addition 
score (p<.0005), and a significant interaction of class achievement level and 
condition (p=.008), without a significant effect of condition (p=.323). Estimated 
marginal means for the low, middle, and high classes are .306, .341, and .573 for the 
Correctness condition and .355, .377, and .369 for the Grounded condition (evaluated 
at a pre-test addition score of .289). In other words, the Grounded condition was 
better than Correctness for the students in the low and middle achievement classes, 
but worse for students in the high achievement classes. Estimated marginal means for 
the two conditions overall are .407 for Correctness and .367 for Grounded, (evaluated 
at a pre-test addition score of .289). Parameter estimates for the condition by class 
achievement level interaction term are -.254 for the interaction of Correctness and the 
lowest class level, and -.240 for the interaction of Correctness and the middle class 
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level. These parameter estimates, like the estimated marginal means, imply that, 
while there were no significant overall condition differences, the Grounded condition 
was better than Correctness condition for the low and middle classes, while the 
reverse was true for the high classes. The parameter estimate for condition is .204 for 
Correctness. 

To examine retention and future learning, I ran an ANCOVA on the addition 
delayed-test scores, with class achievement level, condition, delayed-test form and 
post-test form as fixed factors, and post-test addition score as a covariate. With a full-
factorial model, there was a marginal effect of the interaction between post-test form 
and delayed-test form (p=.076). Re-running the model with main effects and the 
interaction of the two test forms, class achievement level and post-test addition score 
were significant (p<.0005) with no significant effect for condition (p>.2), the test 
forms (p>.1), or the interaction between the test forms (p>.2). Condition remains not 
significant with main effects only (p>.2) and with a model that does not include the 
test forms (p>.1). Estimated marginal means for the model with main effects only, 
including test forms, are .417 for Correctness and .465 for Grounded, evaluated at a 
post-test target score of .397. 

To examine addition learning over the entire study, I ran an ANCOVA on the 
addition delayed-test scores, with class achievement level, condition, delayed-test 
form and post-test form as fixed factors, and pre-test addition score as a covariate. 
With a full-factorial model, none of the interactions were significant (the achievement 
level by condition interaction was marginal, p=.078). Re-running the model with 
main effects and a class achievement level by condition interaction term, the 
interaction term was not significant (p>.2). With main effects only, pre-test addition 
score and class achievement level are significant (p<.0005), with a marginal effect for 
the addition pre-test form (p=.078) and no significant effect for the addition delayed-
test form (p>.9), and no significant effect of condition (p>.6). 
 

3.3.9 Results and Analysis for Hypothesis 3 
To determine if students in the grounded conditions understood the grounded 
feedback, I analyzed scores on assessment items that included fraction bars, and 
students’ overall problem evaluations while working with the tutor.  
 
Evaluation items. Three item on each test assessed students’ ability to evaluate a 
proposed fraction addition equation. The problems were presented as fictitious 
student work, and asked if the work was correct. One item showed the addends, 
converted fractions, and sum with fraction bars and fraction symbols (one showed a 
procedural hint on converting instead of showing the fraction bars, and one showed 
only the problem statement and fictitious work). For the problems with fraction bars, 
the layout is similar to the tutor interface for the grounded conditions (Fig. 3.15). The 
three test forms crossed three strategies for each problem type: correct (fractions 
correctly converted to a common denominator and added correctly), incorrect 
conversion (a common denominator is used, but the numerators from the original 
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addends are retained; these quantities are then added correctly), and add-both (no 
conversion, and the sum is obtained by adding the numerators and denominators 
independently). Students were asked to evaluate if the fictitious work is completely 
correct or if there was a mistake in it, and were also asked if the addition of the 
‘converted’ fractions was correct. 

On the evaluation items with fraction bars, the proposed sum fraction only lines 
up with the combined magnitude of the two addends when the equation is correct. 
With the ‘incorrect conversion’ strategy, the proposed sum is less than the first 
addend, and with the ‘add-both’ strategy, the proposed sum is about half of the true 
sum. This section considers only the first task, determining if everything is correct or 
if the friend made a mistake. For students who understand the task directions and 
who recognize that a sum is equal to the combined magnitudes of its addends, the 
task should be trivial. However, student scores on this problem were low at pretest 
(.64 for Correctness, .48 for Grounded). Figure 3.16 shows the mean score on this 
item per condition, for each test time. At pre-test, the Grounded students performed 
no better than chance, suggesting that the rectangles in the tutor would not be 
sufficient for students to evaluate if their work was correct or not. These results 
indicate that students started the study without sufficient prior knowledge to take full 
advantage of the fraction bars in the tutor. Further, the presence of the rectangles on 
the evaluation items may not have made those items easier than the no-scaffold 
evaluation items. While the mean score on the pre-test rectangle evaluation item was 
.54, and the mean score on the no-scaffold evaluation item was .48 (across 
conditions), the difference in performance across the two items was not significant 
(p=.332 for McNemar’s test, exact sig., 2-sided, on the cross tabulation of 
performance on each item at pretest). One may hypothesize that students in the 

 
Fig. 3.15 Evaluation item with magnitudes represented as fraction bars. 

 



 61 

grounded condition may have learned to interpret the rectangles over the course of 
using the tutor. However, for students in the grounded condition, while performance 
on this task improved from pre-test to post-test, the difference was not significant 
(mean score at pretest was .48, mean score at post-test was .59, p=.211 for McNemar’s 
test). Yet, over the course of the whole study (pre-test to delayed-test), students in the 
grounded condition improved on this item while students in the correctness condition 
did not (p=.001 for McNemar’s test for the grounded condition, and p>.8 for the 
control.  Mean scores at pre-test and delayed-test were .48 and .74 for grounded and 
.65 and .60 for correctness, respectively). 

 
Process Measures. Students pressed the ‘done’ button in the tutor interface to get 
problem-level feedback, moving on to the next problem if the current one was solved 
correctly, or getting a text prompt if something needed to be fixed. The text prompts 
indicated that the problem was not solved correctly and encouraged the student to ask 
for a hint if they weren’t sure what to do. If students correctly interpreted the 
grounded feedback, they would not press the ‘done’ button when their proposed sum 
did not line up with the correct sum. However, even in cases where the student’s 
proposed sum differed from the correct sum by more than .1, students in the 
Grounded condition pressed the ‘done’ button .99 times per student-problem (on 
average). In contrast, correctness students proposing a sum that differed from the 
correct sum by more than .1 pressed the ‘done’ button .01 times per student-problem 
(on average). Overall, students in the Grounded condition pressed the ‘done’ button 
incorrectly 2.39 times per student-problem, contrasting with the .23 times per 

 
Fig. 3.16 Scores on students’ evaluations of a fictitious student’s work (if 
everything was correct or if the student made a mistake). Students saw 
one item of this type per assessment. Bars show standard error of the 
mean. 
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student-problem in the Correctness condition (note these values include all students 
who used the tutors during the study, even if they did not take the delayed-test). 

3.3.10 Results and Analysis for Hypothesis 4 
To determine if initial problem sequence affected students’ learning, I ran an 
ANCOVA on post-test scores with sequence, condition, pre-test form, post-test form, 
and class achievement level as fixed factors and pre-test score as a covariate. In a full-
factorial model, none of the interactions were significant. Re-running the model main 
effects only, pre-test is significant (p<.0005), as is class achievement level (p=.005) 
with no other significant main effects.  

To determine if initial problem sequence affected students’ future learning and 
retention, I ran an ANCOVA on delayed-test scores with sequence, condition, delayed-
test form, post-test form, and class achievement level as fixed factors and post-test 
score as a covariate. In a full-factorial model, there was a significant interaction 
between post-test form and sequence (p=.041). Re-running the model with main 
effects and the post-test form by sequence interaction, the interaction is no longer 
significant (p>.2). There is a significant effect of post-test score  (p<.0005), as was 
class achievement level (p<.0005) and condition (p=.019), with a marginal effect for 
sequence (p=.073). There was a significant effect of delayed-test form (p=.036) but 
not of post-test form  (p>.1). Estimated marginal means were .471 for Correctness and 
.540 for Grounded, evaluated at a post-test score of .460. Estimated marginal means 
by sequence are .448 for Same-Unrelated-Multiple, .528 for Same-Multiple-
Unrelated, and .545 for Random, also evaluated at a post-test score of .460. 

To determine if sequence affected learning across the duration of the study, I ran 
an ANCOVA on delayed-test scores with sequence, condition, delayed-test form, pre-
test form, and class achievement level as fixed factors and pre-test score as a 
covariate. In a full-factorial model, there is a marginal three-way interaction between 
sequence, class achievement level, and delayed test form  (p=.05). With a main effects 
model and the three-way interaction, the interaction is no longer significant (p>.2). 
Pre-test score and class achievement level are significant (both p<.0005), condition is 
marginal (p=.062), and sequence (p>.8) and the test forms are not significant (p=.19 
for delayed-test form, and p>.2 for pre-test form). With main effects only, pre-test 
score and class achievement level are significant (p<.0005), as is condition (p=.006). 
Sequence (p>.1) and pre-test form (p>.4) are not significant. There is a marginal 
effect for delayed-test form (p=.083). 

3.3.11 Discussion and Limitations 
The results and analyses indicate that, for immediate (pre-to-post) learning of 
fraction addition, the grounded condition was more beneficial for the low and middle 
classes, while the correctness condition was more beneficial for the high classes. 
Overall, both conditions had similar improvement on the fraction addition items from 
pre-test to post-test and from pre-test to delayed-test. On the assessments as whole, 
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there was similar improvement for both conditions from pre-test to post-test, but 
greater improvement for the grounded condition from post-test to delayed-test and 
from pre-test to delayed-test. This greater improvement for the grounded condition 
on the tests overall between pre-test and delayed-test appears to be driven by greater 
improvement on the transfer items, and, to a lesser extent, greater improvement on 
the evaluation items. Students benefitted more from grounded feedback even though 
the grounded feedback tutor was more difficult than the correctness feedback tutor 
(students in the grounded condition solved fewer problems, took longer on each 
problem, and requested more hints per problem). These result indicate that grounded 
feedback is a desirable difficulty (Bjork & Bjork, 2009).  

However, these results should be interpreted cautiously. Due to an error in 
student randomization, more students from the higher-level classes were assigned to 
the correctness condition. While there are no significant differences by condition at 
pre-test when class level is in the model, an ANOVA on pre-test scores with condition 
and pre-test form alone (without class level) does show a significant effect of 
condition (p=.012, with higher estimated marginal means for the correctness 
condition). Therefore, while the grounded condition shows greater improvement from 
pre-test to delayed-test, the grounded condition does not show better performance at 
delayed-test (that is, an ANOVA on delayed-test scores with condition, class 
achievement level, and delayed-test form as main effects –but without pre-test score 
in the model– shows no significant effect for condition, p>.14; removing class 
achievement level from the model, condition remains not significant, p>.9). Students 
in the grounded condition were behind at pre-test but caught up by the delayed-test. 
One interpretation of these results is that grounded feedback led to better learning. 
However, since performance at delayed-test was not greater for the grounded 
condition, and since there was not greater improvement between pre-test and post-
test, one cannot rule out the hypothesis that the two weeks of classroom instruction 
between the post-test and delayed-test simply brought all students up to the same 
level.  

Further, while there was not a significant difference in the number of students 
who started but did not complete the study between the two conditions, there may be 
a difference in the amount of learning demonstrated by those students. Four students 
in the correctness condition did the pre-test, worked with their tutors, and did the 
post-test but did not do the delayed-test. Of those four students, three demonstrated 
improvement in fraction addition between the pre-test and post-test. Six students in 
the grounded condition also did all parts of the study except for the delayed-test. Of 
those six, only one demonstrated improvement on the fraction addition items 
between the pre-test and post-test. These students were excluded from the analyses 
above because they did not complete all parts of the study. Including these students in 
an ANCOVA with the same model as used in the analyses above (pre-test addition 
scores as a covariate, and condition, class achievement level, and the test forms for 
each test time as fixed factors, and a condition by class level interaction term) shows a 
marginal effect of condition (p=.075), with estimated marginal means of .283 for 
correctness and .214 for grounded (evaluated at a pre-test addition score of .283). 
Greater immediate learning for the correctness condition is consistent with cognitive 
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load theory, especially because, in the correctness condition, students’ attention is not 
split between interpreting the fraction bars and practicing the procedure.  

These results also suggest that the initial question sequence may have had some 
effect on students’ learning, with a marginal difference for learning between the post-
test and delayed test, but no significant difference for immediate learning (pre-test to 
post-test) or learning over the whole study (pre-test to delayed-test). Question 
sequences may affect learning more strongly when they differ across the entire 
intervention, not just in the first few problems. 

These results do not support the hypothesis that students working with the 
grounded feedback tutor benefited from the brief instruction relating the fraction bars 
to the concrete representation of bugs and rulers. This instruction may have been too 
brief to affect students’ interpretations of the fraction bars. Further, pre-test 
assessments and process measures indicate that students in the grounded feedback 
condition were not using the fraction bars effectively in evaluating if a fraction 
addition equation was correct or not. At pretest, the inclusion of the fraction bars did 
not make the evaluation task easier than the unscaffolded, numbers-only task, and 
performance in the grounded condition was around chance. While working with the 
tutors, students in the grounded condition frequently indicated that their work was 
correct, even when their proposed sum did not line up with the rectangle that 
represented the combined magnitudes of the two addends. Although students in the 
grounded condition learned, and learned more over the course of the study than the 
correctness students, they seemed to not fully understand the grounded feedback. 

3.4 Conclusion 
This chapter presented the grounded and correctness feedback tutors, and a 
controlled in vivo study comparing them. In terms of overall learning across the 
duration of the study, grounded students improved more than correctness, with no 
differences in learning on the target fraction addition content. This suggests that 
grounded feedback helps students learn fraction addition as well as a high-bar, 
symbols-only correctness tutor, even though students in the grounded condition had 
to transfer their learning across representations. These outcome measures indicate 
that while students in the grounded condition struggled more while using the tutor, 
those difficulties were desirable. However, students in this this study did not interpret 
the fraction bars with the same apparent ease as students in the pilot, demonstrated 
with near-chance performance on an assessment item at pretest and students’ 
incorrect ‘done’ presses during the intervention.  

This chapter provides evidence that middle school students can benefit from 
grounded feedback for learning fraction addition. Also, while this study was not 
designed to examine the features of grounded feedback individually, it does provide 
evidence for the benefits of using an intrinsic representation as feedback during 
learning. This feature was not the only difference between the conditions – the 
correctness condition had immediate correctness feedback and the grounded 
condition did not. However, it is unlikely that the learning benefits for the grounded 
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condition came from the lack of correctness feedback rather than the presence of the 
fraction bar feedback.  
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4  Evaluating How Students Relate 
Magnitude to Addition with Difficulty 
Factors Assessments  

Summary. What types of scaffolds support sense making in mathematics? Prior 
work has shown that grounded representations such as diagrams can support sense 
making and enhance student performance relative to analogous tasks presented with 
more abstract, symbolic representations. For grounded representations to support 
students’ learning of symbolic representations, students’ sense making must be 
maintained when both grounded and symbolic representations are presented 
together. This study investigates why students sometimes fail to coordinate these 
representations, in particular, why performance is high with fraction diagrams alone, 
but decreases when fraction symbols are included. Results indicate that symbols 
trigger incorrect transfer from whole-number procedures, and that students lack the 
qualitative reasoning that the diagrams are intended to tap. Specifically, students do 
not find it obvious that the sum of two positive symbolic fractions is larger than its 
two addends. Qualitative inference rules such as this one appear important in 
mediating the sense making process in the context of tempting misconceptions even 
when otherwise-supportive grounded representations are available. 

4.1 Motivation 
Many researchers strive to identify ways to support deep understanding, as it is 
thought to promote robust and adaptable learning. One strategy has been to use 
multiple representations, particularly ones that connect to students’ prior knowledge 
and aid sense making. One way to reinforce the conceptual foundation for procedures 
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is to use visual representations, such as strip diagrams. These diagrams are not 
intended to help student execute procedures, but instead support them in thinking 
about the problems qualitatively (e.g., which amounts are bigger? Which operation is 
appropriate?). Visual representations are thought to help students apply their 
conceptual reasoning (Beckmann, 2004), and are recommended by an Institute of 
Education Sciences Practice Guide (Woodward et al., 2012). However, there is little 
data on what representations will make sense to the students. Further, diagrams may 
not be intuitive for novices, and their presence can decrease problem-solving 
performance for students who have difficulty interpreting them (Booth & Koedinger, 
2011). Booth and Koedinger (2011) hypothesized that several factors could contribute 
to students’ misinterpretation of diagrams or their difficulty mapping between 
diagrams and problem statements, including a lack of domain knowledge and still-
developing formal reasoning. 

Results from the previous chapter suggest that students have difficulty using 
fraction bars to evaluate if a fraction addition equation is correct. This finding 
revealed that the fraction bar representations of addition were not as meaningful to 
all students as the think-aloud results from Chapter 2 suggested. Thus, this chapter 
investigates more deeply the cognitive mechanisms required for processing these 
representations and, in particular, attempts to identify the sticking points where 
student processing deviates from expectation.  

4.2 DFA Study 1: Evaluating Equations 
This difficulty factors assessment (cf., Koedinger, Alibali, & Nathan, 2008) examines 
how students understand fraction bars in the context of the fractions they represent; 
if this process changes depending on the topic (addition vs. equivalence); and how 
each processing step affects performance. 

4.2.1 Cognitive Task Analysis and Test Items 
A theoretical cognitive task analysis identified three likely skills needed to understand 
the fraction bar representations for fraction addition: 1) equal areas represent equal 
amounts; 2) the rectangular bars represent the symbolic fractions written above or 
below them; 3) if two shaded areas are equal, the fractions they represent are equal. 
The first skill addresses students’ interpretation of the fraction bars on their own, 
while the second and third skill addresses students’ coordination of the fraction bar 
and fraction symbol representations. I developed matched test items intended to 
isolate those skills (Fig. 4.1 – 4.4). Fraction addition items presented a fully solved 
problem and students indicated whether it was solved correctly (true or false). 
Fraction equivalence items presented two fractions and students indicated if the first 
fraction was bigger than, equivalent to, or smaller than the second fraction. The four 
question presentations are intended to isolate the skills needed to make sense of the 
grounded tutor interface in Chapter 3. The pictures format (Fig. 4.1) assesses if 
students know that the shaded rectangles use area to represent quantity, such that 
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two rectangles with equal-sized shaded areas represent equal quantities. Pictures- 
and-numbers items (Fig. 4.2) include fraction symbols with the fraction bars, to test if 
students can understand the fraction bars as representations of fractions. Half-
pictures-and-numbers items (Fig. 4.3) also include both fraction bars and fraction 
symbols, but only present the fraction bars as the hint at the top of the problem. This 
determines if students can find the relationship between the two fraction bars, map 
that relationship to the symbolic fractions represented, and then select the 
relationship that the symbolic fractions have to each other. Numbers-only (Fig. 4.4) 
provides a baseline for how well students can evaluate the equivalence and addition 
problems without fraction bars. Another pair of questions gives a baseline for 
translating a single fraction bar to a fraction symbol (e.g., when shown a rectangle 
divided in 6 parts with 4 of them shaded, the student should write 4/6; Figs. 4.5, 4.6) 

 

        
Fig. 4.1 Pictures-only items. 

 

        
Fig. 4.2 Pictures and Numbers items. 
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4.2.2 Participants  
155 fifth grade students from a local public school participated in this study 
during their normal school day (the same school as the study in Chapter 3, during 
a different school year). The school tracked these classes, with 57 students in the 
highest track, 61 in the middle track and 37 in the lowest track.  

        
Fig. 4.3 Half Pictures and Numbers items. 

 

              
Fig. 4.4 Numbers-only items. 

 

              
Fig. 4.5 Single fraction bar. 
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4.2.3 Materials and Method  
Paper test forms included 8 equivalence items and 8 addition items (one 
correctly solved and one incorrectly solved for each scaffold type). All addends in 
these items had unlike denominators. The sums in the incorrect addition items 
followed the common misconception of adding both numerators and both 
denominators. Tests also included two single fraction bar items, one with 
numbers for how many pieces were shaded and how many total. Item 
presentations were counterbalanced with the specific numbers in the problems to 
avoid confounding. These items were embedded in a 30-item assessment, with 
item order was determined randomly and half of the tests printed with the 
question order reversed. Students were given 20 minutes for the full 30-item 
assessment. Questions were scored 1 if correct and 0 otherwise.  

4.2.4 Results: Scaffold Type Affects Performance 
Scores on the single-fraction-bar items were near perfect (94% correct). For the 
addition items, some questions were misprinted on some of the test forms. 
Therefore, the following analysis only includes 122 participants for the pictures-
only addition questions and 140 students for the pictures & numbers addition 
questions. Figure 4.7 shows the mean scores for the equivalence and addition 
items by scaffold type. Mean scores on the fraction equivalence items were high, 
with 81-83% correct for all scaffold types with pictures, and 50% for the 
numbers-only presentation. Equivalence items offered three options (bigger, 
equivalent, or smaller) so even the numbers-only score is well above 1/3 chance. 
Mean scores on the fraction addition items were lower (21% to 79%). These 
scores steadily decreased as the saliency of the numbers increased. Lower-than-
chance results indicate that instead of guessing randomly on the more difficult 
scaffolds, students answered based on a systematic misconception. Blank 

              
Fig. 4.6 Single fraction bar with numbers. 
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answers were scored as 0 and they could reduce performance below the 50% 
chance rate. However, students were no more likely to skip the numbers-only 

addition items than the other addition items that included numbers (numbers- 
only addition was skipped 13 times, while half-pictures-and-numbers and 
pictures-and-numbers were skipped 14 times each). 

There is a strong interaction effect between question type and scaffold type. I 
ran an ANOVA on the item scores: 3 (class tracking level: high, middle, low) x 4 
(scaffold type: pictures, pictures and numbers, half pictures and numbers, 
numbers only) x 2 (item: equivalence or addition) with repeated measures for the 
scaffold type and item. With the Huynh-Feldt correction (since sphericity could 
not be assumed), results showed significant within-subjects effects for scaffold 
type and item, and a significant scaffold by item interaction (all p<.0005). 
Results also showed significant between-subjects effects for class tracking level, 
with parameter estimates indicating that higher-tracked students got higher 
scores. 

The patterns in figure 6 suggest that all scaffold types with pictures have a 
similar effect for equivalence, but each scaffold type has a different effect for 
addition. To verify these hypotheses statistically, I ran separate ANOVAs on each 
tracking level for equivalence and addition scores, with scaffold type as a fixed 
factor and student as a random factor. For each of those analyses on the 
equivalence scores, scaffold was significant (p<.0005) and post-hoc Tukey tests 
showed that the numbers-only scaffold was significantly different from the other 
three (p<.0005). For each of those analysis on the addition scores, scaffold was 
again significant (p<.0005). Tukey tests for the middle track show significant 

       
Fig. 4.7 Mean scores on the comparison and addition evaluation items, 
by scaffold type. Error bars showing the standard error of the mean are 
mostly covered by the point markers. 

 



 72 

differences among all scaffold types (p<.01). The lowest track did not have 
significant differences between half-pictures-and-numbers and numbers-only, 
likely a floor effect. The highest track did not have significant differences between 
pictures and pictures-and-numbers, likely a ceiling effect. 

Figure 4.7 also suggests that addition with the pictures-only scaffold is no 
more difficult than equivalence with the pictures-only scaffold. To test this, I ran 
an ANOVA on the item scores for the pictures-only scaffold: 3 (class tracking 
level: high, middle, low) x 2 (item: equivalence or addition) with repeated 
measures for item. Results showed no significant difference for scores on the two 
question types (p = .2 with the Huynh-Feldt correction). Subsequent ANOVAs on 
each of the other scaffold types showed significant differences for scores on the 
two question types (all p<.0005 with the Huynh-Feldt correction). 

One may hypothesize that when pictures are present, students would be 
more accurate when there is a large disparity in the area of the quantities being 
compared. To test this hypothesis, I calculated a disparity measure for each 
question where the two fractions were not equivalent or the two addends did not 
equal the sum. For the equivalence items, the disparity is the absolute value of 
the first fraction minus the second fraction. For the addition items, the disparity 
is the true sum of the addends minus the sum in the question. I ran separate 
ANOVAs for each question type, with scaffold type and disparity as fixed factors 
and student ID as a random factor. For both addition and equivalence, between-
subject main effects were significant for scaffold type and student ID (p<.0005) 
but not for disparity (p=.141 for addition, p=.888 for equivalence), and there was 
no scaffold*disparity interaction (p=.257 for addition, p=.136 for equivalence). 
This indicates that disparity did not affect scores, and the effect of disparity did 
not change with scaffold type. Additionally, the equivalence questions all had 
smaller disparities than the addition questions (means: .06 for equivalence, .39 
for addition), yet the equivalence questions were as easy or easier, further 
evidence that disparity did not affect scores. 

4.2.5 Discussion: Fraction Bar Skills are Context-Based 
Section 4.2.1 hypothesized three skills that were necessary for making use of the 
fraction bars for fraction addition: 1) interpreting the colored areas as amounts 
that can be compared, such that equal areas represent equal amounts; 2) relating 
the fraction bars to the fraction symbols, such that the fraction bars are 
interpreted as representing the magnitudes of their corresponding fraction 
symbols; 3) coordinating the fraction bars and fraction symbols, such that if a 
relationship is present between two fraction bars, that same relationship is 
applied to the fraction symbols (e.g., if two fraction bars show equal areas colored 
in, the fractions that they represent are also equal). The results from the difficulty 
factor assessment indicate that some of these skills are context-dependent. 
Students were at ceiling for writing the symbolic fraction represented by a single 
fraction bar, whether or not numeric symbols were included, indicating ease with 
interpreting a fraction bar on its own. In both the comparison and addition 
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contexts, students had high performance on the pictures-only task, 
demonstrating ease with the first skill (equal areas represent equal amounts). 
However, for the second and third skills, performance differed by context: the 
presence of fraction symbols with the fraction bars reduced performance in the 
fraction addition context and had no significant effect on performance in the 
comparison context. This finding indicates that the second skill, seeing the 
fraction bars as representations of fraction symbols, poses a difficulty in fraction 
addition but not in fraction comparison. The half-pictures-and-numbers task, 
which required students to coordinate between the two representations, again 
posed an additional difficulty with fraction addition and had no significant effect 
with fraction comparison. If students’ performance with the numbers-only 
comparison task was also high, one could conclude that students were simply 
solving the comparison problems based on the fraction symbols. However, 
performance on both tasks was significantly lower with the numbers-only format. 
Still, since the comparison task gave three multiple-choice options and the 
addition task gave two, performance was above chance for the numbers-only 
comparison task and below chance for the numbers-only addition task. These 
results show that even though fraction bars in a fraction addition context make it 
easier for students to evaluate if an equation is correct or not, students still have 
substantial difficulty coordinating the fraction bar and fraction symbol 
representations.  

I hypothesize that the interference of the incorrect add-both-numerators-
and-denominators strategy overrides the area-as-quantity reasoning that 
students demonstrate when the numbers are not shown. A cognitive-load 
hypothesis may predict that fraction symbols are distracting because they visually 
clutter the problem. In that case, scores with half pictures and numbers should be 
higher than pictures and numbers, since there is less information and less visual 
clutter. Yet, scores decrease, indicating that performance is not correlated with 
cognitive load. Byrnes and Wasik (1991) discuss a theory that conceptual 
knowledge will prevent students from making certain procedural errors. In this 
theory, a “self-critic” (my name), evaluates procedural outcomes for conceptual 
errors. For example, if a student adds 3/4 and 1/7 and gets 4/11, their “self-critic” 
may reason that 4/11 cannot be right because it is less than half while 3/4 is 
greater. With the picture scaffolds, these steps are easier – instead of numeric 
mental operations, students can compare the fraction bars. Scores on the 
equivalence and the pictures-only addition items demonstrate students’ skill in 
comparing fraction bars, yet they still seem to not use their “critic” on the fraction 
addition items with numbers. 

Interestingly, Byrnes and Wasik argue against the self-critic theory, claiming 
that conceptual and procedural knowledge are not commonly activated 
simultaneously in problem solving. Further, conceptual knowledge may precede 
procedural skill, so in some stages of learning conceptual knowledge would not 
be correlated with procedural performance. Instead, procedural skills improve 
through proper discrimination and generalization. To test these theories, they 
compared three instructional techniques for LCD fraction addition. One was 
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procedural, and stressed that “you can’t add fractions the way you add ordinary 
numbers.” The other techniques added conceptually based instruction (one with 
fraction bars) to that procedural instruction. Results showed that the conceptual 
methods did not improve learning above the purely procedural one. These 
findings suggest that aiding discrimination will improve procedural skill, and that 
skill is not enhanced further with brief conceptual instruction. However, while 
the conceptual method included a demonstration of using fraction bars and 
coordinating between the two representations, students did not actually practice 
this skill themselves. This difficulty factor assessment demonstrates that 
coordinating the fraction bars and fraction symbols is not trivial for students, and 
suggests that this coordination is a pre-requisite skill for the proper functioning 
of the self-critic, or, in other words, for the activation of conceptual knowledge in 
a procedural context. That is, it is not sufficient for students to have the 
conceptual knowledge that two positive addends result in a sum that is greater 
than each: students demonstrate proficiency with this concept in the pictures-
only addition task. Students must also have the (metacognitive) procedural 
knowledge to relate that conceptual knowledge to a symbolic context. Therefore, 
while students will likely not benefit from further conceptual instruction on the 
fraction bars alone, the self-critic likely would benefit from support in 
coordinating the fraction bar and fraction symbol representations.  

As students develop self-critic procedures, there are other potential 
roadblocks besides fraction misconceptions, in particular misconceptions related 
to the meaning of the equals sign. McNeil et al. (2006) found that 6th-8th 

 
grade 

students looking at a problem such as 3 + 4 = 7 were more likely to interpret the 
equals sign to mean “write answer here” than “both sides are equivalent.” 
Perhaps this misinterpretation of the equals sign interferes with the application 
of self-critic procedures on fraction addition items. Even when the pictures show 
the sum to be smaller than one of the addends, the student may not realize that 
the two sides of the equal sign are supposed to be equivalent. A self-critic that 
interprets the equal sign as “write output of procedure here” may simply verify 
that the add-both-numerators-and-denominators strategy was executed well. In 
other words, the presence of numbers may not only prompt over-generalization 
of whole-number addition, but also interfere with students’ interpretation of the 
equals sign and thus throw off the self-critic. 

4.2.6 Conclusions 
These data imply that the usefulness of the fraction bar scaffold is dependent on 
the topic for which it is employed. When naming fractions represented by 
individual fraction bars and solving equivalence problems with fraction bars, 
students were equally proficient whether the numeric symbols were present or 
not. However, for fraction addition, the presence of fraction symbols interfered 

with the use of the fraction bars. The pictures-only addition problems may invite 
reasoning based on conceptual understanding (the sum of two areas cannot be 
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smaller than either addend), while the presence of fraction symbols may invite 
procedural problem solving that is initially divorced from the underlying 
concepts. 

This DFA study suggests that some of students’ difficulty with dynamic 
fraction bars in the tutoring system was due to the specific addition context. More 
broadly, it suggests caution in the design and use of conceptual scaffolds for math 
problems. Students may demonstrate proficiency with a scaffold in one domain 
without being able to transfer those skills, even to a closely related domain. 
Procedural misconceptions may override the conceptual reasoning these 
scaffolds attempt to induce. Perhaps students need instruction to support their 
“self-critics” in checking procedural outcomes against conceptual knowledge. Or, 
perhaps students require certain domain-specific knowledge before their “self-
critics” are triggered. 

4.3 DFA Study 2: Replication and Extension 
Results from DFA Study 1 indicate that the presence of symbols seems to detract 
from students’ use of the diagrams in the addition problems. Students’ below-
chance performance (21%) with numbers-only indicates that adding the 
numerators and denominators is a tempting foil, as it draws on students’ 
incorrect transfer from whole- number addition. However, the prior study did not 
have sufficient error-type data to confirm this suspicion. Students’ performance 
on the comparison tasks indicates that they can extract information equally from 
all three fraction-bar scaffold types. What prevents them from using this 
information with addition? I hypothesize a sense making process that demands 
recognition of two basic properties of positive-number addition for effective use 
of the fraction bars: 1) the magnitude of the sum equals the combined 
magnitudes of the addends; and 2) the sum is larger than each of the addends. 
With this knowledge, the incorrect symbolic addition equations should be easy to 
reject, since all propose a sum that is smaller than one of the addends. This study 
examines whether students know the second, presumably more difficult, 
property. 

The prior study also left other open questions. First, the ‘true or false’ 
options did not give any insight into students’ reasoning. Second, the comparison 
items with non-equivalent fractions did not use foils based on possible 
misconceptions. Instead, they used fractions with similar magnitudes. Perhaps 
students have systematic misconceptions about equivalence, as they do with 
addition, but those misconceptions were simply not elicited. This study addresses 
three questions about sense making support for fractions: 1) Is it obvious to 
students that the sum of two positive symbolic addends is larger than each 
addend individually? 2) When students do not recognize the correct sum of a 
fraction addition equation, is it due to incorrect whole-number transfer? 3) Are 
students tempted by systematic foils for fraction equivalence? 
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4.3.1 Participants and Method 
This study was conducted with the same fifth- grade public-school students as the 
prior study. The prior study took place in the fall and the present study took place 
in the spring. Thus, students had about 5-6 months more classroom instruction 
in the present study than the previous one, explaining their higher scores on 
comparable tasks. 160 fifth-graders were given 20 minutes to complete the 34-
item test forms, administered by their classroom teacher during the normal 
school day. The school tracked students into three achievement levels, which we 
refer to as High, Middle, and Low. To control for ordering effects, question order 
was determined randomly and half of the test forms were printed in reverse 
order. Within each class, students were randomly assigned to one of the four test 
forms, printed in either forward or reverse order. Two items were inadvertently 
left off the test forms of 19 students, and I account for this discrepancy in the 
analysis.  

4.3.2 Replication of DFA Study 1 with Equivalence Foils 
The addition and comparison items used the same types of scaffolds as the prior 
study. However, this time addition items offered three responses: the sum could 
be too small, correct, or too big. Comparison items with non-equivalent fractions 
aimed to assess the extent of three potential misconceptions: fractions with the 
same numerator are equivalent, regardless of denominator (e.g., 3/4 and 3/16); 
squaring the numerator and denominator maintains equivalence (e.g., 2/5 and 
4/25); and adding the same number to the numerator and denominator 
maintains equivalence (e.g., 11/12 and 14/15). 

I refer to the foil types that target these misconceptions as same numerator, 
squaring, and one-less, respectively (one- less refers to the addition misconception 
since each numerator is one less than its denominator). Figure 4.8 gives an 
example of the half-pictures-and-numbers scaffold with the one-less foil and 
correct addition. This study used a between-subject design for scaffold (with each 
test form using only one of the four scaffold types) and a within-subject design 
for task (each student did comparison and addition items). Tests included 6 
addition items and 12 comparison items. 

19 of the 160 tests inadvertently had 11 comparison items instead of 12, so I 
used percent correct instead of raw scores in all analyses. An ANOVA with task 
(comparison and addition) as a repeated measure, and with scaffold type, 
tracking level, and question order (forward vs. reversed) as fixed factors showed 
that question order was not significant and had no significant interactions, so I 
re-ran the analysis without it. I found a significant effect of task (p<.01) but no 
significant task by scaffold interaction. For each task (comparison and addition) I 
ran an ANOVA on percent correct (dependent) with scaffold type and tracking 
level as fixed factors. For comparison items, there was a significant effect of 
scaffold and class level (both p<.01), with a scaffold by class level interaction 
(p=.013). Post-hoc Tukey tests showed significant differences between numbers-
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only and all other scaffold types (all p<.001) but no other significant differences. 
For addition items, scaffold and class were again significant, with a marginal 
interaction (p=.058). Post-hoc Tukey tests showed significant differences 
between numbers-only and all other scaffold types (all p<.015); pictures-only and 
pictures-and-numbers (p<.01); and a marginal difference between pictures-only 
and half-pictures-and-numbers (p=.087). Since those tests revealed no 
differences between the two scaffold types with both representations and did 
reveal differences between them and the scaffold types with one representation, I 
collapse those two scaffold types for further analysis. An ANOVA with the three 
scaffold groups and class level as fixed factors showed significant main effects 
(p<.01) and a significant interaction (p=.031). Post-hoc tests show significant 
differences between all three scaffold groups (all p<.01). Figure 4.9 shows 
performance for the three groups. 

These results are consistent with the progression of performance on these 
scaffolds from 5th 

 
through 7th grade (Wiese & Koedinger, 2014). Like 6th 

graders, 
for the spring 5th 

graders addition is harder than comparison, but the scaffolds 
affect the difficulty of both tasks in the same way. Also, their pattern of 
differences in addition scores between scaffold types is closer to that of 6th 

 
graders (in the fall, all differences were significant). Finally, the comparison 
results were replicated with equivalence foils.  

       
Fig. 4.8 Half Pictures and Numbers items, with one-less equivalence foil. 
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4.3.3 Error Analysis for Evaluation Items 
Incorrect transfer from whole numbers is demonstrated when students say the 
strategy of adding both numerators and denominators (add-both) is correct, or 
when they say the correct answer is too big (since the numerator and 
denominator are both larger than the corresponding result of add-both). This 
error can also occur with the Pictures-Only scaffold if students count the number 
of shaded segments instead of comparing the overall sizes of the shaded amounts. 
Figure 4.10 shows the rate of correct responses and three error types (whole 
number error, other, and blank) for all of the addition items by scaffold type. 
Each student had 6 questions, and that many opportunities to make this error. 
Figure 4.11 shows how many whole-number errors each student made within 
each scaffold type. For example, 20% of students in the Pictures condition made 1 
or 2 whole-number errors, while 20% of students in the Numbers condition made 
5 or 6 whole-number errors. The majority of errors are consistent with whole-
number thinking. These errors are most pronounced with Numbers- Only, but 
are mitigated by the diagrams, suggesting that the fraction symbols trigger this 
misconception. Together with the Addend-Sum results, mediocre performance on 
the Pictures with Numbers scaffolds (70%) suggests that the diagrams do not 
help some students tap their conceptual, qualitative understanding of addition 
with numbers because that qualitative understanding is not fully in place. 
Therefore, combining diagrams with numbers improves performance relative to 
numbers-only, but does not make the answers obvious for all students.  

      

 
Fig. 4.9 Mean scores on the comparison and addition evaluation items 
by scaffold types, with bars showing standard error of the mean. 
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All test forms included questions with all foil types: 3 equivalent, 5 same 

numerator, 2 squaring, and 2 one-less (19 students only had one). Table 4.1 
shows scores by foil and scaffold type. An ANOVA on percent correct with foil 
type as a repeated measure and scaffold and class level as fixed factors showed a 
significant effect of foil (p<.01) and a significant foil by scaffold interaction 
(p=.023). We then ran ANOVAs for each scaffold type separately (individual 

      

 
Fig. 4.10 Rates for correct answers and each possible error type, by 
scaffold. 

 

       
Fig. 4.11 Within each scaffold type, percentage of students who made 
whole-number errors at each rate. 
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question score as dependent, foil type and class level as fixed factors and student 
as random factor). For Pictures Only and Pictures with Numbers, foil type was 
significant (p<.01) and post- hoc Tukey tests showed the One-Less foil was 
different from all the others (all p<.02). For Numbers Only, there was no 
significant effect of foil type.  

Since the three scaffold types with pictures had similar results, we combine 
them for the error analysis. For each equivalence foil, the three error types are: 
mistaken for equivalent, wrong direction of inequality, and blank. Without 
diagrams, all four comparison items are similarly difficult, giving no evidence for 
consistent misconceptions. With diagrams, performance is high on all but the 
One-Less foil. The error analysis shows that the most popular incorrect response 
on the One-Less problem is that the fractions are equivalent (across the scaffold 
types that included pictures, 81% of responses were correct, and 15% of responses 
indicated that the fractions were equivalent). This error pattern is not repeated 
for the other foil types with pictures or for any foil type with numbers only.  For 
numbers only, 61% of responses were correct for the One-Less foil, with 13% of 
responses indicating that the fractions are equivalent. With a total error rate of 
39%, though the equivalence error occurs at a similar rate in terms of overall 
responses, it is a much lower percentage of erroneous responses (33% of 
erroneous responses demonstrate the equivalence error with the Numbers-Only 
scaffold, compared with 79% with the scaffold types that include pictures). 
Perhaps students who do not look closely at the pictures are fooled by the small 
(< 3%) size difference of the One-Less pairs. That difference is much smaller than 
the ~7% average difference between non-equivalent fractions in the prior study. 
Alternatively, perhaps students noticed the discrepancy and decided it did not 
matter because 1) it was close enough; and 2) adding the same number to the 
numerator and denominator seems similar to the correct procedure. Although 
pictures improved performance overall, this result is one example of their 
potential drawbacks: depending on their scale they may appear to show untrue 
relationships, and could possibly reinforce misconceptions.  

 
 
 

 Pictures Only Pictures with 
Numbers 

Numbers Only 

Equivalent .97 .91 .74 
Same Numerator .98 .91 .69 
Squaring .95 .93 .61 
One Less .86 .76 .61 

Table 4.1 Mean scores for the fraction comparison items, by scaffold and 
foil type. 
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4.3.4 Comparing Addends and Sums 
To see if students knew that the sum of two positive, symbolic addends was 
bigger than each addend alone, items presented a correct addition equation and 
asked if the sum was bigger than each added (or visa versa). Response options 
were True, False, and Can’t tell from the information given. Items had whole 
numbers, decimals, fractions, or variables (Figures 4.12-4.16). Items with 
variables had two presentations. This research design used a between- subjects 
design, assigning each student to one of the four number types, with 5 problems 
of that type. To control for students simply selecting true or false for all of the 
problems, 3 problems asked if the sum was bigger than each addend, and 2 
problems asked if each addend was bigger than the sum. Students in the variables 
condition had 3 problems with shapes and 2 with people (Figure 4.15 and 4.16).  

 

       
Fig. 4.13 Addend-Sum item with whole numbers 

 

       
Fig. 4.12 Addend-Sum item with whole numbers 

 



 82 

 

 

 

       
Fig. 4.14 Addend-Sum item with decimals 

 

       
Fig. 4.15 Addend-Sum item with whole numbers 

 

       
Fig. 4.16 Addend-Sum item with whole numbers 
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Mean scores for each number type were 79% for whole numbers, 75% for 
decimals, 61% for fractions, and 51% for variables. Figure 4.17 shows 
performance for each number type by tracking level. I ran an ANOVA on percent 
correct (dependent) with test form, tracking level, and question order (forward 
vs. reversed) as fixed factors. Question order was not significant and there were 
no significant interactions with order, so I re-ran the analysis using only test form 
and tracking level. There was a significant effect of form, tracking level, and a 
significant interaction (all p<.01). Post-hoc Tukey tests showed significant 
differences between Variables and Whole Numbers and Variables and Decimals 
(both p<.01), and Fractions and Whole Numbers (p=.022).  

Except for the High group, most students could not apply the addend-sum 
relationship to all four number types. This evidence supports the hypothesis that 
students’ difficulty interpreting the fraction-addition diagrams arises from a gap 
in prior knowledge: they do not always recognize the significance of a proposed 
sum being smaller than one of the addends because they do not have a strong, 
fluent knowledge of the qualitative addend-sum relationship. Confusion may 
stem from addition with negative numbers (addition does not always make 
bigger) or fraction multiplication (even for positive numbers, operations do not 
always go in the same direction). Students can solve the whole number and 
decimal problems by directly comparing the numbers in each question without 
considering the addend-sum relationship. It is much harder to directly compare 
unlike-denominator fractions, and impossible for variables. This difference in 
strategy likely explains the significant differences between Variables and 
Wholes/Decimals. Performance by tracking level suggests how mastery of this 
relationship may develop, but appears to do so in a notation-specific way. Whole-
Number performance is about the same with all three tracks, likely reflecting a 
direct-comparison strategy and familiarity with whole numbers. Decimals 
performance is low for Low- track students (~50%), likely reflecting unfamiliarity 

      

 
Fig. 4.17 Mean scores on Addend-Sum items by test form and class 
tracking level. Points differing by less than 3% were averaged.  
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with decimal comparison, but rises to Whole-Number level with Middle-track 
students. With Variables, Low-track students perform just below chance, 
indicating that they do not understand how addends and sums relate in the 
abstract. This abstract understanding trails fraction performance for Middle- and 
Low-track students. Although this qualitative relationship is important for 
reasoning about addition, these results suggest that students may not fully grasp 
the addend-sum relationship until they have extensive practice adding numbers 
of many types. This finding is in line with theories that procedural and 
conceptual skills develop iteratively (Rittle-Johnson, Siegler, & Alibali 2001). 
Further, these findings indicate that even when students can apply a concept to 
one symbolic context, they may not spontaneously transfer that knowledge to 
another symbolic context. 

4.3.5 Discussion 
Diagrams are thought to aid sense making by helping students apply conceptual 
(often qualitative) reasoning to a problem (e.g., which amounts are equal? What 
operation is needed?). This study provides evidence for diagrams’ overall sense-
making support, but also offers an explanation for why students do not always 
use diagrams effectively: they may lack that conceptual, qualitative reasoning 
that diagrams are intended to tap. This prior knowledge (e.g., that the sum of two 
positive addends is larger than each addend) may be obvious to adults but not to 
students. Further, students may be able to apply this knowledge in some contexts 
(e.g., with diagrams alone) but not others (e.g., the addend-sum items with 
fraction symbols). Still, while the knowledge that the sum of two symbolic 
positive addends is larger than each addend individually is related to the 
knowledge required for the pictures-and-numbers evaluation items, the evidence 
from this study suggests that it is not strictly necessary: students scored 70% on 
the pictures-and-numbers evaluation items and only 61% on the addend-sum 
items with fractions. These findings, that students do not always know how to use 
visual representations, support the IES Practice Guide recommendations that 
students be taught these skills explicitly (Woodward et al., 2012). However, the 
current recommended instruction focuses on mapping between a story problem 
and a visual representation, and then the visual representation and symbols. The 
results from this study suggest that students may also benefit from instruction on 
what type of qualitative reasoning is relevant to the problem, and how to apply 
that reasoning. 

More generally, it seems more caution is needed in applying expert intuitions 
about sources of support for student sense making. While qualitative inferences 
may support sense making with quantitative problems, that qualitative reasoning 
itself may develop slowly through quantitative experience. That is, students may 
not apply the general relationships between addends and sums, or multiplicands 
and products, etc., until after they have extensive practice with those operations 
or equations. 
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5  Including Fraction Bar Pre-
Instruction in the Grounded 
Feedback Tutor 

Summary. An experiment with 163 4th and 5th graders shows improved learning 
with a grounded feedback tutor over a symbols-only control with step-level 
right/wrong feedback. Learning with grounding also transferred to symbols-only 
assessment items. These results hold promise for supporting representation 
learning in STEM domains. 

5.1 Fraction Bar Pre-Instruction 
To help students interpret the fraction bar representations, I added up-front 
instruction on the fraction bars to the grounded feedback tutor. The instruction 

       
Fig. 5.1 Fraction Bar Pre-Instruction Question 1. 72% of students solved 
the problem, without hints, on their first try. 
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consists of multiple-choice problems, beginning with questions on fraction 
equivalence (expected to be within students’ prior knowledge (Stampfer & 
Koedinger, 2013)) and gradually fading in the addition operations and fraction 
symbols. This progression is based on concreteness fading (Fyfe, McNeil, Son, & 
Goldstone, 2014). Students were given immediate correctness feedback and on-
demand hints. Sample problems are shown in Figs. 5.1-6. 
 

 

       
Fig. 5.2 Fraction Bar Pre-Instruction Question 5. 53% of students solved 
the problem, without hints, on their first try. 

       

       
Fig. 5.3 Fraction Bar Pre-Instruction Question 10. 81% of students 
solved the problem, without hints, on their first try. 

       
Fig. 5.4 Fraction Bar Pre-Instruction Question 10. 81% of students 
solved the problem, without hints, on their first try. 
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5.2 Study 3: Comparing Correctness Feedback to 
Grounded Feedback with Pre-Instruction 
This experiment compared learning with the grounded and correctness feedback 
tutors, using a pretest-intervention-posttest design. Both tutors included the 
same brief instruction on using the tutor software and on fraction addition. The 
grounded feedback tutor included the pre-instruction on fraction bars, described 
in section 2.2. This experiment investigates if pre-instruction on the feedback 
representation and a longer intervention time can lead to greater learning gains 
relative to a control. Additional research questions: (1) The grounded feedback 
tutor includes symbolic and graphical representations. How does learning with 
these representations transfer to symbolic-only contexts, and how does learning 
with a symbols-only representation transfer to a symbols-and-graphics context? 
(2) Is grounded feedback easier to work with than correctness feedback? (3) How 
do students leverage the grounded feedback while working with the tutor? 

5.2.1 Materials, Participants, and Procedures 
The 29-question pre- and posttests included 12 symbolic fraction addition items 
and 9 evaluation items that proposed a fraction addition equation and asked if 
the sum was correct, too big, or too small (3 each of pictures only, numbers only, 
and both pictures and numbers). Answers were scored 1 if correct and 0 
otherwise. Two matched tests were counterbalanced, question order was 
determined randomly, and half of the tests were given in reversed question order.  

194 students from 9 classes at a local public school participated in the 
experiment (60 4th graders and 134 5th graders). The school tracked students by 
achievement, and teachers identified their classes as high (3), average (5), or low 
(1). 31 students were removed from the sample because they were absent during 
the pre- or posttest, or they spent less than 45 minutes on their assigned tutor, 
leaving 163 students (78 grounded, 85 correctness).The experiment took place at 
the school during class time over four consecutive days. All random assignment 
was within-class. Students were given a 15-minute pretest, worked with a 
randomly assigned tutor for up to 80 minutes, and then took a 15-minute posttest 
the next day. The tests were administered on a computer and students could not 
return to previously answered questions. 

5.2.2 Results 
Did the grounded condition learn more than the correctness condition? Overall, 
yes. Table 5.1 shows the average scores for the overall pre- and posttests and for 
the three subtests, by condition. To test that pretest differences were not 
significant, an ANOVA was run on pretest score, with pretest order, pretest form, 
class tracking level, and condition as fixed factors, and class as a random factor. 
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The first model included all main effects and two-way interactions. After 
removing non-significant interactions and main effects, the final model included 
a marginal effect for order (p = .07), a marginal order by pretest form interaction 
(p = .08) and a significant class by pretest form interaction (p = .04). Condition 
was not significant (p = .7). 

To test if condition had a significant effect on learning, we re-ran the final 
model, this time on posttest score, with pretest score as a covariate. The first 
model included all two-way interactions with pretest score. After removing non-
significant interactions and main effects, the final model included class and total 
pretest score as significant main effects (both p < .01) and condition as a 
marginal main effect (p = .065), in favor of grounded feedback. When grade was 
used as a fixed factor (instead of class as a random factor), the main effects model 
of condition, pre-test score, and grade shows a marginal effect of condition 
(p=.051) and a  significant effect of grade (p=.016), with estimated marginal 
means of .564 for 4th graders, .633 for 5th graders, and .527 for the correctness 
condition and .624 for the grounded condition (all evaluated at a pre-test score of 
.426). The same tests (with class a random factor) were repeated on the addition 
and evaluation subtests – condition was not significant in either case. 

How did transfer from the grounded tutor to a symbols-only assessment 

       
Condition Test Total Addition Evaluation Other 
Correctness Pre .43 (.20) .32 (.27) .42 (.26) .60 (.24) 
 Post .59 (.22) .49 (.30) .63 (.26) .69 (.18) 
Grounded Pre .42 (.19) .35 (.26) .42 (.23) .57 (.23) 
 Post .63 (.22) .55 (.32) .69 (.23) .71 (.22) 

 

Table 5.1. Average scores (and standard deviations) for overall tests and 
subtests. Paired samples t-tests show all within-condition differences 
from pre- to posttest are significant (p < .01) 

       
Fig. 5.5 Estimated marginal means for posttest evaluation 
items that included numbers, with 95% confidence intervals. 
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compare to transfer from the symbols-only tutor to a dual-representation 
assessment? To determine if there were condition differences for scores on the 
numbers only and pictures and numbers evaluation items, a MANOVA was run 
on the posttest scores for each scaffold type, with corresponding pretest scores as 
covariates and class and condition as fixed factors. The condition by class 
interaction was not significant in the multivariate test so the model was re-run 
without it. Multivariate tests showed pretest scores and class were significant (p < 
.04), as was condition (p = .047), in favor of grounded feedback. Condition was 
significant on the posttest score for the pictures and numbers scaffold (p = .015, 
again in favor of grounding), but not for the numbers only scaffold. Figure 5.5 
shows the estimated marginal means for the two scaffold types, by condition. 

Since both conditions had similar gains on the addition items, greater 
improvement on the pictures-and-numbers evaluation items seems to explain the 
grounded condition’s overall greater improvement from pre-test to post-test. To 
examine if this is the case, I ran an ANCOVA on post-test scores, excluding the 
addition items and the pictures-and-numbers evaluation items. With pre-test 
score as a covariate (also excluding the addition items and the pictures-and-
numbers evaluation items), grade and condition as fixed factors, and interaction 
terms for grade by condition and pre-test score by condition, condition was not 
significant (p>.3), while pre-test score (p<.0005) and grade (p=.023) were.  
Neither interaction term was significant, and when the model was re-run with 
main effects only, the significance levels were similar: pre-test score (p<.0005) 
and grade (p=.022) were significant, and condition was not (p>.2). This analysis 
indicates that the greater improvement of the grounded condition from pre-test 
to post-test can be explained by the greater gains on the pictures-and-numbers 
evaluation items. 

5.2.3 Did Students Learn from the Fraction Bar Pre-
Instruction? 
The fraction bar instruction aimed to help students interpret the grounded 
feedback. One measure of success of this instruction is how often students 
pressed the “done” button when the proposed sum differed from the correct sum 
by at least .1. Students did so on average .34 times per problem for the first 20 
tutor problems and .16 times per problem (on average) for all tutor problems. 
Both values are much less than the .99 times per problem for Study 2 (which only 
included 20 tutor problems). Another measure of learning comes from a two-

       
Test Correct Whole Number Error Other Error Skipped 
Pre 63% 30% 6% 1% 
Post 63% 23% 13% 1% 

 

Table 5.2. Proportion of correct answers and error types for the fraction 
bar pre-and post-test. 
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question pre- and posttest bracketing the pre-instruction. Similar to the question 
shown in Fig. 5.4, the test questions proposed a fraction addition equation with 
the fractions represented both symbolically and as fraction bars. Students 
indicated if the proposed sum was correct, too big, or too small. These pre- and 
posttests included one true equation and one false equation, where the sum was 
obtained by adding the numerators and denominators independently. Both 
before and after instruction, the average score was 62% correct. Errors were 
categorized as whole number error, other error, or skipped. A whole number 
error indicates incorrect transfer from whole number addition: answering 
‘correct’ to a sum obtained by adding the numerators and denominators of the 
addends, and answering ‘too big’ to the correct sum. Answers that were not 
correct or whole number errors were coded as other. Table 5.2 shows the 
proportion of each error at the fraction bar pre- and posttest (this table includes 
the 95 students who completed this section, not just the 78 grounded students 
included in the other analyses). 

After the fraction bar instruction, students had fewer whole number errors. 
To determine if one type of error indicates better understanding, we examined 
correlations between each type of error and proficiency at fraction addition 
problems. The study pretest included two evaluation questions that were 
isomorphic to those used in the fraction bar pre- and posttest, and 12 free-
response symbolic fraction addition problems. For this analysis we include 
students who saw both of the evaluation questions, and calculated scores and 
error rates on the addition items based on the questions that students saw (i.e., 
disregarding questions that students ran out of time for). Table 5.3 shows the 
correlations between occurrence of each error type and (1) score on the fraction 
addition items and (2) rates of whole-number errors on the addition items. 

5.2.4 Case Studies: Using Grounded Feedback 
Does grounded feedback produce greater or less struggle during instruction than 
correctness feedback? On average, students in the grounded condition solved 
fewer fraction addition problems (38 vs. 74 for correctness), took longer per 
problem (~65 seconds per problem vs. ~40), and requested more hints per 
problem (1.4 vs. 0.4). These process measures show that students stuggle more 
when given grounded feedback. However, the difficulty inherent in engaging in 

       
Response on Fraction Addition 
Items 

Whole Number 
Error 

Other 
Error 

Correct 

Percent Correct -.42*  .12  .30* 
Rate of Whole-Number Error   .31* -.11 -.21* 

Table 5.3. Pearson correlations between error types on evaluation items and 
performance on free-response fraction addition items. *p < .03 
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self-regulated coordination of the two reprsentations appears to be desirable 
(Bjork & Bjork, 2009), as in Study 2. Given that grounded feedback students 
learned at least as much overall, these process results suggest that grounded 
feedback students learn more per problem than correctness feedback students.  
The extra difficulities they experience are not extraneous but generative (cf. Clark 
& Mayer, 2011, p. 37). 

How did students make use of the grounded feedback? Log data suggests two 
pathways: responding to the grounded feedback directly to diagnose and correct 
errors, and using grounded feedback to decide when to ask for a hint. Figures 5.6 
and 5.7 illustrate the first strategy for a student converting 3/8 to 24ths. The 
student is adding 1/3 and 3/8, and got a hint for the denominator of the first 
fraction that said to multiply 3 by 8. The student correctly chose to multiply 8 by 
3 to get the denominator for the second fraction, but then decided to multiply the 

numerator by 6. Figure 5.7 shows the student’s interface at this point. The 
grounded feedback shows that 18/24 is bigger than 3/8. Next, the student tries 10 
as a numerator (still to big), and then 9 (Fig. 5.7). After the grounded feedback 
shows that 9/24 equals 3/8, the student updates the multiplication area to show 
3 x 3 = 9.  In this case, the student does not seem able to find the equivalent 
fraction using symbols alone: the student does not begin by multiplying the 
numerator and denominator by 3. Instead, the student appears to use the 
grounded feedback to inform a guess-and-check strategy, identifying the 
direction of the error and correctly deciding when that part of the problem is 
complete (after converting the second fraction, the student moves on to the sum).  

       
Fig. 5.6 The grounded feedback tutor. The student is converting 3/8 to 
24ths. 
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In other cases, the feedback may facilitate learning from hints. In one 
example, a student adding 4/9 and 1/9 entered 5/18 for the sum (the 
independent strategy: adding the numerators and denominators independently). 
The student seems to interpret the feedback as showing an error, but appears 
unsure of how to fix it. Instead of pressing the done butting or guessing, the 
student asks for hints until the answer is provided. On the next problem, the 
student converts the addends incorrectly, and then uses the independent strategy 
on the converted fractions, again asking for a hint only after entering the 
incorrect sum (perhaps the student pays more attention to the addition section of 
the interface than the converting sections, or the student might not realize that 
the converted fractions should be equivalent to the addends). This student does 
not attempt the independent strategy on any subsequent problems. Here, the 
grounded feedback appears to have shaken this student’s confidence in the 
independent strategy, perhaps facilitating acceptance of the correct strategy 
offered in the hints. 

5.2.5 Discussion 
Correctness feedback is easier to work with than grounded feedback, indicated by 
students solving many more correctness problems, spending less time per 
problem, and requesting fewer hints on each problem. How does the additional 
difficulty of grounded feedback affect learning? The marginal significance in 
favor of grounded feedback on overall learning and the non-significant difference 
on the addition subtest indicates that grounded feedback is no worse than 
correctness. The differences in learning on the evaluation items with pictures and 
numbers also suggest that the additional difficulties in grounded feedback are 
desirable. Those items include the same representations present in the grounded 
tutor. The numbers-only evaluation items only included the symbolic 

                                                
Fig. 5.7 Grounded feedback for each guess-and-check conversion 
attempt. After finding the correct converted fraction the student corrects 
the multiplication box for the numerator to indicate that 3 x 3 is 9. 
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representation present in the correctness tutor. Therefore, the pictures and 
numbers items can be considered target items for the grounded students while 
the numbers only items are transfer, and visa versa for the correctness students. 
With this view, the grounded feedback students were better than the correctness 
students at transferring their knowledge to the less-familiar format: grounded 
students scored just as well on the numbers only problems as the correctness 
students, while outperforming them on the pictures and numbers items. At the 
very least, the similar performance of both conditions on the fraction addition 
items and numbers only evaluation items shows that including the fraction bars 
during learning did not impede students’ performance with numbers on the 
posttest. 

Did students learn from the fraction bar tutorial? Scores on the evaluation 
items bracketing the pre-instruction did not change. However, students 
decreased their rates of whole number errors, switching to other errors instead. 
Whole number errors are negatively correlated with solving symbolic fraction 
addition problems correctly and are positively correlated with adding both 
numerators and denominators independently on such problems, while other 
errors are not correlated with either behavior. Therefore, whole number errors 
appear to be more harmful than other errors, and a decrease in whole number 
errors suggests that students benefitted from the tutorial.  

These results indicate that a longer intervention time (80 vs. 40 minutes) 
and the inclusion of fraction bar pre-instruction addressed the shortcomings of 
the grounded condition in the previous study (Stampfer & Koedinger, 2012). Still, 
the case studies point to further possible improvements. Even with the grounded 
feedback, students do not always seem to recognize when their work is incorrect 
(e.g., a student may recognize when a proposed sum is incorrect but may not 
recognize when a converted fraction is incorrect). Including correctness feedback 
with the grounding may help: Instead of relying on the grounding alone to 
evaluate the action and diagnose the error, the correctness feedback will evaluate 
the error, freeing cognitive resources to focus on the diagnosis.  
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6  Comparing Grounded Feedback 
With and Without Correctness 
Feedback  

Summary. An experiment with 59 4th and 5th graders compared a grounded 
feedback tutor to one that combined grounded and correctness feedback. Results 
suggest small if any differences in learning.  

6.1 Motivation 
Study 3 found benefits for grounded feedback over correctness feedback – while 
both led to similar improvement on the target addition content, grounded 
feedback promoted more transfer across representational contexts. While Study 2 
and Study 3 compared grounded feedback as a whole to correctness feedback, the 
remaining studies in this thesis examine the features of grounded feedback 
individually. This study examines the importance of the second feature: that 
students evaluate their step-level work for themselves, instead of having the tutor 
evaluate it for them. One hypothesis is that the act of self-evaluation is crucial for 
learning, as it requires the student to apply their own prior knowledge to the task 
at hand, thus reinforcing the connections between what the student is learning 
and what the student already knows. An alternative hypothesis is that having 
immediate step-level correctness feedback will help learning by reducing 
cognitive load: the student is freed from the task of making the evaluation, and 
can focus cognitive resources on understanding why the action was correct or 
not. This study tests those competing hypotheses. Note that while this study is 
presented here for rhetorical reasons, it was conducted after the study presented 
in Chapter 7. 
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6.2 Study 4: Grounded Feedback With and Without 
Correctness Feedback 
Study 4 used the grounded feedback tutor from Study 3 and compared it to a 
grounded plus correctness feedback tutor (described below, in section 6.2.1). 
Study 4 also used the same assessment forms as Study 3. Study 4 had a 10-week 
delay between the post-test and the delayed-test. The delayed-test happened to 
be scheduled on a day when the regular classroom teachers were out and when 
the students were sorted into gender-segregated classes to learn about their 
reproductive systems. Therefore, students may have been more distracted than 
usual on that day, and performance on the delayed-test may be less generalizable 
(the method for Study 4 is described in more detail in section 6.2.2).  

6.2.1 The Grounded plus Correctness Tutor 
The grounded plus correctness tutor uses the same basic interface as the 
grounded feedback tutor. Students still input symbolic fractions for both the 
converted addends and the sum and as they do so, corresponding fraction 
rectangles appear showing the entered fraction. Unlike the correctness feedback 
tutor (which has no fraction rectangles), students may open the addition 
interface, or either of the conversion interfaces, at any time. Unlike the grounded 
feedback tutor, students’ numeric inputs are immediately colored green if correct 
and red if incorrect, and students may not erase correct inputs. Figure 6.1 shows 
a screenshot of the grounded plus correctness tutor.  

 

       
Fig. 6.1 Grounded plus Correctness feedback tutor. 
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6.2.2 Method 
Students did the study over four 40-minute class periods. On Day 1, students 
took a 15-minute pretest, then worked with a randomly-assigned tutor. Students 
continued working with the tutors on Day 2, and for the first 20 minutes of Day 3. 
On the second half of Day 3, students completed a 15-minute post-test. After a 
delay of at 10 weeks, students took a 15-minute delayed-test.  

6.2.3 Participants 
Two classes of 5th graders and three classes of 4th graders at the same school 
participated in the study. One teacher taught both of the 5th grade classes and 
another teacher taught all three 4th grade classes. This school was in a different 
district than the schools that participated in studies 2, 3, and 5. As in the previous 
studies, the following analyses are based on the students who completed all parts 
of the study, including all three assessments and at least 30 minutes of working 
with their assigned tutor. Table 6.1 shows the number of students, by grade and 
condition, who did and did not complete all parts of the study. Fisher’s exact test 
on the students who did or did not complete the study, by condition, does not 
show a significant difference in attrition between the two conditions (p<.2). 

 

6.2.4 Results: Process Measures 
Students had different learning experiences with the tutors, shown by the 
differences in average number of problems solved, time taken per regular tutor 
problem, and hints requested per problem. Table 6.2 shows the means, per 
condition and grade, for these measures. 

Condition Completed  Incomplete 
 5th  4th  5th  4th  
Grounded 14 18 5 0 
Grounded plus Correctness 15 12 4 5 

Table 6.1 Number of students who did and did not complete the 
study, by condition. Students who did not complete the study are not 
included in the analysis. 
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To determine if the differences in the process measures are significant, I ran 

ANCOVAs on number of regular tutor problems attempted, time per regular tutor 
problem, and hints requested per regular tutor problem, with condition and 
grade as fixed factors and pre-test score as a covariate, and interaction terms for 
condition by pre-test score and condition by grade. For the number of regular 
tutor problems, the condition by pre-test interaction term was not significant so 
the model was re-run without it. With condition, grade, and pre-test score as 
main effects and a condition by grade interaction term, condition and pre-test 
score were significant (both p<.0005), as was the condition by grade interaction 
(p=.042). Grade was not significant as a main effect. Parameter estimates for the 
interaction term were 11.8 for 4th grade with the grounded tutor and 0 otherwise. 
Estimated marginal means by grade and condition are shown in table 6.3. 

 
For the amount of time taken for each regular tutor problem, neither 

interaction term was significant so I re-ran the model without them. With main 
effects only, pre-test score was significant (p=.003) as was condition (p=.022). 
Grade was not significant as a main effect. Estimated marginal means were 5 

 Grounded Grounded plus 
Correctness 

5th 7.4 24.3 
4th 9.9 15. 0  

Table 6.3 Estimated marginal means for number of regular tutor 
problems attempted, by grade and condition, evaluated at a pre-test 
score of .24. 
 

  Grounded Grounded plus 
Correctness 

Regular tutor problems 
attempted 

5th 6.8 (2.3) 24.9 (4.6) 
4th 11.8 (2.9) 12.1 (2.1) 
All 9.5 (1.9) 19.2 (2.9) 

Time taken per regular 
tutor problem 

5th 6:08 (1:01) 2:35 (0:22) 
4th  4:43 (1:01) 4:45 (0:53) 
All 5:21 (0:47) 3:33 (0:29) 

Hints per regular tutor 
problem 

5th  14.1 (3.6) 4.5 (1.0) 
4th  8.7 (2.0) 9.8 (4.8) 
All 11.4 (2.0) 7.0 (2.3) 

Table 6.2 Average number of tutor problems attempted, time taken 
per regular tutor problem, and hints requested per problem, with 
standard error of the mean in parentheses, by grade and condition. 
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minutes 31 seconds for grounded and 3 minutes 22 seconds for grounded plus 
correctness. 

For the number of hints requested per regular tutor problem, neither 
interaction term was significant so I re-ran the model without them. With main 
effects only, pre-test score was significant (p=.019), and there was a marginal 
effect for condition (p=.078), with no significant effect for grade (p>.7). 
Estimated marginal means were 11.8 hints requested per problem in the 
grounded condition, and 6.5 hints requested per problem in the grounded plus 
correctness condition. Although the difference in the means is large, so is the 95% 
confidence interval for each: 7.7 – 15.9 for grounded and 2.1 – 10.8 for grounded 
plus correctness. 

From these process measures, the grounded plus correctness tutor seems to 
be easier to work with than the grounded feedback tutor without correctness 
feedback: students in the grounded plus correctness condition solved the tutor 
problems more quickly, got through more problems, and requested marginally 
fewer hints per problem. 

6.2.5 Results: Outcome Measures 
To examine if there were differences between conditions at pretest, I ran an 
ANOVA on pre-test score with test form, order, grade, and condition as fixed 
factors (full factorial model). None of the interactions were significant so I re-ran 
the model without them. With a main-effects model, the only significant term 
was pre-test form (p=.017). Grade and condition were not significant (p>.2). 
Estimated marginal means were .285 for Form A and .195 for Form B. 

Figure 6.2 shows the mean scores for each assessment, by condition. Figure 
6.3 shows the mean scores on the addition items for each assessment, by 
condition.  

 
Figure 6.2 Mean score at each assessment time, by condition, with 
bars showing the standard error of the mean. 
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Overall Learning To determine if immediate learning differed by condition, I 
ran an ANCOVA on the post-test scores, with grade, condition, and pre-test form 
as fixed factors and pre-test score as a covariate (pre-test form is included since it 
was a significant effect for pre-test score). With a full-factorial model and a 
condition by pre-test score interaction term, there is a significant effect of the 
three-way interaction between condition, grade, and pre-test form (p=.04). Re-
running the model with that interaction and the main effects (since the other 
interactions were not significant), pre-test score is significant (p<.0005) and the 
three-way interaction is marginal (p=.054), with no other significant effects. 
Estimated marginal means for post-test scores, by condition, grade, and pre-test 
form, are shown in table 6.4. 

To determine if there were differences in retention and future learning by 
condition, I ran an ANCOVA on the delayed-test scores, with grade, condition, 
and pre-test form as fixed factors and post-test score as a covariate. Note that 
pre-test form and delayed-test form are the same. With a full-factorial model and 

  Pretest Form A Pretest Form B 

Grounded 5th .356 .256 
4th .287 .379 

Grounded plus 
Correctness 

5th .317 .421 
4th  .268 .306 

Table 6.4 Estimated marginal means for post-test score, by grade, 
condition, and pre-test form, evaluated at a pre-test score of .243. 
 

 
Figure 6.3 Mean addition scores at each assessment time, by 
condition, with bars showing the standard error of the mean. 
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a condition by post-test score interaction term, none of the interaction terms 
were significant, so I re-ran the model without them. With main effects only, 
post-test score was significant (p<.0005), pre-test form was marginal (p=.066) 
and there were no significant effects for grade or condition (both p>.1). Estimated 
marginal means for delayed-test score are .378 for delayed-test form A and .318 
for delayed-test form B. 

To determine if there were differences in learning across the entire study, I 
ran an ANCOVA on the delayed-test scores, with grade, condition, and pre-test 
form as fixed factors and pre-test score as a covariate. While the two prior 
analyses compared scores on different test forms, this analysis compares scores 
on the same test form, and therefore may more reliable, given the significant 
effect of test form in those analyses. With a full-factorial model and a condition 
by pre-test interaction term, none of the interactions were significant so I re-ran 
the model without them. With main effects only, pre-test form was not 
significant, so I re-ran the model with condition, grade, and pre-test score as 
main effects. With the new model, pre-test score was significant (p<.0005) while 
grade and condition were not (p>.4). Overall, these results do not provide 
evidence supporting the hypothesis that condition had a significant effect on 
students’ learning.  

 
Addition Learning To examine if there were differences between conditions on 
the target addition items at pretest, I ran an ANOVA on pre-test addition score 
with test form, order, grade, and condition as fixed factors (full factorial model). 
None of the interactions were significant so I re-ran the model without them. 
With a main-effects model, there was a marginal effect for grade (p=.091) and 
test order (p=.052), with no significant effect for condition (p>.9) or pre-test 
form (p>.1). Surprisingly, the 4th graders had higher pre-test addition scores than 
the 5th graders: estimated marginal means were .142 for the 4th graders and .084 
for the 5th graders. 

To determine if there were differences in immediate learning for the target 
addition content, I ran an ANCOVA on post-test addition scores, with condition, 
grade, and test order as fixed factors and pre-test addition score as a covariate. 
Test order is included since it was significant for pre-test scores. With a full-
factorial model, including a condition by pre-test form interaction term, none of 
the interactions were significant. With a main-effects model, pre-test addition 
score was significant (p<.0005), while condition, grade, and pre-test order were 
not (all p>.6). 

To determine if there were differences in retention and future learning for 
the target addition content, I ran an ANCOVA on delayed-test addition scores, 
with condition, grade, and test order as fixed factors and post-test addition score 
as a covariate. With a full-factorial model, including a post-test addition score by 
condition interaction term, none of the interactions were significant so the model 
was re-run without them. With main effects only, post-test addition score was 
significant, while condition, grade, and test order were not (all p>.4). 



 101 

To determine if there were differences learning for the target addition 
content across the whole study, I ran an ANCOVA on delayed-test addition 
scores, with condition, grade, and test order as fixed factors and pre-test addition 
score as a covariate. With a full-factorial model, including a pre-test addition 
score by condition interaction term, none of the interactions were significant so 
the model was re-run without them. With main effects only, pre-test addition 
score was significant, while condition, grade, and test order were not (all p>.4). 
As with the scores on the test overall, these results do not provide evidence 
supporting the hypothesis that condition affected learning on the target addition 
content.  
 
Evaluation learning. Mean scores on the evaluation items are show in figure 
6.4. To determine if there were differences on the evaluation items at pre-test, I 
ran a MANOVA on the pre-test evaluation scores for each scaffold type 
(rectangles, numbers, and both), with test form, order, grade, and condition as 
fixed factors. Multi0variate tests show a significant effect for the three-way 
interaction of condition, pre-test form, and order, but none of the other 
interactions were significant. Re-running the model with main effects and the 
three-way interaction of condition, pre-test form, and order, the interaction was 
marginal (p=.051, Pillai’s Trace) and there was a significant effect of order 
(p=.038) with no other significant effects. Between-subject effects show that the 
interaction term and the order term are only significant for the rectangles and 
numbers scaffold (both p<.03). Since order was significant at pre-test it will be 
included in the analyses of learning. 

To determine if there were differences in immediate learning by condition, I 
ran a MANOVA on the post-test evaluation scores for each scaffold type with the 
pre-test evaluation scores for each scaffold type as covariates, and condition, 
grade, and order as fixed factors. With a full-factorial model, none of the 
interactions were significant so I re-ran the model without them. With a main 
effects model, the only significant effect was the pre-test score for the numbers-
only scaffold (p=.005), with a marginal effect for order (p=.08). Tests of between-
subject effects show that the pre-test numbers-only evaluation score is significant 
for post-test scores for the numbers-only scaffold (p=.001) and the numbers and 
rectangles scaffold (p=.026), but not the rectangles-only scaffold (p>.8). Order is 
significant only for the post-test evaluation scores for the numbers-only scaffold 
(p=.017, with parameter estimates showing a benefit for the forward order).  
To determine if there were differences in learning by condition across the whole 
study, I ran a MANOVA on the delayed-test evaluation scores for each scaffold 
type with the pre-test evaluation scores for each scaffold type as covariates, and 
condition, grade, and order as fixed factors. With a full-factorial model, none of 
the interactions were significant so I re-ran the model without them. With a main 
effects model, multivariate tests show that the pre-test evaluation score for the 
rectangle scaffold was marginal (p=.052) and condition was significant (p=.012), 
with no other significant effects. Tests of between-subject effects show that 
condition is significant only for the delayed-test evaluation scores for the 
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Figure 6.4 Mean evaluation scores at each assessment time, by 
condition and scaffold, with bars showing the standard error of the 
mean. The orange lines with diamond icons show scores for the 
Grounded condition, and the black lines with square icons show 
scores for the Grounded plus Correctness condition. Differences 
between the conditions for the numbers-only scaffold are hard to 
distinguish because the points overlap. 
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rectangle scaffold (p=.04), and that pre-test evaluation scores for the rectangle 
scaffold are significant for both the delayed-test rectangle scaffold (p=.048) and 
the delayed-test numbers and rectangles scaffold (p=.012). Parameter estimates 
show a benefit for the grounded plus correctness condition on the delayed-test 
rectangles-only evaluation scores (B = -.184 for grounded). 

These results suggest a benefit for the grounded plus correctness condition 
for improvement on the rectangles-only evaluation task across the study as a 
whole.  

6.2.6 Discussion and Conclusion 
This study compared grounded feedback to grounded plus correctness feedback. 
The grounded plus correctness tutor was easier for students to use: they needed 
less time per fraction addition problem, and requested fewer hints per problem. 
However, these differences in process measures did not lead to significant 
differences in learning outcomes: there were no significant differences in 
students’ learning as measured by the full assessments or by the addition items 
alone. On the evaluation items, grounded plus correctness improved more on the 
rectangle-only evaluation items from the pre-test to the delayed-test. This result 
suggests that grounded plus correctness may be slightly better than grounded 
alone. However, this finding should be interpreted cautiously as it was not based 
on a prior hypothesis, but rather an exploratory data analysis.   

Study 4 tested the importance of the second feature of grounded feedback: 
that students evaluate their step-level work on their own. Since the results did not 
show significant differences in overall learning for students in the grounded plus 
correctness condition compared with the grounded condition, they do not 
provide evidence that the second feature is important for student learning.  
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7  Comparing Correctness Feedback, 
Virtual Manipulatives, and the 
Combination of Grounded and 
Correctness Feedback  

Summary. An experiment with 191 4th and 5th graders compared three tutoring 
conditions: correctness feedback, a virtual manipulatives tutor, and tutor that 
provided both grounded and correctness feedback. Results indicate relative 
benefits for immediate fraction addition learning for the correctness condition, 
with no significant differences in addition learning across the whole study. The 
two conditions that included fraction bars (the combination grounded plus 
correctness feedback tutor and the virtual manipulatives tutor) showed benefits 
in particular for students with lower pre-test scores.  

7.1 Motivation 
This chapter further investigates the importance of the individual features of 
grounded feedback. The three-condition study presented in this chapter 
compares the correctness feedback control to a tutor that combines grounded and 
correctness feedback and to a virtual manipulatives tutor that provides the same 
visual information as grounded feedback, but has students act on the concrete 
representation instead of the abstract one. Theories of cognitive load, split 
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attention, and the affordances of concrete and abstract representations lead to 
conflicting hypotheses for the relative benefits of these conditions. 

7.1.1 Hypotheses 
We contrast two pairs of conflicting hypotheses: 
 
1a) Grounded plus correctness feedback will lead to more robust learning than 

correctness feedback. While students benefitted from grounded feedback 
alone, correctness feedback will provide additional support and will prevent 
unproductive floundering by ensuring that students do not erase correct 
inputs. Correctness feedback may also help students take better advantage of 
the grounded feedback. Correctness feedback will clearly communicate if a 
students’ action was right or wrong, and may then prompt the student to 
carefully consider the grounded feedback to decide why that action makes 
sense or not. Since studies 2 and 3 found benefits for grounded feedback over 
correctness feedback, enhancing grounded feedback will only widen that 
difference. 

1b) Grounded plus correctness feedback will lead to poorer learning than 
correctness feedback alone. Since the correctness feedback is easier to 
interpret than the grounded feedback, students will have no incentive to 
spend time and effort interpreting the fraction rectangles. The dynamic 
fraction rectangles will simply be distracting, and will lead to split attention. 
Without paying full attention to the correctness feedback or the grounded 
feedback, students will be worse off than if they were using correctness 
feedback alone. 
 

2a) Virtual manipulatives will serve the same function as grounded feedback, and 
therefore will lead to more robust learning than correctness feedback alone. 
While having students act on the fraction rectangles instead of on the 
numeric symbols will change how students interact with the tutor, it will not 
change how students think about the information that is presented.  

2b) Virtual manipulatives will lead to poorer learning than symbols-only 
correctness feedback. Since students will directly manipulate the concrete 
representation, they will ignore the harder-to-interpret symbolic 
representation, and students’ learning with the concrete representation will 
not transfer easily to symbols-only contexts. In this view, changing the input 
mode from the abstract representation to the concrete representation will 
change not only how students interact with the system but also which 
interface elements they attend to. 
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7.2 Materials 
The correctness feedback tutor, assessments, and rectangle pre-instruction were 
identical to those used in studies 3 and 4. The grounded plus correctness tutor 
was the same as the one used in study 4. The virtual manipluatives tutor has the 
same basic structure as the grounded Feedback tutor. Both tutors provide on-
demand text hints and ensure that the current problem is solved correctly before 
allowing the student to move on to the next one.   

7.2.1 The Virtual Manipulatives Tutor 
The virtual manipulatives tutor uses the same basic interface as the grounded 
feedback tutor, except that students do not enter numbers for the converted and 
sum fractions. Instead, students act on the fraction bars (figure 7.1). The fraction 

bars for the converted and sum fractions are controlled by a set of buttons 
directly beneath them. The ‘Denominator’ buttons determine how many equal 
pieces the rectangle is divided into, and the ‘Numerator’ buttons determine how 
many of those pieces are colored in. The “+1” and “-1” buttons change one piece 
at a time, and the “+5” and “-5” buttons change 5 pieces at a time, to facilitate the 
construction of fractions with large numerators and denominators (e.g., if the 
student starts with the fraction 3/9, pressing the “-1” button for the numerator 
and the “+5” button for the denominator will yield the fraction 2/14). 
Alternatively, students may click on a piece of a fraction bar to color or un-color 
it. When students use the numerator buttons, pieces are colored in from left to 

       
Fig. 7.1 Virtual Manipluatives tutor. 
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right and un-colored from right to left. When students click on a piece to color or 
un-color it, they may do so in any order. Students’ actions on the fraction bars are 
reflected with the numeric fractions below. As in the grounded feedback tutor, 
the numbers that students multiply with to find the converted fractions are not 
connected to the fraction bars, therefore, in the virtual manipulative tutor 
students enter those symbolic numbers. Like the grounded feedback tutor, the 
virtual manipulatives tutor does not provide immediate correctness feedback, 
and allows students to open the conversion and addition interfaces at any time.   

As the sheer number of interface elements in the virtual manipulatives tutor 
might be overwhelming, and as students may not realize that they are intended to 
use the buttons to control the fraction bars, students are introduced to the button 
interface with a brief tutorial. The tutorial starts with a modified conversion 
interface, with just the “+1” and “-1” buttons for the denominator. Students are 
instructed to divide a fraction bar into 4 pieces and color in one of the pieces by 
clicking on it (figure 7.2). Next, the “+5” and “-5” buttons for the denominator are 
introduced, to show students that they can change multiple pieces at a time 
(figure 7.3). Finally, students are shown the full set of buttons for the numerator 
and the denominator (figure 7.4). 

       
Fig. 7.2 Virtual Manipluatives tutorial 1.  
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7.3 Study 5: Comparing Three Conditions 
Like Studies 2 and 3, Study 5 took place in a school district near Pittsburgh, and 
students completed all study activities in school during normal class time. Like 
Studies 2 and 4, Study 5 included a delayed post-test. 

       
Fig. 7.3 Virtual Manipluatives tutorial 2.  

 

       
Fig. 7.4 Virtual Manipluatives tutorial 3.  
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7.3.1 Participants and Method 
4th and 5th graders from the same school district participated in this study. All of 
the 5th graders attended the same school (6 classes), while the 4th graders 
attended two different schools (3 classes at one school, 2 in the other). Like the 
previous studies, this study used within-class random assignment. Students did 
the study according to the same schedule, but each school started on different 
day. 

Students did the study over 40-minute class periods. On Day 1, students took 
a 15-minute pretest, then worked with a randomly-assigned tutor. Students 
continued working with the tutors on Day 2, and for the first 20 minutes of Day 3. 
On the second half of Day 3, students completed a 15-minute post-test. After a 
delay of at least 2.5 weeks, students took a 15-minute delayed-test. Due to 
scheduling constraints, the delay was not the same for all classes. Students used 
the same A and B test forms as in Study 3. Students were given one test form as 
the pre-test and delayed-test, and the other test form as the post-test. Students 
were randomly assigned to see the items in either forward or reversed order 
across all three tests. Students in the two conditions with fraction bars were given 
the fraction bar tutorial, as in Study 3. Students in the virtual manipluatives 
condition also did the virtual manipulatives tutorial (most students did the 
tutorial before starting any of the regular tutor problems; some students who 
started the regular tutor problems on Day 1 did the tutorial on Day 2).  

An adjustment to the study schedule was made for three of the six 5th grade 
classes. Two pairs of classes were originally scheduled to do the study at the same 
time. On Day 2 of the study, the tutors ran extremely slowly when the first pair of 
classes used them at the same time. I scheduled a make-up day with these classes, 
so they had an extra class period to work with their tutors. Instead of three 
consecutive study days, students in those two classes did Day 1, Day 2, and a 
make-up day consecutively. After a gap of two weekend days and two school days, 
students did Day 3 (20 minutes with the tutors and the 15-minute post-test). I 
also rescheduled one of the classes from the second pair: instead of three 
consecutive study days, the did Day 1, a gap of one school day, Day 2, a gap of two 
weekend days and two school days, and then Day 3 (on the same day as the other 
two re-scheduled classes). The other class in the second pair did the study as 
originally scheduled.  

244 students began the study. Some students did not complete all three 
assessments or spent less than 30 minutes working with their assigned tutor, 
leaving 191 students in the analysis.  A chi-square test on the number of students 
who did or did not complete the study, per condition, indicates that attrition did 
not differ by condition (p>.3). Table 7.1 shows the number of students who did 
and did not complete the study, by grade and condition. 
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7.3.2 Process measures: Results and Analysis 
Students had different learning experiences with the tutors, shown by the 
differences in average number of problems solved, time taken per regular tutor 
problem, and hints requested per problem. Table 7.2 shows the means, per 
condition, for these measures. 

 

To determine if the differences in the process measures are significant, I ran 
ANCOVAs on number of regular tutor problems attempted, time per regular tutor 
problem, and hints requested per regular tutor problem, with condition and 
grade as fixed factors and pre-test score as a covariate, and interaction terms for 
condition by pre-test score and condition by grade. For the number of regular 
tutor problems, the condition by grade interaction term was not significant so the 
model was re-run without it. Grade was significant (p=.001), as was pre-test 
score (p<.0005), and the condition by pre-test interaction (p<.0005). Condition 
was not significant as a main effect. Parameter estimates for the pre-test by 

 Correctness 
Grounded 
plus 
Correctness 

Virtual 
Manipulatives 

Regular tutor 
problems 
attempted 

54 (3.8) 21 (1.8) 8.5 (.88) 

Time taken per 
regular tutor 
problem 

1:33 (0:10) 3:57 (0:21) 9:37 (0:38) 

Hints per regular 
tutor problem 2.6 (.56) 4.8 (.77) 16.3 (1.6) 

Table 7.2 Average number of tutor problems attempted, time taken 
per regular tutor problem, and hints requested per problem, with 
standard error of the mean in parentheses. 
 

Condition Completed  Incomplete 
 5th  4th  5th  4th  
Correctness 41 25 9 4 
Grounded plus Correctness 33 26 13 6 
Virtual Manipulatives 40 26 13 8 

Table 7.1 Number of students who did and did not complete the 
study, by condition. Students who did not complete the study are not 
included in the analysis. 
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condition interaction term were 124 for Correctness (significant at 0<.0005) and 
26 for grounded plus correctness (p>.1). Estimated marginal means for regular 
tutor problems attempted were 54 for correctness, 22 for grounded plus 
correctness, and 9 for virtual manipulatives (evaluated at a pre-test score of .28). 
Pairwise comparisons show that the differences between all three conditions are 
significant (p<.0005 for all comparisons) with a Bonferroni correction for 
multiple comparisons. 

For time taken per regular tutor problem, the interaction terms for condition 
by grade and condition by pre-test score were not significant so the model was re-
run without them. With main effects only, condition and pre-test were significant 
(both p<.0005), and grade was not (p>.5). Estimated marginal means for each 
condition were 1 minute 35 seconds for correctness, 3 minutes 46 seconds for 
grounded plus correctness, and 9 minutes 41 seconds for virtual manipulatives 
(evaluated at a pre-test score of .28). Pairwise comparisons show that the 
differences between all three conditions are significant (p=.001 for correctness 
and grounded plus correctness, p<.0005 for the other comparisons) with a 
Bonferroni correction for multiple comparisons. 

For number of hints per regular tutor problem, the interaction terms for 
condition by grade and condition by pre-test score were not significant so the 
model was re-run without them. With main effects only, condition was significant 
(p<.0005), as was grade (p=.005), and pre-test score (p=.007). Parameter 
estimates by condition were 3.2 hints per problem for correctness, 4.8 for 
grounded plus correctness, and 16.8 for virtual manipulatives (evaluated at a pre-
test score of .28). Pairwise comparisons show that the differences between virtual 
manipulatives and the other two conditions are significant (p<.0005), while the 
difference between correctness and grounded plus correctness is not significant 
(p>.8), with a Bonferroni correction for multiple comparisons. 
 
Engagement with Numbers in the Virtual Manipulatives Condition. 
One hypothesis predicted that the interface design of the virtual manipulatives 
tutor would draw students’ attention away from the fraction symbols, and 
therefore students would learn procedures that worked easily on fraction bars, 
but would not transfer redily to fraction symbols. However, students did not 
always interact with the tutor as predicted. While students could not type into the 
converted or sum fraction input areas once they had manipulated the fraction 
bars, a bug in the tutor design allowed students to type in numbers beforehand. 
These numbers would be overwritten when input was provided to the fraction 
bars. 90% of students in the Virtual Manipulatives condition inputted numbers in 
this manner while working with the tutor. On average, 50% of a student’s 
attempted problems invovled numeric input. This behavior suggets that the 
interface design did not draw students’ focus away from the numeric sumbols. 
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7.3.3 Outcome Measures for the Three Conditions 
To examine if there were differences between conditions at pretest, I ran an 
ANOVA on pre-test score with test form, order, grade, and condition as fixed 
factors (full factorial model). Grade was significant (p<.0005), as was a grade by 
order interaction (p=.027; forward order was easier for 4th graders, with a 
parameter estimate of .103). There were not significant pre-test differences by 

 
Figure 7.5 Mean score at each assessment time, by condition, with 
bars showing the standard error of the mean. 
 

 
Figure 7.6 Mean scores for the addition items, at each assessment 
time, by condition, with bars showing the standard error of the mean. 
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condition. Figure 7.5 shows the mean scores for each assessment, by condition. 
Figure 7.6 shows the mean scores on the addition items for each assessment, by 
condition. 

 
Overall Learning. To determine if condition led to differences in immediate 
learning, I ran an ANCOVA on post-test scores with condition, grade, and order 
as fixed factors (since there was a significant interaction of grade and test form 
order at pretest), with a full factorial model, including a condition by pre-test 
score interaction term. None of the interactions were significant, so I re-ran the 
model without them. With main effects only, there was a significant effect of pre-
test (p<.0005) and a marginal effect of grade (p=.06). There were no significant 
differences in pre-to-post learning by condition. Since test form order was not 
significant, I re-ran the main effects model without it. With condition, grade, and 
pre-test score, pre-test remained significant (p<.0005), grade remained marginal 
(p=.056), and condition remained not significant (p>.1). Since test form order 
was not significant for immediate learning, it is not included in further models. 

To determine of condition led to differences in retention and future learning, 
I ran an ANCOVA on delayed-test scores, with condition and grade as fixed 
factors, post-test score as a covariate, and interaction terms for condition by 
grade and condition by post-test score. None of the interactions were significant 
so I re-ran the model without them. With a main-effects model, post-test score is 
significant (p<.0005), grade is not significant (p>.1), and condition is marginally 
significant (p=.078). Estimated marginal means show a delayed-test score of .367 
for correctness, .395 for grounded plus correctness, and .415 for virtual 
manipulatives (evaluated at a post-test score of .377). Pairwise comparisons 
indicate that the difference in learning between correctness and virtual 
manipulatives is marginally significant (p=.074), and all other pairwise 
comparisons are not significant (using the Bonferroni correction to adjust for 
multiple comparisons). 

To determine if condition led to differences in learning across the whole 
study, I ran an ANCOVA on delayed-test scores, with condition and grade as fixed 
factors, pre-test as a covariate, and interaction terms for condition by grade and 
condition by pre-test score. There was a significant effect for condition by pre-test 
score (p=.013) but not for condition by grade (p>.8) so the model was re-run 
without the latter. With the new model, condition was significant (p=.019), as 
was pre-test (p<.0005), and the interaction between condition and pre-test 
(p=.011), with grade marginal (p=.06). Parameter estimates for the interaction 
term are .523 for Correctness and .198 for grounded plus correctness. Estimated 
marginal means for delayed-test are .379 for correctness, .402 for grounded plus 
correctness, and .391 for virtual manipulatives (evaluated at a pre-test score of 
.28). None of the pairwise comparisons for condition were significant (with the 
Bonferroni correction for multiple comparisons; condition is not significant if the 
pre-test by condition interaction term is not included in the model).  
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Addition Learning. To determine if there were condition differences on the 
addition item scores at pre-test, I ran an ANOVA on the pre-test addition scores, 
with test form, order, grade, and condition as fixed factors. Grade was significant 
(p<.0005) and there was a marginal grade by order interaction (p=.074). Order 
will be included in subsequent analyses for addition scores. 

To determine if there were differences by condition for immediate learning 
of the target addition content, I ran an ANCOVA on the post-test addition scores, 
with condition, grade, and order as fixed factors and pre-test addition score as a 
covariate. With a full-factorial model and a condition by pre-test addition score 
interaction term, none of the interactions were significant, so the model was re-
run without them. Order was not significant as a main effect in either model, so 
the model was re-run without it. All terms in the main-effects model were 
significant (p<.0005 for pre-test addition score; p=.002 for grade; and p=.049 
for condition). Estimated marginal means for post-test addition score by 
condition are .273 for correctness, .243 for grounded plus correctness, and .199 
for virtual manipulatives (evaluated at a pre-test addition score of .11). Pairwise 
comparisons show that the difference between correctness and virtual 
manipulatives is significant (p=.045) and the other differences are not (with the 
Bonferroni correction for multiple comparisons). 

To determine if there were differences by condition for retention and future 
learning of the target addition content, I ran an ANCOVA on the delayed-test 
addition scores, with condition and grade as fixed factors and post-test addition 
score as a covariate. In a full-factorial model with an interaction term for 
condition by post-test addition score, neither of the interactions were significant 
so the model was re-run without them. With main effects only, condition and 
grade were not significant (p>.3) and post-test addition score was significant 
(p<.0005).  

To determine if there were condition differences across the whole study on 
the target addition content, I ran an ANCOVA on the delayed-test addition scores 
with condition and grade as fixed factors and pre-test addition score as a 
covariate. In a full-factorial model with a condition by pre-test interaction term, 
none of the interactions were significant so I re-ran the model without them. 
With main effects only, pre-test addition score was significant (p<.0005) as was 
grade (p=.018); condition was not significant (p>.4). 

7.3.4 Collapsing the Two Fraction Bar Conditions 
In this set of analyses, the grounded plus correctness condition and the virtual 
manipulatives are collapsed, to determine if the presence of fraction bars affects 
learning (compared to the symbols-only control). Differences at pre-test were 
assessed with an ANOVA on pre-test score, with condition (with or without 
rectangles), pre-test form, order, and grade as fixed factors. With a full-factorial 
model, there was a marginal effect for the grade by order interaction (p=.052) 
and the three-way interaction of grade, pre-test form, and pre-test order (p=.09). 
Re-running the model without the non-significant interactions, there was a 
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significant effect for grade (p<.0005) and a marginal grade by order interaction 
(.092), with no significant differences by condition (p>.5), pre-test form (p>.7) or 
order as a main effect (p>.3). 

 
Overall Learning. To determine if condition led to differences in immediate 
learning, I ran an ANCOVA on post-test scores with condition (with or without 
rectangles), grade, and order as fixed factors (since there was a marginal 
interaction of grade and test form order at pretest), with a full factorial model, 
including a condition by pre-test score interaction term. There was a marginal 
effect for the grade by condition interaction (p=.097) but not for the other 
interaction terms, I re-ran the model without them. With main effects and the 
grade by condition interaction, test form order was not significant, so I re-ran the 
main model without it. With the main effects of grade, condition, pre-test score, 
and a grade by condition interaction term, grade was significant (p=.017), as was 
pre-test score (p<.0005), with a marginal grade by condition interaction 
(p=.065). Condition was not significant as a main effect (p>.3). Parameter 
estimates for the condition by grade interaction are -.08 for 4th grade with 
correctness and 0 for all other combinations. Since test form order was not 
significant for immediate learning, it is not included in further models. 

To determine of condition led to differences in retention and future learning, 
I ran an ANCOVA on delayed-test scores, with condition and grade as fixed 
factors, post-test score as a covariate, and interaction terms for condition by 
grade and condition by post-test score. Neither of the interactions were 
significant so I re-ran the model without them. With a main-effects model, post-
test score is significant (p<.0005), as is condition (p=.039), with no significant 
effect for grade (p>.1). Estimated marginal means show a delayed-test score of 
.367 for correctness and .405 for rectangles (evaluated at a post-test score of 
.377). 

To determine if condition led to differences in learning across the whole 
study, I ran an ANCOVA on delayed-test scores, with condition and grade as fixed 
factors, pre-test as a covariate, and interaction terms for condition by grade and 
condition by pre-test score. There was a significant effect for condition by pre-test 
score (p=.006) but not for condition by grade (p>.7) so the model was re-run 
without the latter. With the new model, condition was significant (p=.006), as 
was pre-test (p<.0005), and the interaction between condition and pre-test 
(p=.005), with grade marginal (p=.066). The parameter estimate for the 
interaction of correctness and pre-test score was .446. Estimated marginal means 
for delayed-test are .379 for correctness and .395 for rectangles (evaluated at a 
pre-test score of .28).  

 
Addition Learning. To determine if there were condition differences on the 
addition item scores at pre-test, I ran an ANOVA on the pre-test addition scores, 
with test form, order, grade, and condition as fixed factors, with a full-factorial 
model. None of the interactions were significant so the model was re-run without 
them. With a main-effects model, only grade was significant (p<.0005). Since 
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pre-test form and order were not significant, they are not included in further 
analyses for the addition scores.  

To determine if there were differences by condition for immediate learning 
of the target addition content, I ran an ANCOVA on the post-test addition scores, 
with condition and grade as fixed factors, pre-test addition score as a covariate, 
and interaction terms for condition by grade and condition by pre-test score. 
Neither interaction term was significant so the model was re-run without them. 
With the main-effects model, there was a significant effect for grade (p=.002) 
pre-test addition score (p<.0005), and condition (p=.046). Estimated marginal 
means are .273 for correctness and .220 for rectangles (evaluated at a pre-test 
score of .111). 

To determine if there were differences by condition for retention and future 
learning of the target addition content, I ran an ANCOVA on the delayed-test 
addition scores, with condition and grade as fixed factors, post-test addition 
score as a covariate, and interaction terms for condition by post-test addition 
score and condition by grade. Neither interaction was significant so the model 
was re-run without them. The only significant main effect was post-test addition 
scores (p<.0005), with no significant effect for grade or condition (both p>.3). 

To determine if there were condition differences across the whole study on 
the target addition content, I ran an ANCOVA on the delayed-test addition scores 
with condition and grade as fixed factors, pre-test addition score as a covariate, 
and interaction terms for condition by grade and condition by pre-test addition 
score. The interactions were not significant so the model was re-run without 
them. With main effects only, grade was significant (p=.019), as was pre-test 
addition score (p<.0005), with no significant effect of condition (p>.2). 

 
Evaluation Items. In study 3, students in the grounded condition had greater 
pre-to-post gains than the correctness condition on the pictures-and-numbers 
evaluation items, while showing similar gains on the numbers-only evaluation 
item. To examine if this finding holds with the present study, I ran a MANOVA on 
the post-test scores for those two groups of items. With the pre-test scores for 
those items as covariates and grade and condition as fixed factors, the multi-
variate tests show significant effects for each pre-test score (both p<.0005), grade 
(p<.0005), and a marginal grade by condition interaction (p=.055). Condition is 
not significant (p>.8). Between-subject effects show that grade is significant for 
post-test numbers-only items (p<.0005) but not for pictures-and-numbers items 
(p>.4). The condition by grade interaction is also significant for the post-test 
numbers-only items (p=.02) but not for the pictures-and-numbers items (p>.8). 
Significant parameter estimates for post-test numbers-only score for terms 
including condition or grade are .114 for correctness (p=.022), -.102 for 4th grade, 
(p=.026) and -.183 for the interaction of correctness and 4th grade (p=.02). None 
of the parameter estimates for terms including condition or grade were 
significant for the post-test pictures-and-numbers scores. This analysis does not 
replicate the findings from study 3, as it finds no main effect of condition for the 
pictures-and-numbers evaluation items. While the interaction of grade and 
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condition seems to suggest that the fraction bar condition led to greater learning 
on the numbers-only evaluation items for 4th graders, it was not a prior 
hypothesis and the interaction is marginal at the multi-variate level.  
 Comparing the pre-to-delayed gains for the numbers-only and pictures-and-
numbers evaluation items leads to similar results. This time the interaction of 
grade and condition was not significant at the multivariate level (p>.2) so the 
analysis was re-run without it. With main effects only, grade was significant 
(p=.001) as were the pre-test scores for each item type (p=.003 for numbers-
only; p<.0005 for pictures-and-numbers). Condition was not significant (p>.8). 
Between-subject effects show that grade is significant for numbers-only 
(p<.0005) but not for pictures-and-numbers (p>.2). The parameter estimate for 
4th grade for the numbers-only delayed-test score is -.142. Again, these results do 
not replicate the findings from study 3: condition was not significant as a main 
effect for the pictures-and-numbers evaluation items.  
 Given that there were no significant differences in pre-to-delayed learning by 
condition for the addition items or the pictures-and-numbers evaluation items, 
what accounts for the significant difference in improvement for the pre-to-
delayed scores overall? One possible candidate is the pictures-only evaluation 
items. One analysis examined delayed-test scores excluding the addition items, 
pictures-only evaluation items, and pictures-and-numbers evaluation items, and 
another analysis examined learning on the pictures-only items. An ANCOVA on 
delayed-test scores without the addition items or the pictures-only or pictures-
and-numbers evaluation items, with the corresponding pre-test score as a 
covariate and grade and condition as fixed factors shows no significant effect of 
condition (p>.2). The first model included main effects and interaction terms for 
condition by grade and condition by pre-test score, neither of which were 
significant (p>.4 for both). When condition by grade was removed, condition by 
pre-test score remained non-significant (p>.4). Condition was not significant in 
either of those models, or in a model that only included main effects (p>.2 for all 
models). In all three models, grade was marginally significant (p=.077 in the first 
model, p=.083 in the second, and p=.074 in the main effects model). Pre-test 
score was significant in all models (p<.0005).  

This analysis suggests that the condition difference in pre-to-delayed gains 
was driven by the pictures-only evaluation items, and not other items on the 
assessments. Further, while there was a significant pre-test by condition 
interaction in the full pre-test to delayed-test analysis, without the addition items 
and without the two evaluation types that included pictures, that interaction is 
not significant. While this may have resulted from a loss of power in looking at 
fewer test items, it is also possible that the interaction was driven by pictures-
only evaluation items. An ANCOVA on the pictures-only scores at delayed-test, 
with scores at pre-test as a covariate and grade and condition as fixed factors 
shows a significant effect of condition (p=.008), and no significant effect of either 
interaction term. Estimated marginal means are .650 for correctness and .776 for 
rectangles for the delayed-test pictures-only evaluation items, evaluated at a pre-
test score of .6195. Together, these analyses indicate that the fraction bar 
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condition had greater gains on the pictures-only evaluation items, and this 
accounts for the greater overall gains from pre-test to delayed-test. This result is 
based on an exploratory analysis and not a prior hypothesis, and is presented 
here only to show that there is no evidence that the fraction bar condition 
demonstrated relative gains on test items that did not include fraction bars. 

7.3.5 Discussion 
Process measures indicate that students had different experiences with each of 
the three tutor conditions. There were significant differences between all three 
conditions for the number of regular tutor problems solved and for the time 
taken per regular problem. The correctness tutor was the easiest to work with on 
these measures (most problems solved with the least amount of time per 
problem), followed by grounded plus correctness and then virtual manipulatives. 
These results make sense given the design of the three conditions: grounded plus 
correctness and virtual manipulatives had less time overall for the regular tutor 
problems because they were given the fraction bar pre-instruction. Further, both 
tutors with fraction bars allowed students to go down incorrect paths, such as 
converting fractions unnecissarily and adding when the two fractions did not 
have the same denominators. For the number of hints requested per problem, the 
means for each condition follow the same pattern (correctness requsted the 
fewest hints per problem, followed by grounded plus correctness and then virtual 
manipulatives), but the only significant differences are between virtual 
manipulatives and the other two conditions. Unsurprisingly, this indicates that 
the fraction bars alone are not as easy for students to interpret as the correctness 
feedback. 

While the three conditions led to large differences in learning expreiences 
with the tutors, they did not lead to large differences in learning outcomes. In 
analyses of the assesment scores for all three conditions, there were no significant 
differences in immediate learning (pre to post). There was a marginal difference 
between correctness and virtual manipulatives for retention and future learning 
(post to delayed) in favor of virtual manipulatives. For learning across the whole 
study (pre to delayed), while there were significant differences in learning by 
condition, non of the pairwise comparisons between conditions were significant. 
However, there was a significant condition by pre-test score interaction, 
suggesting that students with higher pre-test scores would benefit most from the 
correctness condition. For addition learning, there was a significant difference 
between correctness and virtual manipulatives, in favor of correctness, for 
immediate learning. However, there were no significant differences in addition 
learning by condition from post- to delayed-test or over the entire study (pre to 
delayed). When the grounded plus correctness and virtual manipulatives 
conditions are collapsed into one Fraction Bar condition, there are no significant 
differences in immediate learning, but there are significant differences in post-to-
delayed learning and in learning across the entire study. Both of these differences 
show benefits for the fraction bar condition. However, for learning across the 
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entire study, there was a significant condition by pre-test interaction, suggesting 
that that students with higher pre-test scores would benefit most from the 
correctness condition. For the target addition content, correctness showed a 
benefit over fraction bars for immediate learning. However, there were no 
significant differences by condition for addition learning over the whole study. 
On the evaluation items, 4th graders showed greater immeditae learning with the 
fraction bar condition, while 5th graders showed greater immediate learning with 
the Correctness condition. There were no significant effects for condition on the 
evaluation items from pre-test to delayed-test. 

While the original hypotheses predicted differences in learning outcomes 
between correctness and each of the other two conditions, there was no evidence 
that correctness differed from grounded plus correctness. While the differences 
in process measures show that the two tutor designs had an effect on students’ 
actions, that may not have translated to differences in students’ thinking.  

The results for post-to-delayed learning show a marginal difference between 
virtual manipulatives and correctness, suggesting that the greater difficulties 
encountered by the virtual manipulatives students may have led to more robust 
learning. The interface design of the virtual manipulatives tutor was hypothesized 
to draw students’ attention away from the fraction symbols, and therefore 
encourage the learning of procedures students that worked easily on fraction bars 
but would not transfer redily to fraction symbols. However, students still engaged 
with the fraction symbols in the virtual manipulatives tutor. While students could 
not type into the converted or sum fraction input areas once they had 
manipulated the fraction bars, students could type in numbers beforehand. Even 
though these numbers would be overwritten when input was provided to the 
fraction bars, the vast majority of the students in the virtual manipulatives 
condition inputted numbers at least once. This behavior suggets that the interface 
design did not draw students’ focus away from the numeric sumbols. While the 
interface was intended to have the symbolic numbers shown as feedback when 
students manipulated the fraction bars, students may have perceived the buttons 
to be the input device for both the fraction symbols and the fraction bars. If the 
input mode does not change students’ allocation of attention between the two 
representations, there should be no difference in learning between grounded 
feedback and virtual manipulatiaves. However, one input mode may be more 
cumbersome than the other, which may lead to differences in learning by slowing 
students’ progression through the tutor. 

7.4 Conclusion 
In comparing correctness feedback to grounded plus correctness and virtual 
manipulatives, Study 5 found hints of more robust learning with the two tutors 
that included fraction bars, especially so for students with low prior knowledge. 
For evaluating the importance of input mode to grounded feedback, this study 
suggests that input mode may only be important to the extent that it affects 
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students’ allocation of attention between the input and feedback representations. 
Redesigning the virtual manipulatives tutor so that the buttons do not show 
numbers and so the students cannot enter numbers in the converted and sum 
fraction areas at any point may be a better test of input mode. Those aspects of 
the tutor design may have drawn students’ attention to the symbolic 
representation, when the purpose of the study was to examine students’ learning 
when their attention was focused on the more concrete representation. 
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8  Conclusion 

This thesis presents grounded feedback, a use of multiple representations 
whereby the student’s inputs, in the target, to-be-learned representation, are 
reflected in a more concrete representation that is easier for the student to reason 
with. Chapter 1 defines grounded feedback with four features: 

1) The feedback is intrinsic to the domain and reflects the students’ inputs.  

2) Students can easily envision the feedback state that indicates a correct answer 
to a given problem. Therefore, by examining the feedback, students can 
evaluate for themselves if their answers are correct or not.  

3) Students do not directly manipulate the feedback representation. Instead, the 
inputs are in a format that matches the domain learning goals.  

4) The feedback affords meaningful inferences on errors, beyond the indication 
that an action was incorrect. By examining the feedback representation and 
its correspondence to the input representation, the student can extract 
information about the nature of the error. 

 
The concrete representation was hypothesized to help students evaluate the 
outcome of their procedures in light of the concepts that underlie them. By 
facilitating this evaluation step instead of performing it for the student, grounded 
feedback is hypothesized to support students in connecting concepts and 
procedures and therefore promote robust learning. Having students’ inputs be in 
the abstract representation instead of the concrete representation was 
hypothesized to promote transfer to abstract-only contexts. Finally, beyond 
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supporting students in evaluating the correctness of an action, grounded 
feedback is hypothesized to facilitate students’ inferences about the domain (e.g., 
that adding the numerators and denominators of two positive addends yields a 
sum that is incorrect because it is too small). While grounded feedback has been 
implemented in several educational technology systems, it has not previously 
been explicitly defined.  

Is grounded feedback effective for learning? Studies 2 and 3, along with prior 
experiments (Mathan & Koedinger, 2005; Nathan, 1998), indicate that it is. 
When compared to immediate step-level correctness feedback, grounded 
feedback led to greater learning from pre-test to delayed-test (in Study 2) and 
greater improvement on transfer tasks from pre-test to post-test (in Study 3, 
which did not have a delayed-test). These greater gains, in both studies, did not 
come at the expense of procedural skill. Even though students in the grounded 
conditions practiced fraction addition with two representations, the 
demonstrated improvement with symbols-only fraction addition was not 
significantly different from the symbols-only correctness condition (both from 
pre-test to post-test and from pre-test to delayed-test in Study 2, and from pre-
test to post-test in Study 3). 

8.1 Is Each Feature of Grounded Feedback Important? 
The studies in this thesis have partially evaluated the first three features of 
grounded feedback, and a comparison between these findings and those of prior 
work in other domains offers a hypothesis about the last feature. 

The first feature, providing feedback with an intrinsic representation, is 
supported by studies 2, 3, and 5, which found benefits for the conditions that 
included fraction bars over the symbols-only control condition. Even when 
students struggled in using feedback to evaluate their own work (as in Study 2), 
they still benefitted from it. The difficulty factor assessments in Chapter 4 shows 
how to evaluate if a representation is intrinsic and appropriate for grounded 
feedback: determining that students can perform a domain-relevant task with the 
feedback representation alone (e.g., deciding if an equation is true or not with the 
pictures-only representation), and that the task is made easier with the feedback 
representation as compared with the symbolic representation alone (e.g., the 
evaluation task was easier in the pictures-and-numbers format compared with 
numbers-only).  

The motivating hypothesis behind the second feature, that students can use 
the grounded representation to evaluate their own work, was that self-evaluation 
would help students connect their prior conceptual knowledge to the task at 
hand. Specifically, the necessity of self-evaluation, prompted by the absence of 
step-level correctness feedback, would help students actively engage their own 
knowledge. This mechanism was not born out by Study 4, which found that 
students benefitted equally from grounded feedback, whether step-level 
correctness feedback was included or not. Additionally, pairwise analyses for the 
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three conditions in Study 5 did not indicate differences in learning between the 
virtual manipulatives condition (which did not include step-level correctness 
feedback) and the grounded plus correctness condition (which did). Further 
research is necessary to determine if including step-level correctness feedback 
influences how students engage with the grounded feedback. 

The motivating hypothesis behind the third feature was that if students could 
manipulate the concrete representation directly, they would have no motivation 
to engage with the harder-to-interpret target representation. This would harm 
students’ learning since procedures on concrete representations often do not 
transfer easily to procedures on abstract symbols (Resnick & Omanson, 1987; 
Sarama & Clements, 2009; Uttal et al., 2013). The results from Study 5 do not 
support the first part of this hypothesis: even though students in the virtual 
manipulatives condition manipulated the rectangles, they still engaged with the 
symbolic numbers. Evidence for this engagement is found in the log data.  

A bug in the interface design allowed students to input numbers for the 
converted and sum fractions when those interfaces first appeared. Those inputs 
would be overwritten once the student began to set the value for the fraction bar 
(which was necessary for advancing to the next problem). Students not only 
engaged with the symbolic representation, they did so even when it meant 
performing additional, unnecessary steps. Some of this engagement may have 
been promoted by details of the interface design: the input buttons for the 
fraction bars were labeled with numeric symbols.  

Additionally, students may have attended to the symbolic representation 
because of the particular demands of the fraction addition task. While the 
concrete representation makes evaluating the equations easier, it is not trivial to 
solve such equations with the concrete representation alone. In particular, when 
dealing with large denominators (e.g., 7/24 +1/18), it is easier to confirm that two 
fractions have been converted to the same denominator (e.g., 21/72+4/72) when 
looking at the symbolic representation rather than the concrete one. While prior 
work has found poor transfer between learning with a concrete representation 
and performance with an abstract one (and visa versa; Uttal et al., 2013), I am 
not aware of work that examined the importance of input modality when both 
representations are presented together. The results from Study 5 suggest that 
students will benefit when they attend to both representations, and there are 
nuances in designing instruction that manipulates students’ attention. In 
retrospect, attention on the abstract representation could have been reduced if 
the input buttons were not labeled with numbers and if the bug that afforded 
numeric input was eliminated. Further, it is likely that features of the domain will 
determine how students allocate their attention. For example, if the task had 
been finding equivalent fractions instead of fraction addition, students may not 
have engaged with the symbolic representation. Future work should continue to 
investigate how students allocate their attention between representations when 
concrete and abstract representations are both available.  

The last feature of grounded feedback, that students can make meaningful 
inferences about the domain by coordinating between the input and feedback 
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representations, was not evaluated experimentally in this thesis. However, a 
comparison of the results from studies with the fraction addition tutors and the 
Intelligent Novice Spreadsheet tutor (Mathan & Koedinger, 2005) and ANIMATE 
(Nathan, 1998), suggests that better coordination of the input and feedback 
representations leads to better learning. While grounded feedback in the fraction 
addition tutors led to improved long-term learning (pre-to-delayed-test) and 
improved learning on transfer tasks compared to a correctness-feedback control, 
none of the studies in this thesis found benefits for grounded feedback for 
immediate learning of symbolic fraction addition. In contrast, Mathan and 
Koedinger (2005) found immediate benefits for the intelligent novice 
spreadsheet tutor, over the immediate correctness-feedback control, not only for 
transfer tasks but also for the target task. Nathan (1998) also found immediate 
relative benefits for the target algebra-symbolization task, although those 
benefits were only shown for two of the three problem types.  

An ordering of the three research projects by the robustness of their findings 
(spreadsheets, algebraic symbolization, and then fraction addition) appears to 
correspond with the level of coordination students achieved in each setting,  
whether with support or own their own. The intelligent novice spreadsheet tutor 
provided explicit support for mapping between the formula input, the cells that it 
referenced, and the resulting value (Mathan & Koedinger, 2005). This 
coordination support was provided as part of the intelligent novice guidance: if 
students made an error and could not identify or correct it on their own, the tutor 
would provide the coordination support to help students see the error not just in 
terms of the feedback representation, but also in terms of how the error 
manifested in the input representation. Only after showing the mapping between 
the cause (the incorrect cell reference) and the effect (the incorrect cell value) did 
the tutor provide guidance in correcting the error. Therefore, the intelligent 
novice tutor can be interpreted as not just offering a context for intelligent novice 
errors to occur and to be corrected by the student, but also as offering explicit 
instruction and practice with coordination.  

The ANIMATE tutor did not provide explicit support for interpreting the 
animation feedback, but students often coordinated the representations on their 
own as demonstrated both by a reduction of error rates between pre-test 
problems and tutor problems and by a large number of self-corrections during 
tutoring in response to the animations (Nathan, 1991). However, students 
seemed better able to coordinate the representations when the problems involved 
travel or interest rates rather than work (Nathan, 1998). The crucial difference 
appears to be the difference between the values presented in the problem and the 
values needed in the equations. With travel problems, students were given the 
vehicles’ speed in miles per hour, which could be directly inputted to an equation 
such as miles traveled = speed * hours traveled. However, with work problems, 
students were given a productivity level in hours needed to complete a task (e.g., 
“Tom can paint the fence in two hours”; Nathan, 1991, p.102), while the equations 
in the tutor interface required the amount of work that could be completed in one 
hour (e.g., work completed = work performed per hour * hours worked). 
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Therefore, the work problems required students to use the reciprocal of the given 
value (.5 fences per hour instead of 2 hours per fence), while the travel and 
investment problems allowed students to use the rates as they were given in the 
problem statement. The necessity of using the reciprocal made it more difficult 
for students to coordinate the symbolic and animated representations: when 
students used the given value they could tell that the animation showed the 
wrong rate, but the animations did not provide enough support for the student to 
know what to try next (Nathan, 1998). Therefore, for the work problems, the 
animation feedback offered no more information than correctness feedback, 
which provides an explanation for why grounded feedback led to better learning 
than correctness feedback for the travel and investment problems but not the 
work problems.  

Of the three domains, students had the most difficulty coordination the 
representations in the fraction addition tutor. The difficulty factor assessments 
discussed in Chapter 4 show that proficiency in evaluating a fraction addition 
equation is reduced when symbols are included with the fraction rectangles. The 
analogous situation in the other domains would be for students to be worse at 
evaluating the correctness of a spreadsheet formula if they saw the formula along 
with the calculated values for each cell (as opposed to just seeing the calculated 
values), or for a student to be worse at evaluating if an animation matched a story 
problem if they saw the algebraic equations along with the animation (as opposed 
to the animation alone). Although Studies 2 and 3 show benefits for grounded 
feedback in the domain of fraction addition, it is likely that grounded feedback 
will be more effective when students are better able to coordinate between the 
two representations. 

An issue related to the coordination of representations is the students’ prior 
conceptual knowledge. The second difficulty assessment in Chapter 4 suggests 
that one reason students may have trouble coordinating the symbolic and 
concrete fraction representations is that they do not have a solid foundation of 
qualitative inference rules for addition. Specifically, students did not find it 
obvious that the sum of two positive fractions is larger than each addend alone. 
While this concept is not necessary, in the strictest sense, for coordinating the 
representations, it does seem to be relevant. Neither of the prior experiments 
(Mathan & Koedinger, 2005; Nathan, 1998) report gaps in students’ prior 
conceptual knowledge that would impinge on their ability to interpret the 
feedback representation. 

8.2 An Ideal Model of Coordination with Grounded 
Feedback 
Practice with the grounded feedback tutor transfers to symbolic addition as 
evidenced by students’ improvement on the fraction addition items over the 
course of each study. What cognitive processes might account for this transfer? 
Table 8.1 illustrates potential cognitive steps that students might take after 
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making an error when using grounded feedback, with the fraction conversion 
from Chapter 5 as an example.  
 
Domain-General 
Self-Monitoring 

Fraction Conversion Example Grounded Feedback 

1. Detect a 
discrepancy 
between the 
actual state and 
the expected 
state, in terms of 
both 
representations. 

Expected state: the converted fraction 
will be equivalent to the addend, so 
both fraction bars will have the same 
amount filled in 
Actual state: 18/24 does not line up 
with 3/8, meaning that 18/24 does 
not equal 3/8 

 

2. For all of the 
other ways that 
the answer can 
vary, identify if 
any are correct, in 
terms of both 
representations  

The dividing lines for the addend line 
up with those of the converted 
fraction, meaning that the addend can 
be converted to 24ths. This is the 
correct denominator because it works 
for both 3/8 and 1/3 (the other 
addend).  

 
3. Identify which 
aspects of the 
answer should be 
changed, for both 
representations 

The dividing lines are correct but the 
total amount colored in is wrong, 
meaning that only the numerator 
should be changed 

 

4. Identify how 
those aspects 
should be 
changed 

Too much is colored in; numerator 
should be smaller 

 

5. Execute the 
change, repeating 
until the original 
discrepancy is 
resolved  

Input smaller numerators until the 
magnitudes of the two fractions are 
equal 
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Table 8.1: Ideal domain-general self-monitoring execution with fractions and 
supported by grounded feedback.  
 

The domain-general cognitive steps in table 8.1 express error detection and 
correction at a high level. The corresponding problem-specific steps for fraction 
conversion illustrate how a student could use the grounded feedback to carry out 
those domain-general steps without prior knowledge of how to convert symbolic 
fractions procedurally. These cognitive moves illustrate how grounded feedback 
can draw on conceptual knowledge for evaluation and reinforce the connection 
between the conceptual knowledge and procedural steps. For the first step, 
identifying a discrepancy, the student must draw on conceptual knowledge that 
equivalent fractions have the same magnitude. This may reinforce the connection 
between conceptual knowledge and the larger fraction addition procedure: 
instead of adding the original addends directly, one converts and adds the 
converted fractions, which is reasonable only because the converted fractions 
have the same magnitude as the original addends. For the second step, 
identifying correct aspects of the current answer, the student again draws on 
conceptual knowledge: to find a denominator for both converted fractions, it 
must be divisible by the denominator for each original addend. In terms of the 
grounded feedback, this divisibility relationship is represented by the alignment 
between the dividing lines for the original addends and the dividing lines for the 
converted fraction. For the third step, identifying which aspect of the current 
answer should be changed, the student draws on conceptual knowledge regarding 
the role of the numerator and denominator in determining the magnitude of the 
fraction: the denominator determines the size of the fraction pieces, while the 
numerator determines how many are present. The execution steps provide a 
check for the student’s reasoning: making the numerator smaller should yield a 
new fraction that is smaller, but should not change the size of the pieces. 
Reinforcing the connection between the concepts and procedures may give the 
student more confidence that the procedural steps are correct, and may also help 
the student re-construct the procedure if it was not memorized completely.  
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For all studies that included the correctness feedback tutor (studies 2, 3, and 
5), students in the correctness condition solved more tutor problems than 
students in the conditions that included fraction bars. Students in the correctness 
conditions therefore had more opportunities to practice the fraction addition 
procedure with different addends, and this procedural practice likely caused the 
fraction addition learning. Students in the grounded conditions also improved, 
but through a different path. They solved fewer problems, and therefore did not 
have as much procedural practice. (While they spent more time per problem, 
some of that time was spend on conceptual tasks and thus they had less total 
procedural practice time.) Instead, their learning likely stemmed from gains in 
both conceptual and procedural knowledge, and practice connecting the two.  
This combined practice produced a kind of less-is-more effect on procedural 
outcomes whereby they learned just as much with fewer total practice problems 
and less time allocated purely toward procedural practice. 

8.3 Limitations 
While this thesis demonstrates benefits for learning with grounded feedback, it 
does not provide evidence for a complete mechanism for how students learn with 
grounded feedback. While one hypothesized process for connecting concepts and 
procedures is presented above (section 8.2), the current studies cannot provide 
evidence that students engage in such processes, either implicitly or explicitly. 
One hypothesis is that grounded feedback will be more effective for students who 
are better able to coordinate between the input and feedback representations. 
One assessment of this coordination ability was the set of evaluation items that 
included both fraction bars and symbols (from the Difficulty Factor Assessments 
in Chapter 4 and in the pre- and post-tests for Studies 3, 4, and 5). If these items 
test knowledge that is important for learning from grounded feedback but not 
from correctness feedback, then performance on these items should predict 
learning for students working with grounded feedback, but not for students 
working with correctness feedback.  

To test this assumption, I ran an ANCOVA on the post-test scores for Study 
3, with the full pre-test score as a covariate, and the score on the pictures-and-
numbers evaluation items as an additional covariate. Grade and condition were 
included as fixed factors, and a condition by evaluation-item-pre-test-score 
interaction. The interaction was not significant (p>.4), indicating that 
performance on the pictures-and-numbers evaluation items did not differentially 
predict learning between the two conditions. Another analysis examined post-test 
addition scores, with pre-test addition scores and pre-test pictures-and-numbers 
evaluation scores as covariates, grade and condition as fixed factors, and the 
condition by evaluation-item-pre-test-score interaction. Again, the interaction 
was not significant (p>.9), indicating that the pictures-and-numbers evaluation 
items did not differentially predict addition learning between the two conditions. 
Similar analyses for Study 5 also did not reveal a significant interaction.  
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One interpretation of this negative result is that coordination may not be the 
key to learning from grounded feedback. Alternatively, the test items may have 
been overly coarse for measuring students’ coordination. Additionally, students 
may respond differently to grounded feedback during problem solving than they 
do to a grounded representation on an assessment. Future work should probe the 
specific mechanisms for how students learn from grounded feedback, and what 
types of assessment items will accurately predict such learning.  

Finally, students in conditions with fraction bars requested more hints than 
students in the correctness conditions (studies 2, 3, and 5), and it is possible that 
greater engagement with the hints caused students’ learning, either by supporting 
students’ interpretation of the grounded feedback or independently. An in vivo 
study with a tutor that did not provide immediate correctness feedback or 
grounded feedback was thought to be unethical because it was hypothesized to 
lead to unproductive floundering. A lab study with such a tutor may help 
distinguish between learning benefits from the hints alone and learning benefits 
from hints plus grounded feedback.  

8.4 Contributions and Future Work 
This thesis defined and began to evaluate grounded Feedback, a use of dual 
representations that was present in prior work but had not been explicitly defined 
or fully evaluated. This thesis provides evidence that grounded feedback is 
effective for learning. However, this thesis also shows that grounded feedback is 
not uniformly effective across domains, and indicates that students’ prior 
conceptual knowledge and their ability to coordinate the input and feedback 
representations may influence grounded feedback’s effectiveness. Future work 
should continue to explore how features of the domain and students’ prior 
knowledge affect the benefits of grounded feedback. Further, future work should 
examine if explicit support for coordination and metacognitive support for 
invoking a “self-critic” may enhance students’ learning with grounded feedback. 
As discussed in Chapter 4, a self-critic uses conceptual knowledge to evaluate the 
outcome of a procedure (e.g., a self-critic may checks the result of an arithmetic 
procedure using the qualitative inference rules that the sum of two positive 
addends must be larger than either alone). While domain-specific support for 
coordinating the input and feedback representations will likely help the self-critic 
function, students may also benefit from metacognitive support for invoking it in 
the first place. This domain-general support could prompt students to check their 
work, to think about what conceptual knowledge they can use to check their 
work, and to consider what information present in the tutoring interface has 
relevance for those concepts.  

The domain-general self-monitoring steps in table 8.1 are metacognitive 
steps that form a procedure for self-monitoring(Zimmerman & Campillo, 2003). 
They are metacognitive in the sense that they reflect on responses produced by 
cognition – in this case, coordinating between cognition that results from 
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considering both representations. As procedural steps, students will likely learn 
them better with practice and feedback. These steps provide a sketch of a 
metacognitive model that could provide the basis for metacognitive model tracing 
and tutoring (Roll, Aleven, McLaren, & Koedinger, 2011; Walker, Koedinger, 
McLaren, & Rummel, 2006). Further, while this thesis examined grounded 
feedback when students interacted with it individually, students may benefit 
from working collaboratively, discussing the feedback with a partner and 
justifying their self-evaluations (cf. Walker, Rummel, & Koedinger, 2014).  

This thesis also investigated students’ evaluation of fraction addition 
equations and provides evidence that middle school students may lack 
foundational concepts for fraction addition. In particular, while students seem to 
understand addition with fraction bars alone, the presence of fraction symbols 
reduces students’ performance. Further, it was not obvious to 5th graders that the 
sum of two positive fractions is larger than either of its addends alone. These 
results indicate gaps in students’ knowledge of the relationship between fraction 
symbols and the magnitudes they refer to, as well as the role of magnitude in 
addition. These findings suggest that middle school students may need more 
instruction on these concepts.  
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Appendix A: Test form A  
This test form was used in studies 3, 4, and 5, with students randomly assigned to see the 
questions in forward or reversed order. 
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Appendix B: Test form B  
This test form was used in studies 3, 4, and 5, with students randomly assigned to see the 
questions in forward or reversed order. 
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