

M. Kurosu (Ed.): Human-Computer Interaction, Part I, HCII 2014, LNCS 8510, pp. 533–544, 2014.
© Springer International Publishing Switzerland 2014

Reflections on the Cross-Platform
Semiotic Inspection Method

Rodrigo de A. Maués and Simone Diniz Junqueira Barbosa

Informatics Department, PUC-Rio
Rua Marques de Sao Vicente, 225/410 RDC
Gavea, Rio de Janeiro, RJ, 22451-900, Brazil
{rmaues,simone}@inf.puc-rio.br

Abstract. Evaluating cross-platform systems can be quite challenging. Unfor-
tunately, despite the increasing number of such systems and therefore growing
need for evaluation methods, little work has been done on the matter. We have
extended the Semiotic Inspection Method (SIM), a Semiotic Engineering evalu-
ation method, to evaluate cross-platform systems, producing the CP-SIM
variant. However, despite its support in identifying and classifying several po-
tential issues particular to cross-platform systems, the cross-platform aspects of
the method (called ‘horizontal analysis’) were only briefly illustrated by an ana-
lytical study in the original work. This paper provides deeper reflection and a
more detailed account of the horizontal analysis in order to support evaluators
in using the method. It also situates CP-SIM among related work on cross-
platform system evaluation.

Keywords: Cross-platform, user interface design, communicability, semiotic
inspection method, semiotic engineering.

1 Introduction

Users increasingly expect to have access to the same applications and services with a
multitude of computing devices (e.g., PCs, smartphones, tablets, digital TVs), which
differ greatly in their capabilities and constraints (e.g., screen size and resolution,
input mechanisms, etc.) [1, 2, 3, 4, 5]. Traditional evaluation methods are not entirely
adequate to assess the quality of these cross-platform systems, since the evaluated
quality of separate parts (i.e., system versions on each platform) does not necessarily
correspond to the quality of the whole cross-platform system [2]. However, despite
the increasing number of such systems and therefore growing need for specific evalu-
ation methods [1], little work has been done on the matter.

This paper advances a line of research that evaluates cross-platform systems based
on Semiotics rather than cognitive theories [2, 5, 6]. In a previous work [7], we ex-
tended the Semiotic Inspection Method (SIM) [8] in order to provide a systematic
way to evaluate cross-platform systems, resulting in the Cross-Platform Semiotic
Inspection Method (CP-SIM). However, we only briefly illustrated the cross-platform
aspects of CP-SIM (called ‘horizontal analysis’) by an analytical study. This paper

534 R. de A. Maués and S.D. Junqueira Barbosa

provides deeper reflection on and a more detailed account of the horizontal analysis in
order to support evaluators using the method. It also situates CP-SIM among related
work on cross-platform system evaluation.

This paper is organized as follows. We begin by presenting the theoretical back-
ground and related work. We then take a deeper look at the horizontal analysis of
CP-SIM, discussing further about each sign manipulation type and about other
key concepts for CP-SIM, relating them with concepts found on cognitive theories
literature. Finally, we present our conclusions and future work.

2 Theoretical Background

This section presents some basic semiotic engineering concepts, necessary to under-
stand the Semiotic Inspection Method, also described here.

2.1 Semiotic Engineering Basics

Semiotic Engineering [9] is a reflective and explanatory (as opposed to predictive)
theory of human-computer interaction (HCI) that focuses on communicative rather
than cognitive aspects of HCI analysis and design. It views the user interfaces of in-
teractive systems as meta-communication artifacts, i.e., through the user interface,
designers1 convey to the users their understanding of who the users are, what they
know the users want or need to do, in which preferred ways, and why. Users then
unfold and interpret this message as they interact with the system. This meta-
communication message can be paraphrased as [9]:

“Here is my understanding of who you are, what I have learned you want or need
to do, in which preferred ways, and why. This is the system I have therefore designed
for you, and this is the way you can or should use it in order to fulfill a range of pur-
poses that fall within this vision.” (p.25)

The designer-to-user message is comprised of signs [9, 10]. A sign is anything that
stands for something else, to somebody in some respect or capacity [11]. Signs com-
pose one or more signification systems that arise from culturally (and, in the case of
HCI, also artificially) encoded associations between content and expressions [9, 10,
12]. For example, words and images typically come from signification systems that
exist in a culture outside the specific context of HCI, whereas mouse pointers belong
to signification systems that are native to computer applications.

Semiotic Engineering classifies the signs in three different types [9]: static, dy-
namic and meta-linguistic. Static signs express and mean the system’s state (e.g.,
icons, text areas, buttons at a given moment, menus). Dynamic signs express and
mean the system behaviour and emerge during interaction (e.g., a save button be-
comes enabled after entering the name of a client in a registration form). Meta-
linguistic signs refer to other interface signs and are used by the designer to explicitly

1 In this paper, designers should be interpreted as whoever speaks for the design team of a given

application.

 Reflections on the Cross-Platform Semiotic Inspection Method 535

communicate to users the meanings encoded in the user interface and how they can be
used (e.g., instructions and explanations, error and warning messages, hints and
tooltips).

Based on this theoretical framework, the quality of a user interface is given by its
communicability, which is “the system’s property to convey effectively and efficiently
to users its underlying design and interactive principles” [9]. On the one hand, when a
user can comprehend how the system works because the designer expressed himself
properly through the user interface (communicability), it becomes easier to learn how
to use it (usability) [9, 10]. On the other hand, when the user fails to understand the
communication intended by the designer, a communication breakdown takes place
that may hinder or even preclude the use of the system [10].

2.2 The Semiotic Inspection Method

The Semiotic Inspection Method (SIM) [8] is a qualitative inspection method
grounded in Semiotic Engineering that allows the evaluation of the communicability
of a computer system through the analysis of its signs. The goal is to identify commu-
nication breakdowns that may take place during the user-system interaction and to
reconstruct the designers’ meta-message conveyed by the user interface.

SIM requires a preparation phase, in which the evaluator defines the purpose of the
inspection, performs an informal inspection by navigating through the system to de-
fine the focus of the evaluation, and finally elaborates the inspection scenarios. Next,
the evaluator proceeds to the execution of the inspection. To execute the method
properly, the evaluator must assume a “user advocate” position. The execution of the
method is carried out in five distinct steps: (1) a meta-linguistic signs inspection; (2) a
static signs inspection; (3) a dynamic signs inspection; (4) a contrastive comparison of
designer-to-user meta-communications identified in steps (1), (2), (3); and, finally, (5)
a conclusive appreciation of the overall system communicability. In the first three
steps, the evaluator inspects the signs within the scope of the evaluation and recon-
structs the meta-messages conveyed by them at each level, filling out the template of
the designer-to-user meta-communication and identifying potential communicability
problems at each level. In step (4) the evaluator contrasts the meta-messages generat-
ed in the previous steps and checks for potential ambiguities among them. Finally, in
step (5), the evaluator qualitatively assesses the system communicability by unifying
the meta-communication messages and then generates a report.

3 Related Work

Despite the proliferation of cross-platform systems, when it comes to evaluating such
systems, it is not yet very clear which evaluation techniques should be used [1]. A
great body of work has been done over the last years regarding the design and devel-
opment of such systems [3, 4, 13, 14, 15, 16]. However, a rare few have focused on
their evaluation, which is one of the main needs of practitioners [1].

536 R. de A. Maués and S.D. Junqueira Barbosa

Öquist and coauthors discuss a method to assess usability of different interfaces by
taking into account the different environments or contexts where different devices and
interfaces are used, and by identifying some environmental variables that affect the
usability of different devices and interfaces in those contexts of use [17]. However,
this evaluation is not sufficient to guarantee the quality of cross-platform systems,
since, as argued by Denis and Karsenty, the evaluated quality of each separate
platform does not necessarily correspond to the quality of the whole cross-platform
system [2]. People alternately use the “same” application in different platforms, fre-
quently switching from one to the other. When traversing between system versions of
a cross-platform system, a person should be able to reuse his or her knowledge of the
available functions and of how to perform tasks. Based on that, Denis and Karsenty
introduced the concept of inter-usability to designate “the ease with which users can
reuse their knowledge and skills for a given functionality when switching to other
devices” [2]. They also introduced a conceptual framework for achieving inter-
usability, which proposes design principles addressing inter-device consistency2,
transparency and adaptability. They focus on knowledge and task continuity, and on
how these can be better supported through design.

Huang and Strawderman [6] also acknowledge that the knowledge gained from the
previous platform may greatly affect users’ performance in the following platforms,
but they believe that a lack of theoretical support weakened the generalization of the
approaches proposed in [2]. Hence, they proposed the Usability Paradigm for Mul-
tiple Device System (UPMDS), a conceptual framework that relies on the area of
transfer of learning [18], which embraces many theoretical and empirical studies
rooted in behavioral and cognitive psychology. In their framework, usability is com-
posed of two attributes: transferability and user perception, with transferability further
divided into effectiveness, efficiency and user perception further divided into satisfac-
tion and attractiveness. They define transferability as “the ease with which users
switch between using different interfaces”. Their work is still in its initial stages, and
more studies are needed to empirically validate the framework.

Instead of focusing on the usability as the aforementioned studies, Wäljas et al. in-
vestigated the key elements that characterize the user experience when users exploit
web-based applications through different computing platforms [5]. They conducted
their analysis focusing on three key themes: composition, continuity and consistency.
Based on their findings, they proposed an initial conceptual framework of cross-
platform user experience, in which the central elements include: fit for cross-contextual
activities; flow of interactions and content; and perceived service coherence.

Maués and Barbosa [7] have shifted the focus from cognitive theories to semiotic
engineering [9] and provided a systematic way to evaluate cross-platform systems: the
cross-platform semiotic inspection method (CP-SIM). Having a method specific for
evaluating cross-platform system, instead of only conceptual frameworks, meets the
practical needs of practitioners. We discuss CP-SIM in detail next.

2 In this paper we follow a definition of consistency similar to the one adopted in [2]: striving

for uniformity regarding the system’s appearance, presentation and offered functionalities.

 Reflections on the Cross-Platform Semiotic Inspection Method 537

4 CP-SIM

When evaluating each platform of a cross-platform system separately, each one may
have high communicability. However, when traversing between platforms, the user
brings his or her understanding of one version that may not be applicable to another,
creating or enhancing conflicts and communication breakdowns. Hence, the designer-
to-user messages within a cross-platform system should not be conflicting; instead,
they should complement each other.

With that in mind, we introduced the quality attribute named cross-
communicability [7]: the cross-platform system property of each of its platforms being
able to convey effectively and efficiently to users not only its individual underlying
design and interactive principles, but those of the cross-platform system as a whole.
Just like high communicability consequently leads to a better usability [9], it is ex-
pected that high cross-communicability will result in a better inter-usability.

To assess the cross-communicability of a cross-platform system, we proposed CP-
SIM [7], an extension of SIM [8]. After the SIM’s traditional preparation, the execu-
tion of the method is involves two phases: vertical (within-platform) analysis and
horizontal (between-platform) analysis.

We designed the vertical analysis to evaluate the communicability of the system in
each platform individually. Hence, it consists of conducting the same five steps of the
traditional SIM, with one difference: the evaluator should also highlight the signs that
denote any compositional aspects of the cross-platform system (e.g., a sign that ac-
knowledges the existence of another version of the system).

After completing the vertical analysis, the horizontal analysis consists of contrast-
ing the meta-communication messages of each system version in order to assess the
system’s cross-communicability. This analysis is based on a semiotic framing of de-
sign changes initially proposed for End-User Development (EUD) [12], where the
differences between the system versions are related to possible manipulations made to
signs on each interface. The horizontal analysis is composed of three steps: (1) to
identify the sign manipulations in each pairwise combination of the evaluated plat-
forms; (2) to examine the manipulations collated and categorized in the previous step
to assess how they could negatively affect the horizontal meta-communication mes-
sages by intensifying already identified vertical communication breakdowns (e.g.,
causing ambiguities) or even by creating new ones; and (3) to qualitatively assess the
system cross-communicability by unifying the meta-communication message ob-
tained in each previous step, judging the costs and benefits of the identified manipula-
tions made between platforms. After going through the three analysis steps, the
evaluator generates an evaluation report.

5 Reflections on the Horizontal Analysis

There already is a good body of work explaining and exemplifying how to properly
apply the traditional SIM [9, 10], and therefore it is safe to assume that it would not
be difficult to conduct the vertical analysis. However, the same cannot be said about

538 R. de A. Maués and S.D. Junqueira Barbosa

the horizontal analysis, which is a significant part of the proposed method. As men-
tioned before, the horizontal analysis relies on concepts taken from [12], namely,
impermeability, semiotic dimensions and computer manipulation of signs. However,
in [7], we could barely mention the concept of semiotic dimensions and we could only
briefly discuss about the manipulation types that were found in their analytical study.
In order to support evaluators to better identify and analyze the manipulations of
signs, in this paper we discuss the aforementioned concepts in more details later in
this section, and we contrast them with concepts found on related work to provide a
better understanding and to avoid ambiguity.

From the nature of the manipulation, we can identify potential cross-
communication breakdowns [7]. Regardless whether the signs were manipulated or
conserved across platforms, the evaluator should intentionally explore the possibility
of assigning plausible contradictory or ambiguous meanings to the signs that consti-
tute the messages in the evaluated platforms. We derived some questions from our
previous analytical study [7] that can serve as scaffolds for the evaluators’ analysis:

1. Would the user plausibly be able to interpret this sign differently in other platform?
How? Why?

2. Would the misinterpretation of this sign propagate and affect the interpretation of
the same or other signs in other platforms? How? Why?

3. Would the user plausibly be able to interpret this sign consistently in this particular
platform regardless of the amount and order of platforms that he previously inter-
acted with? Why?

These questions are not the only ones that the evaluator can or should ask, but they
provide useful guidance and input for conducting a productive horizontal analysis,
which is especially useful for less experienced evaluators. Next we discuss in detail
and in the context of cross-platform systems the aforementioned concepts of imper-
meability, semiotic dimensions and computer manipulation of signs.

5.1 Impermeability of Signs

The concept of impermeability [12] is related to the encapsulation of signs, i.e., when
the sign meaning is in an atomic capsule and therefore it cannot be altered. Thus, the
originally encoded meaning of impermeable signs is always preserved. Impermeable
signs can be essential or accidental. Essential impermeable signs can only be used in
monotonic manipulations, i.e., those that do not destroy the basic meanings (identity)
of the application. For instance, essential impermeable signs cannot be removed from
the application. Accidental impermeable signs may not be changed either, but they
may be subtracted from the application by means of a manipulation called pruning (a
type III manipulation, as seen in the next section). For instance, let us consider a "skip
to the next track in the playlist" button in a music player. It is an impermeable sign
and thus its meaning of skipping to the next track on a playlist should not be changed,
otherwise it may confuse the user (e.g., if the next track button is used to skip to the
next playlist instead). If this sign is essential (i.e., part of the system identity), it

 Reflections on the Cross-Platform Semiotic Inspection Method 539

should also be present in any other platform. However, if it is not part of the system
identity (i.e., it is an accidental sign), it may be pruned in any platform.

5.2 Semiotic Dimensions and Manipulation of Signs

According to [12], the underlying signification system (i.e., the computer languages to
which users and programmers have access) has three semiotic dimensions: lexical,
syntactic and semantic. Manipulations of these three dimensions effect different sym-
bolic transformations (numbered from I to VII; see Fig. 1). The designer of a cross-
platform system did not necessarily consider making these modifications, but based
on the differences between supposedly equivalent signs we can assume which mani-
pulations are capable of transforming a system version into another [7].

The lexical and the syntactic dimensions of computer languages are related to the
surface features of the user interface, i.e., the look or appearance of a user interface.
These dimensions are addressed in the perceptual or terminology and visual appear-
ance inter-device consistency level in [2]. However, these two are different from the
perceptual (look and feel) consistency dimension mentioned in [5] because they are
not related to the feel (the behavior associated to interface elements).

The lexical dimension encompasses the color, shape and typefaces of labels and
icons signs in the user interface, which corresponds to the lexical consistency level in
[2] and to the semantic consistency level in [5]. The syntactic semiotic dimension
relates to the layout or spatial organization of graphical signs. It encompasses the
navigation and the arrangement of steps in a procedure or the ordering of operations
in order to accomplish a task. In [2] this latter aspect is addressed in an inter-device
consistency level called syntactical consistency, and in [5] it is called syntactic or
interaction logic consistency.

The semantic dimension relates to the feel of the user interface, which corresponds
to the semantic or partition of data and functions inter-device consistency level in [2].
This dimension is related to the meanings expressed by signs in the system and it
allow us to identify two different subsets of manipulations to signs (Fig. 1): meaning-
preserving manipulations (types I, II, and III) and meaning-changing ones (types IV
through VII). Meaning-preserving manipulations affect only impermeable signs and
preserve the application identity. Every application requires that users learn a new and
unique signification system used in HCI [12]. Therefore, the application’s identity and
the notion of impermeability are important to keep the user’s semiosis sufficiently
tied to the designer’s vision, so that productive interpretations can be motivated, and
unproductive ones discouraged. This is especially important when it comes to cross-
platform systems, since you have many versions of the same system and they cannot
or should not be entirely consistent in every case [2]. A coherent user experience is
the ultimate target of cross-platform service design [5]. Meaning-changing manipula-
tions, however, can threaten the application’s identity (and consequently the system’s
perceived coherence), and therefore should be avoided whenever possible in order to
minimize more serious conflicts between system versions.

540 R. de A. Maués and S.D. Junqueira Barbosa

Fig. 1. Semiotic manipulation possibilities of symbols and signs from a computer symbol-
processing perspective

Type I Manipulations. Type I changes correspond to renaming and aliasing opera-
tions that affect only the lexical component. This manipulation is partially related to
the simplification and magnification content adaptation strategies mentioned in [19]
and to the transducing adaption approach in [20], because it modifies the appearance
of some piece of information (signs) present in the user interface. Changing the label
of a button and changing an icon appearance are both examples of renaming. Renam-
ing should be limited to lexical items that are not part of the application identity [12].
Besides, it should be used only when imposed by the device’s constraints (e.g., sum-
marizing a description or using synonyms for a label in order to fit in the screen) or
the platform patterns (e.g., changing the appearance of a component or icon from the
Android platform to accommodate the patterns in the iOS platform and vice-versa) to
avoid unnecessary inconsistencies.

Whenever a sign is renamed between platforms (i.e., receives different names in
each one), the user must follow a reasoning process to establish whether the object
has the same function (meaning) as its instance in another version of the application
[2]. Depending on the degree of the lexical inconsistency, the user might fail to
associate an object (sign) with its function (expected meaning), causing a
communication breakdown and a continuity problem. Resizing a user interface
element is usually not a problem since users still have enough visual clues to judge
whether the different sized objects are similar [2, 19]. Changing the color of an
element, however, can lead to some issues since a color is by itself a sign and
therefore express its own meanings (e.g., the red color is commonly associated to
cancel or removing operations).

Type II Manipulations. Type II manipulations involve making changes only to
syntactic components, i.e. reordering items: changing the layout placement of user
interface elements (the adaptation strategy called rearrangement in [19]); or changing
the navigation or the order in which operations are performed.

 Reflections on the Cross-Platform Semiotic Inspection Method 541

Type II manipulations are most common and inevitable when it comes to cross-
platform systems. Resizing elements is often not enough to adapt the application
interface when the display sizes and resolutions are different, which forces the
designer to reorganize the layout to fit all the interface elements (or even to separate
elements into two or more screens) to avoid pruning essential impermeable signs.

However, is worth noticing that any reordering in the layout, when not imposed by
the device’s space or resolution constraints, is unnecessary and counterproductive,
negatively affecting the continuity or inter-usability of the system [2]. Keep in mind
that, whenever this sort of manipulation occurs, users will have to make an effort to
locate the object. At best, this will increase their workload (e.g., a person who is
already used to the order of some labels in a platform will have to learn the order of
the such elements again in the other platforms); at worst, if they can’t locate the
object quickly, they could conclude that the related function is unavailable on the new
device [20]. Also, if the reordered interface elements were buttons, a distracted person
might press the wrong button and perform some undesired action because the order
with which this person was already familiar has changed. Moreover, from a semiotic
perspective, the order of elements may also convey a relation of importance between
them, and therefore such inconsistencies may cause an ambiguity when
communicating to the user what the designer thought was more important. Finally, as
shown in the analytical study in [7], a misplacement of even a simple element as a
label may mislead the user and hinder the use of the system.

Type III Manipulations. Rearranging (type II) or changing the appearance (type I) of
some components is often not enough. Type III manipulation (also known as pruning)
corresponds to the possibility of selecting non-essential (accidental) components to be
included in or excluded from the application (which corresponds respectively to the
increase and reduction adaptation strategies mentioned in [19]). Not only must prun-
ing preserve the identity of the application, but also the impermeability of the pruned
components. Thus, an important design decision is to select which of the impermeable
signs are essential and thus cannot be pruned i.e., which signs constitute the applica-
tion identity [12].

As in type II manipulations, one of the reasons why type III manipulations are
likely to occur arises from differences between platform capabilities. However, even
when technologically feasible, some functionalities and signs should still be distrib-
uted across platforms according to their utility (i.e., if they will be useful considering
the platform or device context and purpose of use) in order to reduce the complexity
on each application version [5]. However, if the composition of applications and de-
vices and the way they are combined is not in line with the user’s activity or needs, it
may essentially hinder the resulting user experience [5]. From an inter-usability per-
spective this happens because the lack of some expected features hinders both knowl-
edge and task continuity [2]. From a semiotic perspective, this mismatch relates with
poorly defining the application’s identity.

The negative effect of such inconsistencies may be mitigated by an appropriate de-
gree of system transparency [2, 5]. The system should help the user to understand the
potential and limitations of distinct technologies, and the different useful ways to

542 R. de A. Maués and S.D. Junqueira Barbosa

combine the system versions altogether. We go even further to say that whenever an
appropriate degree of transparency is not reached, the user might end up thinking that
some pruned feature is actually present in some other part of the system (type II ma-
nipulation) and therefore he will eventually get frustrated after endlessly looking for
it. Alternatively, also due to a transparency problem, the user might think that some
feature is not present (since it was not present in the other version) while it actually is.
Although being unaware of an extra feature may not seem to lead to a problem, it will
in case this feature performs some automatic operation without the user being aware
of it. For instance, when first launched, most Android users were not aware of Instant
Upload, a feature that allows you to upload photos and videos taken from your device
automatically to a private album on Google+. These users ended up uploading unde-
sired pictures and videos to their profiles, often consuming their 3G data allowance
(when no Wi-Fi was available) without even noticing it.

Type IV Manipulations. A type IV manipulation affects the semantic (meaning), but
not the lexical and syntactic dimensions. Hence, it involves using existing signs to
mean something different from what they mean in another platform (e.g. the same
button triggers different actions on each platform). As a result, when transitioning
from one version to another, users may feel frustrated because of this conflict of
meanings. This manipulation should be avoided since, to ensure continuity, the effect
or result of the operations (i.e. their meanings) should be as similar as possible across
devices [20]. Besides, if the user does not notice the functional inconsistency the fail-
ures may be even more frustrating and harder to recover from. For instance, the user
might expect that, when pressing a button, an e-mail will be sent to the trash can just
like when pressing a similar button in another version of the system. However, it
might actually delete the e-mail permanently.

Type V Manipulations. A type V manipulation makes changes to meanings and
lexical items but not to grammatical structures. In this case, it is important to mention
that only because signs in different platforms have the same grammar structure (syn-
tactical base), but different lexical and semantic bases, it does not necessarily mean
that they represent the same sign. We can consider, for instance, that instead of a
Type V manipulation, two type III manipulations took place: a sign was pruned and
another one was added. Therefore, when the lexical bases of two signs are different
enough from each other, such Type V inconsistencies may impair the use of a cross-
platform system only as much as a type III inconsistency would. However, if the
lexical base is somewhat similar, the user may not expect that some sign will have a
different meaning across platforms, which will lead him to failures such as the ones
that arise from a type IV manipulation.

Type VI Manipulations. Type VI affects both syntactic and semantic dimensions,
and therefore it may involve reordering components or even eliminating components
that change the conveyed meaning. As in type IV manipulations, since the lexical
base does not change, the user may not understand or perceive at first that there are
different grammatical structures associated with same sign across platforms, which

 Reflections on the Cross-Platform Semiotic Inspection Method 543

will lead to different effects. For instance, when closing an application in a platform
there might be an intermediate step asking the user whether he wants to save or dis-
card unsaved changes to a document, while in another version this step might be elim-
inated, leading the user to lose this data, a failure from which he may not be able to
recover. Regarding rearranging graphical elements instead of operations, users will
hardly assume that the same element (sign) will have a different meaning and purpose
only because it is in a different place of the user interface.

Type VII Manipulations. Type VII makes changes to meanings, grammatical
structures and lexical items. This manipulation can freely affect the inside of any sign
capsule and thus it can potentially override the limits of the application identity. As
discussed before, the application cannot be entirely consistent across platforms, but it
should at least be coherent, otherwise they user will not be able to reuse any of the
knowledge acquired when transitioning between platforms (i.e., knowledge continui-
ty). Moreover, it may even seem to the user that such versions are not part of the same
system. The concept of application identity helps to draw the boundary of how incon-
sistent, in the worst-case scenario, a cross-platform system might be: at least the signs
that constitute the application identity should be should never be pruned or changed.
Therefore, such manipulations should be avoided at all costs.

6 Conclusion and Future Work

This paper discusses the Cross-Platform Semiotic Inspection Method, CP-SIM, an ex-
tension of the Semiotic Inspection Method designed to evaluate cross-platform systems.
In order to support evaluators using this method, we presented a more detailed account
of the horizontal analysis of the method. In this paper, we contextualized (in the cross-
platform scenario) the concepts used in the method better and also related these con-
cepts to the ones found in literature about cross-platform systems evaluation based on
cognitive theories. We believe this link is extremely helpful especially for evaluators
that are not so familiar with Semiotics or Semiotic Engineering. Finally, we discussed in
detail each type of sign manipulation, providing a better perspective on their actual and
potential impact on the quality of cross-platform systems.

As future work, we plan to conduct several analytical studies to investigate further
and to better characterize each type of sign manipulation in the context of cross-
platform systems. We also plan to investigate the learning curve of the method in
order to decide how to improve it.

Acknowledgments. Simone Barbosa thanks CNPq (process #308490/2012-6) for the
support to her research work.

References

1. Antila, V., Lui, A.: Challenges in designing inter-usable systems. In: Campos, P., Graham,
N., Jorge, J., Nunes, N., Palanque, P., Winckler, M. (eds.) INTERACT 2011, Part I.
LNCS, vol. 6946, pp. 396–403. Springer, Heidelberg (2011)

544 R. de A. Maués and S.D. Junqueira Barbosa

2. Denis, C., Karsenty, L.: Inter-usability of multi-device systems - a conceptual framework.
In: Seffah, A., Javahery, H. (eds.) Multiple User Interfaces: Cross-Platform Applications
and Context-Aware Interfaces. Wiley & Sons (2004)

3. Paternò, F.: Designing multi-device user interfaces: how to adapt to the changing device.
In: Baranauskas, C., Abascal, J., Barbosa, S.D.J. (eds.) INTERACT 2007, Part II. LNCS,
vol. 4663, pp. 702–703. Springer, Heidelberg (2007)

4. Seffah, A., Forbrig, P., Javahery, H.: Multi-devices “Multiple” user interfaces: develop-
ment models and research opportunities. Journal of Systems and Software 73(2), 287–300
(2004)

5. Wäljas, M., Segerståhl, K., Väänänen-Vainio-Mattila, K., Oinas-Kukkonen, H.: Cross-
platform service user experience: a field study and an initial framework. In: Proc. Mobi-
leHCI 2010, pp. 219–228. ACM (2010)

6. Huang, Y., Strawderman, L.: Introducing a New Usability Framework for Analyzing Usa-
bility in a Multiple-device System. In: Proc. Human Factors and Ergonomics Society An-
nual Meeting, vol. 55(1), pp. 1696–1700. SAGE Publications (2011)

7. de A. Maués, R., Barbosa, S.D.J.: Cross-communicability: Evaluating the meta-
communication of cross-platform applications. In: Kotzé, P., Marsden, G., Lindgaard, G.,
Wesson, J., Winckler, M. (eds.) INTERACT 2013, Part III. LNCS, vol. 8119, pp. 241–
258. Springer, Heidelberg (2013)

8. de Souza, C.S., Leitão, C.F., Prates, R.O., da Silva, E.J.: The Semiotic Inspection Method.
In: Proc. IHC 2006, vol. 1, pp. 148–157. SBC (2006)

9. de Souza, C.S.: The Semiotic Engineering of Human-Computer Interaction. The MIT
Press (2005)

10. Barbosa, S.D.J., Silva, B.S.: Interação Humano-Computador. Campus-Elsevier (2010)
11. Peirce, C.S.: The essential Peirce. In: Houser, N., Kloesel, C. (eds.), vols. 1&2. Indiana

University Press (1992)
12. de Souza, C.S., Barbosa, S.D.J.: A semiotic framing for end-user development. In: Lie-

berman, H., Paternò, F., Wulf, V. (org.) End User Development: People to Flexibly Em-
ploy Advanced Information and Communication Technology, pp. 401–426. Springer
(2006)

13. Florins, M., Vanderdonckt, J.: Graceful degradation of user interfaces as a design method
for multiplatform systems. In: Proc. IUI 2004. ACM (2004)

14. Lin, J., Landay, J.A.: Employing patterns and layers for early-stage design and prototyping
of cross-device user interfaces. In: Proc. CHI 2008, pp. 1313–1322. ACM (2008)

15. Ghiani, G., Paternò, F., Santoro, C.: On-demand cross-device interface components migra-
tion. In: Proc. MobileHCI 2010, pp. 299–308. ACM (2010)

16. Paternò, F., Zichittella, G.: Desktop-to-mobile web adaptation through customizable two-
dimensional semantic redesign. In: Forbrig, P. (ed.) HCSE 2010. LNCS, vol. 6409, pp. 79–
94. Springer, Heidelberg (2010)

17. Öquist, G., Goldstein, M., Chincholle, D.: Assessing usability across multiple user inter-
faces. In: Multiple User Interfaces: Cross-Platform Applications and Context-Aware Inter-
faces, pp. 327–349 (2004)

18. Haskell, R.E.: Transfer of learning: cognition and instruction. Academic Press (2000)
19. Berti, S., Paternó, F., Santoro, C.: A Taxonomy for Migratory User Interfaces. In: Gilroy,

S.W., Harrison, M.D. (eds.) DSV-IS 2005. LNCS, vol. 3941, pp. 149–160. Springer, Hei-
delberg (2006)

20. Paternò, F., Santoro, C.: A logical framework for multi-device user interfaces. In: Proc.
EICS 2012, pp. 45–50. ACM (2012)

	Reflections on the Cross-Platform Semiotic Inspection Method
	1 Introduction
	2 Theoretical Background
	2.1 Semiotic Engineering Basics
	2.2 The Semiotic Inspection Method

	3 Related Work
	4 CP-SIM
	5 Reflections on the Horizontal Analysis
	5.1 Impermeability of Signs
	5.2 Semiotic Dimensions and Manipulation of Signs

	6 Conclusion and Future Work
	References

