Skip to main content

Automatized Construction of Implicative Theory of Algebraic Identities of Size Up to 5

  • Conference paper
Formal Concept Analysis (ICFCA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8478))

Included in the following conference series:

  • 613 Accesses

Abstract

Automation of constructing dependencies between algebraic identities of size up to 5 is investigated. For this purpose a robust active learning technique called Attribute Exploration is used. The technique collects algebra–identity pairs from an expert and builds a concise representation of implicative dependencies (implicative theory) between the identities. It is not possible to accomplish the construction of the implicative theory using only finite algebras and due to this fact heuristics and an algorithm for finding appropriate algebras over an infinite universe are introduced. This allowed for accomplishing the constructing and proving all the obtained implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baumgartner, P., Fuchs, A., de Nivelle, H., Tinelli, C.: Computing finite models by reduction to function-free clause logic. Journal of Applied Logic (2007)

    Google Scholar 

  2. Birkhoff, G.: On the structure of abstract algebras. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 31, pp. 433–454. Cambridge Univ. (1935)

    Google Scholar 

  3. Bürckert, H.-J., Herold, A., Schmidt-Schauss, M.: On equational theories, unification, and (un) decidability. Journal of Symbolic Computation 8(1), 3–49 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Burris, S., Sankappanavar, H.P.: A course in universal algebra, vol. 78. Springer, New York (1981)

    MATH  Google Scholar 

  5. Chin, L.H., Tarski, A.: Distributive and modular laws in the arithmetic of relation algebras, vol. 1. University of California Press (1951)

    Google Scholar 

  6. Claessen, K., Sörensson, N.: Paradox 1.0, http://www.cs.miami.edu/~tptp/CASC/19/SystemDescriptions.html#Paradox---1.0

  7. Dau, F.: Implications of properties concerning complementation in finite lattices. In: Dorninger, D., et al. (eds.) Contributions to General Algebra 12, Proceedings of the 58th Workshop on General Algebra “58, Arbeitstagung Allgemeine Algebra”, Vienna, Austria, June 3-6, 1999, pp. 145–154. Verlag Johannes Heyn, Klagenfurt (2000)

    Google Scholar 

  8. Dehn, M.: Über unendliche diskontinuierliche gruppen. Mathematische Annalen 71(1), 116–144 (1911)

    Article  MathSciNet  Google Scholar 

  9. Ganter, B.: Two basic algorithms in concept analysis. Preprint-Nr. 831 (1984)

    Google Scholar 

  10. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer (1999)

    Google Scholar 

  11. Glodeanu, C.V.: Attribute exploration in a fuzzy setting. In: ICFCA 2012 International Conference on Formal Concept Analysis, p. 114 (2012)

    Google Scholar 

  12. Guigues, J.-L., Duquenne, V.: Familles minimales d’implications informatives résultant d’un tableau de données binaires. Math. Sci. Hum. 24(95), 5–18 (1986)

    MathSciNet  Google Scholar 

  13. Kestler, P.: Strukturelle Untersuchungen eines Varietätenverbandes von Gruppoiden mit unärer Operation und ausgezeichnetem Element. PhD thesis, TU Bergakademie, Freiberg (2013)

    Google Scholar 

  14. Kwuida, L., Pech, C., Reppe, H.: Generalizations of boolean algebras. An attribute exploration. Mathematica Slovaca 56(2), 145–165 (2006)

    MATH  MathSciNet  Google Scholar 

  15. McCune, W.: Prover9 and mace4 (2005-2010), http://www.cs.unm.edu/~mccune/prover9/

  16. Obiedkov, S., Duquenne, V.: Attribute-incremental construction of the canonical implication basis. Annals of Mathematics and Artificial Intelligence 49(1-4), 77–99 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Perkins, P.: Unsolvable problems for equational theories. Notre Dame Journal of Formal Logic 8(3), 175–185 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  18. Revenko, A., Kuznetsov, S.O.: Attribute exploration of properties of functions on sets. Fundamenta Informaticae 115(4), 377–394 (2012)

    MATH  MathSciNet  Google Scholar 

  19. Romashkin, N.: Python package for formal concept analysis, https://github.com/jupp/fca

  20. Tarski, A.: On the calculus of relations. The Journal of Symbolic Logic 6(3), 73–89 (1941)

    Article  MathSciNet  Google Scholar 

  21. Taylor, W.: Equational logic. University of Houston, Department of Mathematics (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Revenko, A. (2014). Automatized Construction of Implicative Theory of Algebraic Identities of Size Up to 5. In: Glodeanu, C.V., Kaytoue, M., Sacarea, C. (eds) Formal Concept Analysis. ICFCA 2014. Lecture Notes in Computer Science(), vol 8478. Springer, Cham. https://doi.org/10.1007/978-3-319-07248-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07248-7_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07247-0

  • Online ISBN: 978-3-319-07248-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics