
HAL Id: hal-00983199
https://hal.science/hal-00983199v1

Preprint submitted on 24 Apr 2014 (v1), last revised 24 May 2014 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algebraicity and the tensor product of concept lattices
Bogdan Chornomaz

To cite this version:

Bogdan Chornomaz. Algebraicity and the tensor product of concept lattices. 2014. �hal-00983199v1�

https://hal.science/hal-00983199v1
https://hal.archives-ouvertes.fr


ALGEBRAICITY AND THE TENSOR PRODUCT OF CONCEPT

LATTICES

BOGDAN CHORNOMAZ

Abstract. In this paper we prove that the tensor product of complete lattices,
as it is defined in formal context analysis, preserves algebraicity. The proof

of this fact is based on the compactness of propositional logic. We use this
property to show that the box product of p0,_q-semilattices, introduced by
G.Grätzer and F.Wehrung in 1999, can be obtained from the tensor product
of concept lattices in a manner similar to how it is done in the definition of
tensor product in “general” lattice theory.

1. Introduction

Traditionally, the tensor product in lattice theory is defined on p0,_q-semilattices
as a join-semilattice of compact bi-ideals in the direct product of the corresponding
lattices, see [4]. The formal context analysis provides a different (and nonequivalent)
approach toward the concept of tensor product. Namely, the tensor product of
context lattices is defined as the concept lattice of the direct product of their formal
contexts. Theorem 14 of [3] proves that the resulting lattice is independent of the
choice of formal contexts, thus justifying the definition. However, the concept
lattices are exactly the complete lattices, and so thus defined tensor product has a
narrower scope than that from [4].

In Section 2 we argue that we can define a complete tensor product of complete

lattices, denoted
bi
b, as a set of complete bi-ideals in their direct product, in much

the same way as it is done for the tensor product from [4], which we call finite tensor

product and denote by
bi
b. It can be easily verified that

bi
b preserves algebraicity,

thus enabling the following construction: for any p0,_q-semilattices A and B we
take the complete tensor product of complete algebraic lattices IdA and IdB, and

then take the p0,_q-semilattice of compact elements of IdA
bi
b IdB. Unsurprisingly,

we get

A
bi
bB “ Cp

ˆ

IdA
bi
b IdB

˙

.(†)

Further on, we will omit the word “complete” whenever the context is clear.
The results of Section 2 are rather trivial and mainly given without the proof.

As suggested by the section title, they serve as a motivation for introducing similar
construction for the tensor product defined via formal contexts, which we call com-

plete fc-tensor product and denote
fc
b. The key property of this construction is the

preservation of algebraicity, which is trivial for
bi
b, but takes some effort to prove in

case of
fc
b.

1
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As a prerequisite for this proof, in Section 3 we argue that for lattices A and B

the tensor product A
fc
bB can be represented as a lattice of closed complete bi-ideals

in A ˆ B, and that it is a complete meet-subsemilattice of A
bi
bB. Also, we give

two characterizations of closed bi-ideals.

In Section 4 we prove the key result of the paper that the tensor product
fc
b

preserves algebraicity. In fact, we prove that this problem can be reduced to the
compactness of propositional logic, see Corollary 1.2.12 in [1]. Thus, we can define

finite fc-tensor product of p0,_q-semilattices, denoted
fc
b, by the formula

A
fc
bB “ Cp

ˆ

IdA
fc
b IdB

˙

.(‡)

Notice that while the tensor products
bi
b and

bi
b are defined in their own right,

and (†) simply establishes a relation between them, the alike formula (‡) is used as

the definition for
fc
b. Also notice that the “general” tensor product from [4] in our

terminology is called finite tensor product, while the tensor product defined in the
formal context analysis is the complete fc-tensor product.

Finally, in Section 5 we identify finite fc-tensor product as the lattice tensor prod-
uct, introduced by G.Grätzer and F.Wehrung in [5]. The key concept on which this
definition is based is the box product, thus we will call this tensor product box ten-

sor product. In that paper the authors notice the resemblance of their construction
with Wille’s construction, in particular that this tensor products coincide in case
of finite lattices. Our construction thus can be used to back this resemblance and
establish a parallel between the definition of the box tensor product and the finite
tensor product.

2. Motivational example

We start with the definition of a tensor product
bi
b, almost literally repeating the

definition of
bi
b given in [4].

For a lattice A we call a set X Ď L hereditary if x P X and y ď x implies
y P X. For complete lattices K and L we define the complete lateral join as a
partial function

Ž

CL : 2
KˆL Ñ K ˆ L, given by

Ž

CLxxα, yαy “

#

xx,
Ž

yαy, @α : xα “ x;

x
Ž

xα, yy, @α : yα “ y;
.

A subset I of K ˆ L is called a complete bi-ideal if it is hereditary, it contains the
set

KK,L “ pt0Ku ˆ Lq Y pK ˆ t0Luq

and it is closed under complete lateral joins. We say that J Ď K ˆL is a complete

dual bi-ideal, if J is a bi-ideal in Kd ˆ Ld.

The complete tensor product of K and L, denoted K
bi
bL, is the set of complete

bi-ideals in K ˆ L ordered by set inclusion. Obviously, K
bi
bL is a complete lattice

where the meet coincides with set intersection.
Let A and B be p0,_q-semilattices, x P A and y P B. We adopt the conven-

tional notation pxs and rxq for the principal ideal and the principal filter of x in
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A correspondingly. Also, by px, ys and rx, yq we denote the principal ideal and the
principal filter of px, yq in A ˆ B. The same notation is also used for complete
lattices.

We recall that for p0,_q-semilattices A and B, the complete algebraic lattice of
all bi-ideals in A ˆ B is called in [4] an extended tensor product and is denoted

A b B, and A
bi
bB is then defined as the join-semilattice of compact elements of

AbB.

Lemma 1. For p0,_q-semilattices A and B the complete lattices IdA
bi
b IdB and

AbB are isomorphic, and the isomorphism ε : IdA
bi
b IdB Ñ AbB is given by

εpIq “ tpx, yq P AˆB |
`

pxs, pys
˘

P Iu,

for every complete bi-ideal I in IdAˆ IdB. The inverse mapping takes form

ε´1pJ q “ tpIx, Iyq P IdAˆ IdB | Ix ˆ Iy Ď J u,

for every bi-ideal J in AˆB.

Proof. We left to the reader the proof of an easy fact that εpIq is a bi-ideal and

ε´1pJ q is a complete bi-ideal, for any I P IdA
bi
b IdB and J P AbB. Let us now

prove that ε ˝ ε´1 and ε´1 ˝ ε are identity mappings.

Indeed, for I P IdA
bi
b IdB we get

pIx, Iyq P ε
´1 ˝ εpIq ô Ix ˆ Iy Ď εpIq

ô @x P Ix, y P Iy : px, yq P εpIq

ô @x P Ix, y P Iy :
`

pxs, pys
˘

P I

ô @x P Ix :

¨

˝pxs,
ł

yPIy

pys

˛

‚P I

ô

¨

˝

ł

xPIx

pxs,
ł

yPIy

pys

˛

‚“ pIx, Iyq P I.

And for J P AbB we get

px, yq P ε ˝ ε´1pJ q ô
`

pxs, pys
˘

P ε´1pJ q

ô pxs ˆ pys Ď J ô px, yq P J .

�

Let us recall the notions of compactness and algebraicity. An element x in a
complete lattice K is compact if x ď

Ž

S for some S implies x ď
Ž

T for some
finite T Ď S. The set CpKq of all compact elements in a complete lattice K is a
p_, 0q-semilattice of K. A complete lattice A is called algebraic if every element is
the join of compact elements.

The fact that A b B is an algebraic lattice for any p0,_q-semilattices A and B

is thus equivalent to the fact that
bi
b preserves algebraicity.

Proposition 1. If K and L are complete algebraic lattices then the lattice K
bi
bL

is also algebraic.
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Now, using Lemma 1 we get

A
bi
bB “ Cp

ˆ

IdA
bi
b IdB

˙

,

K
bi
bL “ Id

ˆ

CpK
bi
bCpL

˙

,

for all p0,_q-semilattices A and B and all complete algebraic lattices K and L.
It is shown in [4] that the bi-ideals can be represented by join-homomorphisms.

Below we introduce similar technique for complete bi-ideals.
For complete lattices K and L let us define K

ÝÑb L as

K
ÝÑb L “ Hom

ˆ

´

K;
ł

; 0
¯

,
´

L;
ľ

; 1
¯

˙

,

that is, K
ÝÑb L is a lattice of complete dual join-homomorphisms from K to L

sending 0 to 1.

Proposition 2. For complete lattices K and L the mapping η : K ÝÑb L Ñ K
bi
bL

defined by

ηpϕq “ tpx, yq P K ˆ L | y ď ϕpxqu ,

for any ϕ P K
ÝÑb L, establishes an isomorphism between K

ÝÑb L and K
bi
bL. And

the inverse mapping is given by

η´1pHqpaq “
ł

tx P L | pa, xq P Hu ,

for any H P K
bi
bL and a P L.

3. Properties of fc-tensor product

The definition of the tensor product in formal concept analysis stems from two
papers of R. Wille [9, 10]. However, in this paper to introduce this tensor product
we are following the observational paper of B.Ganter and R.Wille [3]; same results
but presented with proofs can be found in sections 4.4 and 5.4 of the monography
by the same authors [2].

In formal context analysis the tensor product of complete lattices K and L is
defined as the concept lattice

BpK ˆ L,K ˆ L,∇q,

where ∇ Ď pK ˆ Lq ˆ pK ˆ Lq is a relation defined by

∇ “
 `

px1, y1q, px2, y2q
˘

| x1 ď x2 or y1 ď y2
(

,

see [3]. This concept lattice can be represented as a lattice of subsets of K ˆ L,
closed under the closure operator

X ÞÑ X˚`,(1)

where

X˚ :“ tb P K ˆ L | @a P X : a∇bu ,

Y ` :“ ta P K ˆ L | @b P Y : a∇bu ,

for all X,Y Ď K ˆL. We call such sets simply closed when the closure operator is
clear from the context. Note that the mappingsX ÞÑ X˚ and Y ÞÑ Y ` are antitone,
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and thus the mapping X ÞÑ X˚` is isotone. Also notice that the mapping X ÞÑ
X`˚ is also isotone and is a dual closure in KˆL. We will take the representation

by closed sets as a definition for fc-tensor product, which we denote by
fc
b. By the

properties of the closure operator, the complete meet in K
fc
bL coincides with set

intersection, that is, K
fc
bL is a complete meet-subsemilattice in the powerset of

K ˆ L.
The following easily verified proposition gives a necessary condition for a set to

be closed.

Proposition 3. For complete lattices K and L and X Ď K ˆ L, the set X˚` is a

complete bi-ideal, and X˚` is a complete dual bi-ideal.

Thus, K
fc
bL is the lattice of closed complete bi-ideals. Further on, we will omit

the word “complete” and call them simply closed bi-ideals.
Now we will investigate how the closure operator (1) acts on bi-ideals represented

by homomorphisms.
Let P be a poset and X Ď P . Then we define a hereditary closure of X as a

smallest hereditary set containing X. One can easily verify that if Y is a hereditary
closure of X then it can be represented as

Y “ ty P P | Dx P X : y ď xu .

Lemma 2. For complete lattices K and L and a set X Ď K let Y be a hereditary

closure of X. Then X˚` “ Y ˚`.

Proof. As X Ď Y we get X˚` Ď Y ˚`. On the other hand, the set X˚` is
hereditary and contains X, thus, it contains its hereditary closure, that is, Y Ď
X˚`. But then Y ˚` Ď X˚`˚` “ X˚`, which proves our claim. �

Lemma 3. For complete lattices K and L let I Ď K ˆ L be a set defined as

I “ tpx, yq | y ď fpxqu ,

for some f : K Ñ L, and let f˚` “ η´1pI˚`q. Then

f˚`pxq “
ľ

yPK´rxq

ł

wPK´pys

fpwq

Note that, in particular, this lemma is applicable in case when I is a complete
bi-ideal and f “ η´1pIq
Proof. Let us define the mapping f˚ : K Ñ L as

f˚pyq “
ł

wPK´pys

fpwq,

for all y P K.
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Let Ib “ tpx, fpxqq | x P Ku, then I is a hereditary closure of Ib and by Lemma 2
we get I˚ “ I˚

b . Now

I˚ “ I˚
b “

 

px, yq | @x1 : x1 ď x or fpx1q ď y
(

“
 

px, yq | @x1 : x1 P K ´ pxs implies fpx1q ď y
(

“

$

&

%

px, yq |
ł

x1PK´pxs

fpx1q ď y

,

.

-

“ tpx, yq | f˚pxq ď yu .

By Proposition 3, the set I˚ is a complete dual bi-ideal. Taking into account
that the mapping A ÞÑ A`˚ is a dual closure, by the same argument as above we
get I˚` “ I`

c where Ic “ tpx, f
˚pxqq | x P Ku. Then

I˚` “ I`
c “

 

px, yq | @x1 : x ď x1 or y ď fpx1q
(

“
 

px, yq | @x1 : x1 P K ´ rxq implies y ď f˚px1q
(

“

$

&

%

px, yq | y ď
ľ

x1PK´rxq

f˚px1q

,

.

-

.

This easily yields

f˚`pxq “
ľ

x1PK´rxq

f˚px1q,

which proves the claim of the theorem. �

For complete lattices K and L let us notice that the set px, ys Y K is a closed
bi-ideal, for any x P K and y P L. Following [4], we call it a pure tensor and denote
it by xb y. We also introduce a set rx, ys Ď K ˆ L defined by

rx, ys “ tpx1, y1q | x1 ď x or y1 ď yu.

Obviously, rx, ys is also a closed bi-ideal, for every x P K and y P L.
For a set A Ď K ˆ L we define the sets A|K Ď K and A|L Ď L as

A|K “ tx | Dy, px, yq P Au ,

A|L “ ty | Dx, px, yq P Au .

We use the symbol
Ů

to denote the disjoint union of sets.
Now we give another characterization of the closure operator and, correspond-

ingly, of closed bi-ideals

Lemma 4. For complete lattices K and L and a set I Ď K ˆL the closure I˚` is

given by

I˚` “
č

X
Ů

Y “I

”

ł

X|K ,
ł

Y |L

ı

(2)
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Proof.

I˚` “ tpx, yq | @px1, y1q P I˚ : x ď x1 or y ď y1u

“
č

 

rx1, y1s | px1, y1q P I˚
(

“
č

 

rx1, y1s | @px2, y2q P I : x2 ď x1 or y2 ď y1
(

“
č

!

rx1, y1s | DX Ď I :
ł

X|K ď x1 and
ł

pI ´Xq|L ď y1
)

“
č

!”

ł

X|K ,
ł

Y |L

ı

| X
ğ

Y “ I
)

.

�

Corollary 1. The family of closed bi-ideals of K ˆL is the minimal family of sets

which contains all sets rx, ys and is closed under
Ş

.

4. Algebraicity

For a p0,_q-semilattices A and B, the extended tensor product A b B is an

algebraic lattice, see [4]. By Lemma 1 this means that
bi
b preserves algebraicity.

The goal of this section is to prove similar property for
fc
b.

Lemma 5. If K and L are complete lattices and x0 P K and y0 P L are compact

elements, then x0b y0 is a compact element of K
fc
bL.

Proof. Arguing by contradiction, suppose that x0b y0 is not compact. Then there

is an infinite family of closed bi-ideals tIαuαPA Ď K
fc
bL such that

px0, y0s ď
ł

tIα | α P Au

and for every finite subfamily A Ă A holds

px0, y0s ę
ł

αPA

Iα.

As every bi-ideal from this family can be represented as an infinite join of pure
tensors, then, without losing generality, we may assume that every bi-ideal Iα is a
pure tensor, that is Iα “ xαb yα, for every α P A.

As
Ť
 

pxβ , yβs | β P B
(

is the hereditary closure of the set
 

pxβ , yβq | β P B
(

,
by Lemma 2 we infer

´

ď

 

pxβ , yβs | β P B
(

¯˚`

“
` 

pxβ , yβq | β P B
(˘˚`

,

for every B Ď A. Then

px0, y0s ď
ł

αPA

pxα, yαs “

˜

ď

αPA

rxα, yαq

¸˚`

“
 

pxα, yαq | α P A
(˚`

,

and using (2) we get

px0, y0s ď
č

BĎA

«

ł

βPB

xβ ,
ł

γPA´B

yγ

ff

.(3)
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And similarly

px0, y0s ę
č

BĎA

«

ł

βPB

xβ ,
ł

γPA´B

yγ

ff

,(4)

for every finite A Ď A.
Let us define two families X and Y of finite subsets of A by

X “

#

A Ď A, |A| ă 8

ˇ

ˇ

ˇ

ˇ

ˇ

x0 ď
ł

αPA

xa

+

,

Y “

#

A Ď A, |A| ă 8

ˇ

ˇ

ˇ

ˇ

ˇ

y0 ď
ł

αPA

ya

+

.

That is, X and Y are the families of all sets of indexes in A, defining the finite
covers of x0 and y0 correspondingly.

We now need to use some tools from propositional logic, namely the compactness
theorem. We are following the terminology of H.J.Keisler and C.C.Chang, see
Section 1.2 in [1]. Let us consider the set A as the set of simple statements and
build a set Σ of propositional sentences over it

Σ :“ ΣX

ğ

ΣY,

ΣX :“

#

 

˜

ľ

αPA

α

¸ˇ

ˇ

ˇ

ˇ

ˇ

A P X

+

,

ΣY :“

#

 

˜

ľ

αPA

 α

¸ˇ

ˇ

ˇ

ˇ

ˇ

A P Y

+

.

Notice that the symbol
Ź

in the definition above is used not as join, but as a
connective in the propositional language. Its usage is justified by the fact that all
considered “joins” are finite. The models of our language are simply subsets of A.
For a model B Ď A a simple statement β is true in B iff β P B.

We claim that (3) is equivalent to the following statement: The set Σ of sentences
is not satisfiable, that is, Σ has no model. Indeed, (3) can be restated as: For any
model B Ď A, either x0 ď

Ž

txβ | β P Bu or y0 ď
Ž

tyγ | γ P A´Bu. As x0 is
compact, it follows that x0 ď

Ž

txβ | β P Bu iff there is A0 P X such that A0 Ď B,
in which case the propositional sentence

`

 
ľ

ta | a P A0u
˘

P ΣX

is not satisfied in B. Similarly, y0 ď
Ž

tyγ | γ P A´Bu iff there is a set B0 P Y

such that B0 Ď A´B, and consequently the propositional sentence
`

 
ľ

t a | a P B0u
˘

P ΣY

is not satisfied in B. Combined together, these observations prove our claim.
Similarly, (4) is equivalent to the statement: The set Σ of sentences is finitely

satisfiable, that is, every finite subset of Σ has a model. However, by the compact-
ness theorem for propositional calculus, see Corollary 1.2.12 in [1], Σ is satisfiable
if it is finitely satisfiable, a contradiction. �

Now as an easy corollary we get

Theorem 1. If K and L are complete algebraic lattices then K
fc
bL is algebraic.
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Proof. Notice that by Lemma 5, xb y is a compact element of K
fc
bL, for any

x P CpK and y P CpL. Any closed bi-ideal I Ď K ˆ L can be represented as

I “ KY
ď

tpx, ys | px, yq P I, x P CpK, y P CpLu

“
ł

 

xb y | px, yq P I, x P CpK, y P CpL
(

.

Thus, every element of K
fc
bL can be represented as a join of compact elements,

so K
fc
bL is algebraic. �

Now, using Theorem 1, for p0,_q-semilattices A and B we can define finite fc-

tensor product as

A
fc
bB “ Cp

ˆ

IdA
fc
b IdB

˙

.

and observe that, just as for “regular” tensor product, holds

K
fc
bL “ Id

ˆ

CpK
fc
bCpL

˙

,

for all complete algebraic lattices K and L.

5. The box tensor product

Now we are going to show that, thus defined, finite fc-tensor product coincides
with the box tensor product, introduced in [5].

For lattices with zero A and B, a P A and b P B we define the box tensor product

of A and B, denoted A b B, as the set of all finite intersections of the form

H “
č

trai, bis | i ă nu ,(5)

satisfying
ľ

tai | i ă nu “ 0A,(6)
ľ

tbi | i ă nu “ 0B ,(7)

where n ą 0, pai, biq P AˆB, for all i ă n.
Let us point out that in making this definition we have skipped few intermediate

steps as compared to [5]; the definition now corresponds to Lemma 3.8 of the
mentioned paper.

Now, let us identify A and B with the sets of principal ideals in IdA and IdB
correspondingly, using canonical embeddings πA : x ÞÑ pxs and πB : y ÞÑ pys; and

let us extend this embeddings to the embedding π : A b B Ñ A
fc
bB defined by

π :
č

trai, bis | i ă nu ÞÑ
č

 “

πApaiq, πBpbiq
‰

| i ă n
(

.(8)

Notice that by Corollary 1, all elements of πrHs are valid elements of IdA
fc
b IdB,

that is, valid closed bi-ideals in IdAˆ IdB.
For a lattice C and a set X Ď C we denote the lattice generated by X in C

by xXyC , or simply by xXy if the underlying lattice is clear from the context.
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Proposition 4. For lattices with zero C and D, let ci P C and di P D, for

i “ 1, . . . , n. Then
č

i“1,...,n

rci, dis “ Kci,di
Y

ď

i“1,...,m

pzi, wis,

where

Kci,di
“
´´

ľ

ci

ı

ˆD
¯

Y
´

C ˆ
´

ľ

di

ı¯

for some m, and zi P xcj | j “ 1, . . . , ny and wi P xdj | j “ 1, . . . , ny, for all i.

Using Proposition 4 we can easily prove the desired result.

Theorem 2. For lattices with zero A and B, the mapping π defined by (8) estab-

lishes an isomorphism between A b B and A
fc
bB, that is

(1) for any H P A b B, πpHq is a compact closed bi-ideal in IdAˆ IdB,

(2) any compact compact closed bi-ideal in IdA ˆ IdB can be represented as

πpHq, for some H P A b B.

Proof. (1): Let us take H as in (5), then

πpHq “
č

 “

πApaiq, πBpbiq
‰

| i ă n
(

,

and, by Proposition 4

πpHq “ KπApaiq,πBpbiq Y
ď

i“1,...,m

pzi, wis,

where zi P xπApajq | j “ 1, . . . , ny Ď πArAs and wi P xπBpbjq | i “ 1, . . . , ny Ď
πBrBs.

Also from (6) and (7) it follows that KπApaiq,πBpbiq “ KIdA,IdB , which yields

πpHq “
ď

i“1,...,m

zi b wi “
ł

i“1,...,m

zi b wi,

where zi and wi are compact elements of IdA and IdB correspondingly, for all

i ď n. Thus, by Lemma 5 the elements zibwi are compact elements of IdA
fc
b IdB

and πpHq is a finite join of compact elements, thus, it is also compact.
(2): Let H be a closed compact bi-ideal in IdA ˆ IdB. Definitely, H can be

represented as

H “
ď

tab b | a P πArAs, b P πBrBs, pπApaq, πBpbqq P Hu

“
ł

tab b | a P πArAs, b P πBrBs, pπApaq, πBpbqq P Hu .

Using compactness of H, we get

H “
ł

tai b bi | i ă nu “

ˆ

ď

tai b bi | i ă nu

˙˚`

,

for some n ą 0 and ai P πArAs and bi P πBrBs ,for all i ă n. By Lemma 2 the
latter gives

H “

ˆ

ď

tpai, biq | i ă nu

˙˚`

,

and the application of Lemma 4 gives us the desired representation of H. �
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6. Conclusion

The paper [5] contains a very profound discussion on the similarities between
various kinds of tensor products and their properties, as well as a list of open
problems. In this list we would like to single out two problems that explicitly
deal with the connection between the tensor box product and finite tensor product.

Problem 1 asks for a characterization of a situation when AbB “ A
bi
bB, for lattices

with zero A and B, and Problem 6 seeks for another tensor products “between” b

and
bi
b.

A problem in comparing these tensor products is that the finite tensor product
is defined on p0,_q-semilattices, while the box tensor product is defined on lattices
with zero. This situation is natural in the following sense: for lattices with zero A

and B, AbB is always a lattice, while A
bi
bB in general is only a p0,_q-semilattice.

Now, our construction of
fc
b enables to extend the definition of the box tensor

product to p0,_q-semilattices, and thus enables to compare these constructions on
some “natural” domain. Again, correspondences (†) and (‡) enable to characterize

the connection between
bi
b with

fc
b by comparing

bi
b with

fc
b.

The author would also like to draw the parallel to the paper of M. Krötzsch and
G. Malik [8]. For complete lattices K and L, the space of regular Galois connections

described in this paper is F
fc
bL; indeed, regular Galois connections are deliberately

defined this way. In the same time one can show, not without some effort, that

the space of all Galois connections will be exactly F
bi
bL. The large part of [8]

is dedicated to describing the situation when K and L have only regular Galois
connections between them, and in particular to the case when K have only regular
Galois connections to any complete lattice L.

Regarding the latter case, the author believe that he has the proof that this holds
iff K satisfies complete infinite distributive identity (CIDI). The one direction of
this statement is provided by Theorem 4 of [8]. For the other direction, when K

does not satisfy CIDI, the counterexample is provided by the identity mapping from
K to Kop, which would be an irregular Galois connection. However, the complete
proof of this fact requires efforts which fall beyond the scope of the present article.

References

[1] C.C.Chang, H.J.Keisler, Model Theory, 3d ed., North-Holland, Amsterdam, 1990.
[2] B.Ganter, R.Wille, Formal concept analysis - mathematical foundations, Springer-Verlag,

1999.
[3] B.Ganter, R.Wille, Applied lattice theory: formal concept analysis, Appendix H in [7], 591–605.

[4] G.Grätzer, F.Wehrung, A survey of tensor products and related constructions in two lectures,
Algebra Universalis 45 (2001), 117–134.

[5] G.Grätzer, F.Wehrung, A new lattice construction: the box product, J. Algebra 221 (1999),
315–344.

[6] G.Grätzer, F.Wehrung, Tensor products and transferability of semilattices, Canad. J. Math. 51
(1999), 792–815.

[7] G.Grätzer, General Lattice Theory, 2nd ed., Birkhäuser-Verlag, Basel, 1998.
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