

C. Stephanidis and M. Antona (Eds.): UAHCI/HCII 2014, Part I, LNCS 8513, pp. 137–148, 2014.
© Springer International Publishing Switzerland 2014

Improved Model-Driven Engineering of User-Interfaces
with Generative Macros

Anthony Savidis1,2, Yannis Valsamakis1, and Yannis Lilis1

1 Institute of Computer Science, FORTH
2 Department of Computer Science, University of Crete, Greece

{as,jvalsam,lilis}@ics.forth.gr

Abstract. Model-driven engineering entails various modeling, abstraction and
specialization levels for user-interface development. We focus on model-driven
tools generating user-interface code, either entire or partial, providing a tangible
basis for programmers to introduce custom refinements and extensions. The lat-
ter introduces two maintenance issues: (i) once the generated code is modified
the source-to-model extraction path, if supported, is broken; and (ii) if the mod-
el is updated, code regeneration overwrites custom changes. To address these
issues we proposed an alternative path: (i) instead of directly generating code,
the model driven tool generates source fragments in the form of abstract syntax
trees (ASTs) as XML files; (ii) the application deploys compile-time metapro-
gramming to manipulate, generate and insert code on-demand from such ASTs,
using calls similar to macro invocations. The latter leads to improved separation
of concerns: (a) the application programmer controls when and where interface
source is generated and integrated in the application source; and (b) interface
regeneration overwrites no source code as it only produces ASTs that are mani-
pulated (input) via generator macros.

Keywords: Model-Driven Development, Model-Based User-Interfaces, Code
Generation, Compile-Time Metaprogramming.

1 Introduction

In general, model-driven engineering (MDE) of user interfaces [3] involves tools,
models, processes, methods and algorithms addressing the demanding problem of
automated user-interface engineering. An important authoring requirement for
MDE tools is to involve notions and concerns inherent in the design domain, typi-
cally including tasks, user profiles, context characteristics, interaction controls,
abstract behaviors, and input events. Then, a target implementation is incrementally
derived, usually with an intermediate transition from the modeling domain to an
instantiation domain that is in most cases platform independent. This discipline is
outlined under Fig. 1, showing the typical specialization from abstract to platform
that most MDE tools adopt, and the shift from abstract to concrete implying a sort
of transformation.

138 A. Savidis, Y. Valsam

Fig. 1. High-level overview o
tool roles with respective input

Currently, many MDE t
(like wxFormBuilder and M
code generators, sometimes
target platforms. Alternativ
the domain of interaction i
alogue (such as the XCode
produced concrete instance
tions, as resulting from the
work we generally focus on
code, such tools ranging fr
plication framework genera

Fig. 2. General architecture o
builder; (2) code generation fr
only when temporary structure

In the context of our ca
process diagram is outlined
interface model, usually in
Alternatively, they may re
explicitly embedded in the
no interface model is expli
ble only during authoring ti

We continue with the id
interface code generation, a
this issue.

makis, and Y. Lilis

of the model-driven user-interface development process show
ts and outputs

tools emphasize the delivery of user-interface source c
Microsoft Visual Studio), thus encompassing user-interf
s capable to cater for varying programming languages
vely, MDE tools may provide executors, usually falling
interpreters, which directly offer the required end-user
Interface Builder). The latter actually interpret the vari

es and their accompanying internal interface represen
e transformations on the abstract modeling domain. In
n MDE tools that eventually generate user-interface sou
rom common interface builders to entire model-driven
ators.

of interface builders involving: (1) interactive editing with
from an explicit interface model or temporary structures; and
es are used, tags are inserted in the source code.

ase study we considered interface builders – their gene
d under Fig. 2. Interface builders usually support an expl
n a custom user-interface description language (UID
ly on special tags carrying model information, such t

e generated source as commented-out code. Through ta
citly stored, except temporary structures which are ava
ime.
dentification of the maintenance problem inherent in u
and then brief the key contributions of our work to addr

wing

ode
face
and
g in
 di-
ious
nta-
our

urce
ap-

the
d (3)

eral
licit

DL).
tags
ags,
aila-

ser-
ress

 Improved Model-Driven

1.1 Identification of the

MDE tools, whether finally
ecution system at the platf
interactive user-interface. A
and modifications are alw
Driven of user-interfaces
interface of applications. I
user-interface source code
evolution and customization

Fig. 3. Typical growth of user
with custom extensions and up

With such MDE tools, t
outlined under Fig. 3. In pa
functionality importing an
interface management logic
the MDE tool. This situatio
cies as indicated at the right

Fig. 4. The primary maintenan
el-driven development

The problem with this sc
Fig. 4). Initially, once the u
tion and user-interface mo
words, the MDE tool works

Engineering of User-Interfaces with Generative Macros

e Problem

y offering user-interface source code generation or an
form level, can hardly address all required aspects of

As a result, custom user-interface source code amendme
ays anticipated. Even there are evolved tools in Mod
area; none of them can completely construct the u
In our context we focus only on MDE tools generat
because we consider they are more flexible by support
n of the user-interface directly at the source level.

r-interface application code around generated user-interface c
pdates, eventually leading to bidirectional dependencies.

the typical lifecycle of the generated user-interface cod
articular, typical updates relate to user-interface applicat
nd invocation, event handling extensions, custom u
c, and linkage to third-party libraries that are not known
on very quickly results into many bidirectional depend
t part of Fig. 3.

nce issue inherent in user-interface source generation under m

cenario is that it introduces serious maintenance issues (
user-interface code is not changed, user-interface regene
del reconstruction is well-defined (steps 1 to 4). In ot
s perfectly for both steps of the processing loop. Howev

139

ex-
f an
ents
del-
ser-
ting
ting

code

de is
tion
ser-
n to
den-

mod-

(see
era-
ther
ver,

140 A. Savidis, Y. Valsamakis, and Y. Lilis

once the generated UI code is updated (step 5), two problems directly appear. Firstly,
tag editing and misplacing may break model reconstruction (steps 6 and 7), while the
manually inserted UI logic outside the MDE tool causes a model-implementation
conflict. Secondly, source regeneration overwrites all manually introduced updates
(steps 8 and 9). For real life applications of a considerable scale the latter may lead to
adoption of the MDE tool only for the first version, or worse avoiding using an MDE
tool at all.

1.2 Primary Contributions

Our main contribution is an inversed responsibility model for generator MDE tools
where: (a) UI generation takes place only in the form of ASTs; and (b) the actual code
generation is applied on-demand and in-place through metaprograms (macros) that
are included in the implementation of the interactive system and are evaluated at
compile-time (i.e. during the build process). This approach, not only resolves the
maintenance issues of traditional UI generators, but also sets user-interface code ma-
nipulation as a first-class concept in user-interface management and reveals the value
of metaprogramming languages in the engineering of interactive systems.
Overall, we propose an improved process where the MDE tool outcome is read-only,
decoupled from UI code generation, letting interactive applications directly deploy
and manipulate code fragments, instead of being built around them. In this context,
we discuss the most common composition practices on user-interface code fragments
through ASTs as consolidated from our case study.

2 Related Work

Several UI source code generators exist in the arena of MDE tools and most of them
are incorporated into UI Builders. Some of them are GrafiXML [10], GuiBuilder [11],
GtkBuilder [12], wxFormBuilder [9] etc none of which has addressed the mainten-
ance issues we have discussed.

Furthermore, there are relevant works that partially address the maintenance issues
not for UI code generation but for general purpose source code generation. In particu-
lar, there are two different ways in which the problem has been approached.

The first approach includes special tags or annotations which are inserted within
the generated source code. Developers may further edit such annotations to specify
whether certain parts of the source code should be maintained or not upon regenera-
tion. However, free editing may cause tag misplacement and thus result in manual
updates being discarded upon regeneration. In the one hand, tags address the problem;
on the other hand there is extra responsibility for developers. Tools which adopt this
approach are EMF [13], Acceleo [14], Actifsource [15] etc.

The second approach is based on the full MDE development cycle allowing both
model-to-source and source-to-model transformations. For the latter, they parse
source files locating specific code structures (e.g. Classes, Attributes, Operations etc.)
in order to regenerate the model, while treating any additional code they include as

 Improved Model-Driven Engineering of User-Interfaces with Generative Macros 141

metadata. This is an important step towards resolving the maintenance issues; howev-
er, it cannot be applied in case of MDE tools for UI code generation, because it is
practically impossible to recognize the widget elements by parsing manually written
source code. Tools which adopt this approach are Papyrus [16] and Modelio [17].

3 Staged Metaprograms

Generally, metaprogramming relates to functions which generate code, i.e. programs
producing other programs, while metaprogramming languages take the task of code
generation and support it as a first-class language feature. This is a sort of reification
of the language code generator enabling programmers write code which generates
extra source code. When available as a macro system before compilation, the method
is known as compile-time metaprogramming. Alternatively, if offered during runtime,
usually built on top of the language reflection mechanism, it is called runtime meta-
programming. We focus on compile-time metaprogramming being more powerful to
its runtime case. In this context, code generating macros are functions manipulating
code in the form of ASTs, and are evaluated by a separate stage preceding normal
compilation. Then, they are substituted in the source text by the code they actually
produce. Due to the introduction of an extra stage, and because macros may generate
further macros, thus requiring extra staging, such languages are also called multistage
languages [2, 4]. In our work we use Delta [1], a recent publicly available dynamic
object-oriented language, its wx widgets library, and its compile-time metaprogram-
ming extension [5, 6]. Popular meta-languages include Lisp, Scheme, Macro ML [7],
Meta OCaml [8], Meta Lua and Converge.

Fig. 5. Metaprogram evaluation as a compilation stage

In the Delta language, meta-code involves meta definitions and inline directives
(i.e., code generation), prefixed with the & and ! symbols respectively. In particular,
inline directives accept an expression returning an AST and are the only way to insert
extra code into the main program.

As shown under Fig. 5, in the first stage the compiler: (i) collects all scattered
meta-code into a single metaprogram; (ii) evaluates the program while internally

142 A. Savidis, Y. Valsamakis, and Y. Lilis

recording the output the inline calls; and (iii) removes all meta-code from the initial
program and replaces inline directives by the code they actually produced. For exam-
ple, consider the following Delta code.

1: using wx;
2: &ast = ui::load_ast ("<some ast path>");
3: !(ast); ← code generation (inline) directive

Fig. 6. Example of an abstract syntax tree for three statements using the wx widgets library: (i)
left: creating a frame widget; (ii) middle: setting its size; and (iii) right: creating a text widget

The first line is normal code, a typical directive to import the wx widgets library.
But the next two lines are meta-code, distinguished by & and ! prefixes. The second
line loads an AST from a file, assume the loaded AST to be the one of Fig. 6. The
third line inserts the code implied by this AST into the main program. As a result,
after the first stage, and before normal compilation, the main program is:

using wx;
frm = wx::frame_construct(nil, "ID_ANY", "calculator");
frm.setsize(wx::size_construct(450, 300);
txt = wx::textctrl_construct(frm, "text");

Such code is only transient, and exists inside the compiler temporarily during the
first compilation stage. It is shown here for clarity. After this first stage, the resulting
source text constitutes the input to the normal compilation phase, as if it was original-
ly written this way by the programmer.

4 Improved Model-Driven Process

The primary motivation for our work has been the serious user-interface source code
maintenance issue inherent in model-driven UI code generators. Although we needed
to avoid this problem, in the mean time we wished to retain the powerful generational
character of MDE tools. Thus we started thinking of an alternative path, in which: (i)

 Improved Model-Driven

Fig. 7. The improved model-
grammers deploy generator m
affecting the originally produc

the MDE tool output would
interactive application coul
us to the idea of bringing
engineers algorithmically m
processing and transformin
a process is detailed under F

As shown, we suggest th
user-interfaces in a user-int
rally involving all the neces
but in a language neutral fo
MDE tools, but is not stric
produce ASTs for a specifi
code manipulation and inse
compile-time metaprogram
picted under Fig. 7: meta-co

5 Development Ca

To test our approach and
have carried out a case stud
licly available interface bu
offers a typical rapid-appl
construction, and outputs in
mat called XRC (XML In
structed a full-scale scientif
in alternative ways, such a
tiple independent projects. T

Engineering of User-Interfaces with Generative Macros

-driven process with inverted responsibility: user-interface p
macros to produce resulting code on-demand and in-place with
ced ASTs by the MDE tools

d somehow remain invariant; and (ii) the source code of
d still grow in an unconstrained manner around it. This
metaprogramming into the pipeline by enabling interf

manipulate the generated interface code including: loadi
ng using macros that are evaluated during build time. S
Fig. 7.
hat the MDE tools should generate the concrete produ
terface description language (UIDL), such definitions na
ssary structural, algorithmic and event management deta
orm. This is only proposed to allow language independ
ct, meaning MDE tool developers may choose to direc
ic target programming language. The general approach
ertion using ASTs is the one earlier described and relate
mming languages, involving two stages that are also
ode evaluation (stage 1), and normal compilation (stage

ase Study

assess its expressive power and engineering validity,
dy. We have adopted wx Form Builder [9], a popular p

uilder for the wx widgets cross-platform library. This t
ication development cycle with interactive user-interf
nterface descriptions into its custom language-neutral f
terface Resources). Then, using wxFormBuilder we c
fic calculator application. The latter was actually practi

as with single authoring project or alternatively with m
This way we could also assert the compositional flexibi

143

pro-
hout

f the
led

face
ing,
uch

uced
atu-
ails,
dent
ctly
for

es to
de-
2).

we
pub-
tool
face
for-

con-
iced
mul-
ility

144 A. Savidis, Y. Valsamakis, and Y. Lilis

of our proposed approach in combining independently authored interfaces under a
single coherent interactive system.

To convert XRC to the Delta language ASTs we had to build an appropriate con-
verter, following the proposed approach at the left of Fig. 7. Then, using the metapro-
gramming features of the Delta language, we imported and manipulated the calculator
ASTs, and also added extra interactive features and behavior to it, besides the ones
introduced merely with the wx Form Builder. In-between this process we repeated
many times reloading of the visual models and regenerating of the XRC files, to test
that no maintenance issues arise by this cycle. We continue discussing the case study
not only regarding the methodological details, but also elaborating on a few important
practicing patterns that emerged in the process.

5.1 Manipulating Interface Code as Abstract Syntax Trees

The goal of our case study was dual: (a) to show that the maintenance is effectively
eliminated; and (ii) to demonstrate the huge expressive power of metaprogramming
for flexible interface code composition. In this context, as part of the case study, we
have identified and deployed a number of operations on ASTs to assist in code com-
position when implementing user-interface metaprograms. In Fig. 8, two of the com-
position scenarios which have been implemented are outlined.

Fig. 8. Two example scenarios (middle, right) of user-interface source code composition rely-
ing on AST manipulation on top of the original GUI authored with the interface builder (left);
updates on the two scenarios are automated and are directly remapped on top of the original
GUI by simply performing recompilation

The notion of user-interface code is not limited to user-interface construction logic,
such as creating widgets and setting their visible and layout properties. It actually
concerns the full range of dialogue management requirements, including event man-
agement and all types of dynamic interface updates. For instance, composition may
well concern scenarios where event management code is injected within a user-
interface construction code snippet.

In the following table, we enumerate and briefly describe the manipulation opera-
tors. A few automations for easier user-interface code composition were provided on
insertion, such as renaming of local variables in case of conflicts at the new context,
and automatic relinking of widgets to the container produced by the previous code
fragment.

 Improved Model-Driven Engineering of User-Interfaces with Generative Macros 145

Table 1. Manipulation Operators for User-Interface

Operator Description
Cut Addresses the need to extrapolate the code snippet of an entire user-

interface component, and is expected to be followed by appropriate
merge or insert operations. It was needed to extract the code creating
the numeric and function pads of the calculator case study. When
directly followed by an insert operation it implements re-parenting.

Clone Concerns cases where a copy of the source code for a user-interface
component is required. Typically, alone this operation is rarely
needed, thus it is anticipated to be followed by radical changes of the
user-interface code with operations such as merge, insert and modify.

Crop It is required when the source code creating some outer parts (i.e.
containers) of user-interface components is not needed. In our case
we deployed the operator to drop the containing frame window that is
by default inserted by the wx Form Builder on all projects.

Create This is not an operator on the input source code fragments per se. It
reflects the necessity to introduce extra custom user-interface source
code in the form of AST, to be actually combined with the parts pro-
duced by the MDE tool. In our case study the latter concerned the
tab-box with the Functions and Numbers entry (see Figure 8, right
part).

Merge It is a combined composition action on ASTs and is introduced to
enable mixing of independent interface code snippets under a com-
mon parent. Usually, such components are either authored indepen-
dently in the modeling process, or they may constitute the outcome of
earlier cut operations.

Insert It allows (re)linking of an existing user-interface code fragment in-
side another one. Practically, this action is the dynamic form of all
manual editing actions that UI programmers would have to apply in
order to insert custom code inside the generated code. It is anticipated
as the most frequent editing operation on ASTs.

Modify It reflects the need to algorithmically apply localized changes on the
AST, such as: renaming variables and functions, changing argument
ordering, changing invocation styles, etc. Although expected to intro-
duce small scale changes, it can be very useful to keep the generated
code synced with newer versions of widget libraries when the MDE
tool is not yet up-to-date.

5.2 Composing Interface Code In-Place and On-Demand

We elaborate on the way composition on user-interface code through ASTs has been
applied in the context of our case study. It should be noted that, although at some
points it may look like the effect can be also accomplished by typical runtime compo-
sition at the level of widgets, in general it is not. In particular, not all widget libraries

146 A. Savidis, Y. Valsam

offer runtime name-based r
time registration of event ha

In other words, if linka
structed by the generated i
application, then it may the
coexist at the same source
ponding to the outcome of
code, many details removed
of Fig. 8:

1: new main f
2: new panel
3: new num pa
4: new num bu
5: new func p
6: new func b

The colon is used to indic
numbering is used only to
following changes: (1) dro
code for event handling im
tons (after lines 4 and 6); (3
(4) introduce a tab-box we
numeric and the functions p
ing of the parent objects off

Fig. 9. Meta-code to load, ma
modified calculator.

makis, and Y. Lilis

registries for widgets, neither all of them facilitate the r
andlers in the form of typical method invocations.
age is required between interaction objects that are c
interface code to custom event handlers provided by
e case that the only option is making such code fragme
context. In our case study, the initial source code corr

f the wxFormBuilder has the following structure (pseu
d), and creates the calculator instance shown at the left p

frame m_frame0 : null
m_panel0 : m_frame0

anel m_panel1 : m_panel0
uttons m_button<i> : m_panel1
panel m_panel2 : m_panel0
buttons m_button<j> : m_panel2

cate the GUI parent object typically required, while l
o help in our explanations. Now, we need to perform
op the code producing the outer frame (line 1); (2) in
mplementing calculations on the numeric and function b
3) crop the numeric and functions panel (lines 3 and 5);
ere to insert the cropped code fragments for the calcula
pad. In all these cases we also rely on the automatic reli
fered by the insertion operator, as mentioned earlier.

anipulate (four labeled steps) and inline the source code for

run-

con-
the

ents
res-
udo
part

line
the

nsert
but-
and
ator
ink-

r the

 Improved Model-Driven Engineering of User-Interfaces with Generative Macros 147

The meta-code implementing these four composition steps is outlined under Fig. 9,
with many details removed for clarity. Also, the actual conversion from XRC to ASTs
is cached and is applied only when an internally produced and stored AST file is older
than the supplied XRC file. There is code in Fig. 9 appearing with a form << some
code >>. This is not a conceptual symbolism, but is syntax relating to meta-language
construct known as quasi-quoting. Essentially, it is a compile-time operator that con-
verts the surrounded raw source-text to its respective AST representation. For in-
stance <<1+2>> is equivalent to the AST of the expression 1+2, not merely the cha-
racter string ‘1+2’. This is useful when one needs to combine in-place an explicitly
written source code snippet with other code fragments that are available directly as
AST values. In our example, we quasi-quote the source text producing the numeric
and function tab entries (middle of step 4 in Fig. 9) and compose them via
Tree::Insert with the ASTs earlier extracted from the calculator code.

6 Summary and Conclusions

Currently, MDE of User-Interfaces represents a domain of very powerful develop-
ment tools for rapid development of interactive systems. Their evolution in the last
decade consolidated the disciplined view of model-based user-interface generation as
a transformation process from abstract to concrete models, eventually down to the
physical platform level. Generational MDE tools support the production of concrete
user-interface implementations directly at the source code level. Such a facility is
overall very helpful, powerful and flexible for user-interface programmers. However,
it also causes maintenance issues once extensions and updates are manually intro-
duced over the generated user-interface.

To cope with such maintenance issues we propose the exploitation of the metapro-
gramming language facilities and suggest an improved model-driven code of practice
relying on the manipulation of user-interface code fragments by clients directly as data.
In this approach, the generator components of MDE tools need output Abstract Syntax
Trees (ASTs), not source code, while clients should import and compose ASTs as
needed, before eventually performing on-demand and in-place code generation.

We have also carried out a case study to experiment and validate the engineering
proposition using a publicly available compile-time metaprogramming language and
an interface builder. Overall we were truly impressed by the compositional flexibility
which allowed us to safely and easily manipulate and extend the produced interface
without suffering from maintenance issues. We believe our work reveals the chances
by combining metaprogramming and generational MDE user-interface engineering
tools, and anticipate more efforts to further exploit this field.

References

1. Savidis, A.: Delta Programming Language (2012), http://www.ics.forth.gr/
hci/files/plang/Delta/Delta.html (accessed february 2014)

148 A. Savidis, Y. Valsamakis, and Y. Lilis

2. Taha, W.: A gentle introduction to multi-stage programming. In: Lengauer, C., Batory, D.,
Blum, A., Odersky, M. (eds.) Domain-Specific Program Generation. LNCS, vol. 3016, pp.
30–50. Springer, Heidelberg (2004)

3. Schramm, A., Preußner, A., Heinrich, M., Vogel, L.: Rapid UI Development for Enterprise
Applications: Combining Manual and Model-Driven Techniques. In: Petriu, D.C., Rou-
quette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp. 271–285.
Springer, Heidelberg (2010)

4. Sheard, T., Benaissa, Z., Martel, M.: Introduction to multi-stage programming using Me-
taML. Technical report, Pacific Software Research Center, Oregon Graduate Institute
(2000)

5. Lilis, Y., Savidis, A.: Implementing Reusable Exception Handling Patterns with Compile-
Time Metaprogramming. In: Avgeriou, P. (ed.) SERENE 2012. LNCS, vol. 7527, pp. 1–
15. Springer, Heidelberg (2012)

6. Lilis, Y., Savidis, A.: Implementing Reusable Exception Handling Patterns with Compile-
Time Metaprogramming. In: Avgeriou, P. (ed.) SERENE 2012. LNCS, vol. 7527, pp. 1–
15. Springer, Heidelberg (2012)

7. Foley, J., Kim, W.C., Kovacevic, S., Murray, K.: Defining Interfaces at a High Level of
Abstraction. IEEE Software 6(1), 25–32 (1989)

8. MetaOCaml, A compiled, type-safe multi-stage programming language (2003),
http://www.metaocaml.org/

9. wx Form Builder (2006), A RAD tool for wx GUIs, http://
sourceforge.net/projects/wxformbuilder/ (accessed online January 2014)

10. Michotte, B., Vanderdonckt, J.: GrafiXML, a Multi-target User Interface Builder Based on
UsiXML. In: Proceedings of ICAS 2008 4th International Conference on Autonomic and
Autonomous Systems, Gosier, Guadeloupe, March 16-21, pp. 15–22. IEEE (2008)

11. Sauer, S., Engels, G.: Easy model-driven development of multimedia user interfaces with
guiBuilder. In: Stephanidis, C. (ed.) HCI 2007. LNCS, vol. 4554, pp. 537–546. Springer,
Heidelberg (2007)

12. GtkBuilder – Build an interface from an XML UI definition, https://
developer.gnome.org/gtk3/stable/GtkBuilder.html (accessed online
January 2014)

13. The Eclipse Foundation. Eclipse Modeling Framework, EMF (2008), http://
www.eclipse.org/modeling/emf/ (accessed online January 2014)

14. Obeo (2006), Acceleo: MDA generator, http://www.acceleo.org/pages/
home/en (accessed online January 2014)

15. Actifsource GmbH (2010), Actifsource Code Generator for Eclipse,
http://www.actifsource.com/_downloads/actifsource_code_gener
ator_for_Eclipse_en.pdf (accessed online January 2014)

16. Lanusse, A., Tanguy, Y., Espinoza, H., Mraidha, C., Gerard, S., Tessier, P., Schneken-
burger, R., Dubois, H., Terrier, F.: Papyrus UML: an open source toolset for MDA. In:
Proceedings of the Tools and Consultancy Track of the Fifth European Conference on
Model-Driven Architecture Foundations and Applications (ECMDA-FA 2009), University
of Twente. Enschede, The Netherlands, June 23-26 (2009)

17. Desfray, P.: Modelio: Globalizing MDA. In: Proceedings of the Tools and Consultancy
Track of the Fifth European Conference on Model-Driven Architecture Foundations and
Applications (ECMDA-FA 2009), University of Twente. Enschede, The Netherlands, June
23-26 (2009)

	Improved Model-Driven Engineering of User-Interfaces with Generative Macros
	1 Introduction
	1.1 Identification of e the Problem
	1.2 Primary Contributions

	2 Related Work
	3 Staged Metaprograms
	4 Improved Model-Driven Process
	5 Development Case
Study
	5.1 Manipulating Interface Code as Abstract Syntax Trees
	5.2 Composing Interface Code In-Place and On-Demand

	6 Summary and Conclusions
	References

