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Abstract. We have conducted an experiment in which subjects controlled a 
brain-computer interface (BCI) without being aware that their brainwaves were 
responsible for events in the scenario. Ten subjects went through a stage of 
model training in steady state visually evoked potential (SSVEP)-based BCI, 
followed by three trials of an immersive experience where stars moved as a re-
sponse to SSVEP classification. Only then the subjects were explained that they 
were using a BCI, and this was followed by an additional trial of immersive free 
choice BCI and a final validation stage. Three out of the ten subjects realized 
that they controlled the interface, and these subjects had better accuracy than 
the rest of the subjects and reported a higher sense of agency in a post study 
questionnaire.  
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1 Introduction 

Brain-computer interface (BCI) has the potential to become the ultimate interaction 
paradigm, whereby user's intentions are automatically converted into actions. Howev-
er, despite much progress in BCI in general and in SSVEP-based BCI specifically, the 
practice is very different. In order to achieve reasonable accuracy BCI users have to 
be very concentrated, avoid moving or blinking as much as possible, and often some 
period of training is required. 

We have developed a system that naturally embeds electroencephalogram (EEG) 
steady state visually evoked potential (SSVEP) targets inside graphical scenes. Using 
our system any object in a 3D (or 2D) environment can be easily made into a BCI 
target, with the expectation of this leading to an improved user experience compared 
to most alternative paradigms. In this study we wanted to push the ease of use to its 
extreme and ask: would people be able to control an application using BCI without 
even being told that they are controlling the application? And if so, would people 
realize that they are affecting the application using their brainwaves?  

We have conducted an experiment whereby ten subjects controlled a BCI without 
being instructed to control it. Our method uses the SSVEP paradigm, which is based 
on detecting occipital lobe activation that resonates with flickering visual stimuli.  
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The subjects experienced an immersive presentation of deep space, including stars 
flickering with different frequencies, while connected to the BCI system. Whenever 
the online classification indicated that the subject "selected" one of the stars, the star 
started to move, thus providing feedback to the subjects. The goal was to find out 
whether subjects would realize that the application is responding to their brain activi-
ty, and how this would affect their BCI performance and their overall experience.  

2 Related Work 

We suggest a distinction among three types of BCI control: i) implicit – the interface 
responds to the user's brainwaves but the user is not aware of it, ii) volitional – the 
user makes an aware mental effort to control the interface, and iii) the control of the 
BCI has become an automatic process, so the user knows that he is using a BCI but 
does not necessarily need to dedicate attention to that control. There has been some 
studies shedding light on the possible transition from volitional to automatic control 
(e.g., see [1] for a relevant review), but a very small number of studies regarding the 
differences between implicit and voluntary BCI control.   

Shenoy and Tan [2] suggest a paradigm they call human-aided computing that uses 
an EEG device to measure implicit cognitive processing, processing that users per-
form automatically and may not even be aware of. They report two experiments whe-
reby subjects were exposed to images for as briefly as 150ms and the category of the 
image was classified with some degree of success from the EEG patterns. Zander et 
al. [3,4] suggest a subclass of BCI systems that they call passive BCIs, which provide 
"easily applicable and yet efficient interaction channels carrying information on co-
vert aspects of user state, while adding little further usage cost"[4]. Our study reported 
here suggests that SSVEP may similarly be used as a passive BCI.  

3 Method 

3.1 System 

Our generic platform allows easily turning any object in a virtual environment into an 
SSVEP flickering target. We use the Unity 3D game engine (Unity Technologies, 
USA). The stimuli were presented in an immersive virtual environment displayed on a 
back projected large screen ("power wall") 182cm (height) by 256cm (width). Partici-
pants were asked to sit on an office arm chair positioned 180cm from the screen. The 
application was displayed using a 120 screen refresh rate projector at a screen resolu-
tion of 1280*768 using a high-end graphics card.  

EEG recording, signal processing and algorithm classification were conducted on a 
laptop that sent the classification results through a user datagram protocol (UDP) over 
the local network to the computer running Unity. SSVEP classification was calculated 
using a well-known algorithm [5]. We recorded EEG signals at pO7, PO3, POz, PO4, 
PO8, O1, Oz and O2 locations according to the international 10-20 system. Reference 
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Fig. 1. Electrode locations on the scalp 

electrode was positioned on the subject’s left ear lobe and ground electrode was 
placed at Fpz location (Figure 1). EEG signals were recorded at 256Hz and amplifica-
tion, analog filtering (5-100 Hz), and notch filtering at 50Hz were performed using 
the g.USBamp amplifier (Guger Technologies, Austria).   

3.2 Experimental Protocol 

Ten subjects participated in the experiment, aged 19-40, 8 females and 2 males. The 
experiment included three parts (Fig. 2): i) training, ii) free choice immersive BCI 
scenario, and iii) classification validation. Throughout the study we used five classes, 
four SSVEP frequencies: 8.57Hz, 12Hz, 15Hz, and 20Hz, and a null class. 
 

 

Fig. 2. The experimental protocol included three stages 

In the first part (training), the system computed a classifier of the EEG patterns eli-
cited by the stimuli (stars) (Fig. 3). Each of the training sessions included 20 stimuli, 
5 times each frequency in pseudo-random order and location on the screen. A red 
square appeared before each stimulus that the subject was expected to attend to.  

Training stage Validation stage Free choice BCI 
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Fig. 3. The training stage claffication trial: before stimuli appearance a red square directs 
towards the location of the star that the participant needs to attend to in the following trial. 

In the second stage (Fig. 4) the scene included an immersive experience of deep 
space with small stars moving towards the subject. Occasionally, larger stars would 
appear, all with the same texture, and each flickering at one of the four frequencies 
(there were up to four large stars simultaneously on the screen and never more than 
one with the same frequency). When an SSVEP response to a specific star has been 
detected in the participant's online signal, the star began moving towards the user. 
Each trial in this stage lasted 155 seconds of free choice BCI, and every participant 
went through four such trials.  

In the first three trials the subjects were not told that the experience is responding 
to their brainwaves. After the first three trials and before the fourth trial the subjects 
filled in a questionnaire, and were then divulged about the nature of the interface and 
asked to do their best at moving the stars. The questionnaire included some demo-
graphic information as well as five questions on a 1-7 Likert scale that measured their 
sense of agency and control of the interface. For example, the participants were asked 
“Was the movement of the stars random? 1 (no) – 7 (yes) ___”. A reliability test 
yielded a α-cronbach of .651 that validates the similarity between questions so they 
could be used as a single control measure.    

 

 

Fig. 4. The experience: a subject controlling the star field using the BCI 

One trial of stimuli 

One trial of stimuli 
18 times more 
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Fig. 7. Hits ratio between participants who found out they are controlling the interface (Eureka) 
and those who didn’t (non eureka) 

The subjects in the Eureka group reported a higher sense of agency (mean = 4.8) 
than in the non-Eureka group (mean = 1.9). Again the small number of the subjects 
prevents a statistical analysis but the difference seems substantial (Fig. 7).  

5 Discussion 

Our study shows that subjects can control an SSVEP BCI without being instructed at 
all. Only a small part (30%) of the subjects realized that the content of the display was 
responding to their brainwaves. Those subjects that did realize this were more suc-
cessful in controlling the BCI and reported a significantly higher sense of agency.  

Our study indicates that SSVEP, especially when embedded naturally inside 3D 
environments, can be used as a natural mode of interaction. Even those subjects that 
did not know that the content was responding to their brainwaves were able to per-
form the task much beyond chance levels.  

Our hypothesis is that the relatively small number of subjects that realized that they 
were using a BCI is due to the high latency, of approximately 6 seconds between the 
appearance of the stimulus and the optimal point of classification. The neuroscience 
community assumes that a delay of 500 ms between stimulus and feedback already 
diminishes the sense of agency significantly (e.g.,[6]).  

Finally, we see this early result as a trigger for two types of studies. First, we in-
tend to further explore this paradigm and test whether implicit learning of such a BCI 
is possible. Second, we see this as an indication that SSVEP embedded naturally in 
the media is promising as a natural user interface, and hope to explore it in additional 
scenarios and experimental paradigms.  
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