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Abstract. This paper presents a low-cost social robot, called Philos,
and human-robot interaction (HRI) design. The system is accompanied
with a user interface that allows customization of interactive functions
and real-time monitoring. The robot features eight degrees of freedom
that can generate various gestures and facial expressions. HRI is real-
ized by two elements, internal characteristics of the robot and external
vision/touch inputs provided by the users. Internal characteristics de-
termine the predefined personality of Philos among the five: Friendly,
Hyperactive, Shy, Cold, or Sensitive, and set the behavioral control pa-
rameters accordingly. Vision-based interaction includes face tracking,
face recognition, and motion tracking. Embedded touch sensors detect
physical touch-based interaction. Behavioral parameters are updated in
real time based on the user inputs, and therefore Philos can engage
each user in personalized interaction via uniquely defined behavioral re-
sponses. The cost of Philos is estimated to be relatively low compared to
other commercially available robots promising a broad range of potential
applications for domestic and professional use.
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1 Introduction

Social robots are designed to entertain, assist, or provide service to humans
though vision, touch, and sound-based interaction. Therefore, human-robot in-
teraction (HRI) often resembles the way humans interact with each other. Re-
cently, social robots have been receiving growing interest for their great potential
as a long-term health care solution. For example, a social robot can serve as a
companion for older people by helping them maintain independent living [1].
In addition, recent studies have demonstrated potential uses of social robots in
behavioral training for children with developmental disabilities [2], [3], [4].

Over the past several decades, a number of socially interactive robots have
been developed, covering a range of design and functionality objectives. The
Huggable, a robot with the outer appearance of a teddy bear, focuses on imple-
menting a sophisticated touch–sensitive skin, allowing for therapeutic interaction
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through physical touch inputs and responses [5]. Sparky and Feelix are mobile
robots with actuated faces, each with 4 degrees of freedom [6], [7]. Kismet is
an anthromorphic head with 21 degrees of freedom that can produce complex
facial expressions in response to user inputs [8]. Sage is also a social robot that
serves as a robotic tour guide while adjusting behavioral parameters over time
based on external interaction [9]. Olivia, is another robotic tour guide that can
inform and entertain visitors [10]. Targeting one of the public health epidemics,
AutomTM demonstrates its use as a weight loss coach [11].

NAO is a commercial robotic platform that is often employed for various re-
search and education applications. For example, some recent studies employed
NAO in social training for children with autism spectrum disorders. NAO has a
combination of lights, vocal cues, and motions to interact with children. While
simple behaviors are autonomously generated, more complex motions were con-
trolled by researchers monitoring the process. In addition, NAO has the capa-
bility to record video and detect touches on its head. By utilizing an intuitive
graphical user interface (GUI), NAO allows clinicians to interact wirelessly with
the users and has shown success in clinical studies involving children with autism
spectrum disorders [12]. Paro and NeCoRo are designed to provide compan-
ionship to older people [13], [14], [15]. iCat is another commercially available
platform that can recognize objects and faces, recognize speech and sound, and
generate various facial expressions [16]. Similar to Paro, iCat was also tested for
its potential benefits to the elderly population. The results showed that older
people are more comfortable and more expressive with a more sociable robot
than with a less social one. In the design of iCat, all emotion expressions are
enabled through facial movement and voice generation. However, one existing
problem is that while interacting with iCat, there will be no direct body con-
tact between iCat and the human user, which may limit the range and type
of interaction. While many existing social robots have proven their effective-
ness in entertaining, assisting, and providing service to human users, the cost
and maintenance of such robots may discourage many from considering the pur-
chase. The commercial price of Paro is about $6,000 and Nao costs over $15,000.
Furthermore, personalized HRI is still a challenging problem to be addressed.

This paper presents Philos, a low-cost social robot for use in a broad range of
applications that involve personalized human-robot interaction. The estimated
commercial price of Philos is less than $3,000, where all associated software can
be available for free when used for research or educational purposes. Philos can
interact with users via touch, face detection/recognition, and motion detection.
Philos is actuated by eight servo motors that can generate various gestures and
simple facial expressions using moving eyebrows. The behavioral control of Philos
is based on two elements: 1) internal characteristics of the robot and 2) external
vision and touch inputs provided by the users. Internal characteristics deter-
mine the robot’s initial personality and set the behavioral control parameters
accordingly. Therefore, Philos can engage each user in personalized interaction
via uniquely defined behavioral responses tailored for each user.
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2 Hardware and Software Design

2.1 Hardware Design and Control Scheme

Philos is capable of performing a wide range of simple behavioral motions, in-
cluding nodding or shaking its head, waving, flapping its arms, and moving the
eyebrows through actuation of eight servo motors: two for each arm, two servos
enabling the head to pan and tilt, and two for eyebrows [17]. Moving eyebrows
allow Philos to generate simple facial expressions, representing three emotional
statuses: positive, neutral, and negative as shown in Fig 1. The servos are con-
trolled by an mbed ARM R© core microcontroller through serial communication.
Philos utilizes 14 force-sensitive resistors (FSR) that cover its chest, head, hands,
and feet. These FSRs allow Philos to detect where the robot is touched as well
as determine whether it is an aggressive or gentle touch. Philos also has a small
speaker installed in its body chassis. This speaker is controlled via the mbed
device to playback prerecorded sound clips including human voices, music, or
penguin sound. The robot also has two cameras on its head for face detection,
face recognition, and motion detection. The exterior covering of Philos is de-
signed to resemble a penguin. Inside the plush outer surface, there is a thin
plastic shell to protect the inner components of the robot and to attach the
FSRs so that they read more accurately.

Philos utilizes two microcontrollers working in tandem. Philos uses an mbed
ARM R© core microcontroller for behavioral control and voice generation. A Rasp-
berry Pi is used to read the raw image data and to apply the face and motion
detection algorithms. These microcontrollers were chosen due to their respective
strengths in terms of processing speed and cost. The Raspberry Pi has fairly high
processor speed for an embedded controller and uses a Linux based operating sys-
tem enabling the use of OpenCV. FSRs are low-cost and widely available sensors
can effectively detect touch and its magnitude up to 100N. Each sensor has a sur-
face area of 1.5 × 1.5 inch2. The mbed controller receives and processes analog
data from the FSR clusters and the noise from the circuit is accounted for by im-
plementing a sampling rate to the FSRs. The servos are controlled via pulse-width
modulation (PWM) in order to move the eyebrows of Philos to express emotions.
The movement of the arms and head of Philos is controlled by six AX-12 servomo-
tors via half-duplex serial communication. This communication protocol allows

Fig. 1. Internal view of Philos and three emotional statuses (positive, neutral, and
negative) represented by the eyebrow angles and hand gestures
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the servo motors to be connected in series and for multiple servos to be controlled
with a single command. This particular servo greatly reduces the cost of using
multiple servos as only two of the GPIO pins must be dedicated to AX-12 control.

Fig. 2. Philos workstation for programming behavior parameters and real-time moni-
toring of HRI

2.2 Software Interface

The Graphical User Interface (GUI) allows the user to personalize the robot and
monitor real-time interaction data (Fig. 2). The GUI is designed to enable non-
technical users to easily reprogram the robot when desired. Real-time monitoring
data is also realized in the GUI by displaying current interaction data. In addition
to numerical data, a graphical representation of the force applied on different
parts of the body is overlaid on a picture of the robot in the main section
of the GUI. The data collected during interaction can also be exported to a
text document with time stamps if further analysis is desired. Reprogramming,
manual control, and data collection are enabled by wireless Zigbee technology
using a USB dongle connecting an XBee with the computer.

3 Human-Robot Interaction Design

There are two elements that influence the behavioral characteristics of Philos: 1)
the internally defined personality and 2) external inputs provided by human users
to Philos. An operator can initially specify a personality type for Philos which
will generate a unique set of behavior parameters. Philos behavioral responses are
also affected by external user inputs provided through touch-based and vision-
based interactions enabled by onboard sensors.
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3.1 Generation of Internal Characteristics

Methods: Based on the big five dimensions of human personality as defined by
several psychologists [18], we consider five predefined personality types that are
adapted for a sociable robot application: Friendly, Hyperactive, Sensitive, Shy,
and Cold, as described below:

– Friendly: The robot tends to seek out interaction. It is prone to positive
increases in behavior, but resistant to negative changes.

– Hyperactive: The robot aggressively seeks out interaction. It is not excep-
tionally prone to changes in behavior.

– Shy: The robot avoids interaction and is not prone to behavior changes.
– Cold: The robot avoids interaction. It tends to respond negatively to exter-

nal inputs and is resistant to behavior changes.
– Sensitive: The robot neither avoids nor aggressively seeks interaction. It

is very prone to behavior changes and is easily affected by user inputs.

Each personality type is classified by a predefined set of values assigned to
each of the following personality dimensions: Extraversion (EXT), Agreeableness
(AGR), Self-Control (SC), Emotional Stability (ES), and Independence (IND).
The values range from 1 to 5 where a value of 1 means the personality dimen-
sion is weakly displayed and 5 means the dimension is strongly displayed. These
internal characteristics generate the following behavioral parameters of Philos:

– Room scan frequency (fscan): The frequency at which the robot will scan
the room for faces when it has not recently detected one.

– Face track probability (ptrack): The likelihood that the robot will follow
a subjects face after the face has been detected.

– Frequency of idle state activity (fidle): The frequency at which the robot
considers itself idle during a period of no human interaction, and will exhibit
some action to draw attention to itself.

– Range of idle state activity (didle): The number of behaviors the robot
may exhibit when it has been idle for a period of time, which is defined by
the idle behavior frequency.

– Level of positive behavioral response (rp): A higher value indicates a
higher probability that the robot will respond positively to external inputs
provided by a user and will be more inclined to seek out interaction.

– Behavioral change factors (cinc, cdec): The factors that determine the
magnitude that the above parameters will either increase due to positive
external inputs or decrease due to negative ones.

Preliminary Testing of the Algorithm: To evaluate the effects of internal
parameters on Philos’ behavior and user interaction on Philos’ behavior, a simple
laboratory test was conducted. Behavioral dimension values, (EXT, AGR, SC,
ES, IND), for each personality are defined as: Friendly (4, 5, 4, 3, 3), Hyperactive
(5, 4, 2, 2, 5), Shy (1, 2, 3, 4, 1), Cold (2, 1, 5, 5, 2), and Sensitive (3, 3, 1, 1, 4).
Holding rp constant, 200 “gentle” and 200 “harsh” touch inputs were provided
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Fig. 3. Percentage of positive and negative responses as affected by user input and
programmed personality

based on the predefined threshold for the force sensors. The number of positive
responses enacted by Philos was recorded. In order to determine the probability
that a positive response would occur after a series of either positive or negative
user inputs, we conducted the following test. For each predefined personality, ten
touch inputs were provided while rp was allowed to change. All ten were either
“gentle” or “harsh.” After the first ten, an additional 200 inputs were given, the
first 100 “gentle” and the next 100 “harsh”, while rp was held constant. The
results of the tests where the first 10 inputs were positive and the tests where
the first 10 inputs were negative are also both plotted in Fig. 3.

The data presented in Fig. 3 shows how Philos’ behavior is affected by either
positive or negative user input. Personalities with a high value for AGR (i.e.
Friendly, Hyperactive) are more significantly affected by positive inputs than
negative. The opposite is true for personalities with a low AGR value (i.e. Shy,
Cold). Furthermore, the lower the value of ES, the more drastically the behavior
will change. This explains why the effects of positive input cause Philos’ behavior
to change a similar amount for both the Sensitive and Friendly personalities, even
though AGR is higher for the Friendly personality type.

3.2 User-Based Interaction

Touch-Based Interaction: Touch based interaction is realized through clus-
ters of FSRs that cover the hard shell of Philos. These clusters are located on the
body, the hands, the feet, and the top of the head of Philos. The FSR clusters are
created by connecting multiple FSRs in parallel. Touches are first categorized as
either being harsh or gentle. The threshold values for gentle and harsh touches
can be prespecified or determined by initial parameter training.

Real-Time Face Tracking: Initial face detection uses the AdaBoost Classifier,
Haar classifiers, and skin color based algorithm [19], [20], [21]. However, these
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Algorithm 1. Face Tracking

1: loop Command from controller
2: % Use frame difference to find edges of moving object
3: Fi−1 ← Capture Frame at ti−1; Fi ← Capture Frame at ti
4: Mi = Fi − Fi−1 where moving objects in the M frame are white on black
5: if Average(Center(Mi)) != [0, 0] then
6: Move toward the Center(Mi)
7: end if
8: Preprocessing: RGB to GRAY, Equalization
9: Optimize the potential searching area (Algorithm 2)

10: Face Detection using Haar cascades and Skin color filter
11: end loop

Algorithm 2. Optimize Potential Searching Area

1: loop Camera moved to follow the object
2: Vi = (Pi − Pi−1)/Δt
3: Pi+1 = Pi + Vi ×Δt
4: if Face is not found then
5: Increase Searching Area by 10% until the face is found
6: else
7: Pan Camera Searching
8: end if
9: end loop

methods are often not suitable for embedded, real-time tracking. To reduce the
detection time, two strategies are applied: 1) reducing the searching area within
the image and 2) optimizing the potential area by projecting the face location
in the future frame. First, the original image in the RGB space is transformed
into a gray scale and then smoothened by the equalization process. Secondly, the
potential face area that projects the future face location is estimated assuming
that the user’s face will move without erratically changing direction and speed
using the results from face detection in current and previous frames. Typically,
a potential face area indicating possible face locations in the next time frame
is slightly larger than the detected face window. Depending on the speed of
face movement, the size of the potential face area is dynamically determined
as described in Algorithm 2. For example, if the face moves quickly within the
image in two consecutive frames, the potential area for searching is increased
accordingly. Otherwise, if the face moves slowly, the potential area is reduced.
Increasing the potential area by 20% of the actual face size and decreasing the
searching area by 10% ensures that if the face either moves closer or farther from
the camera it will not be outside the potential area, and accounts for the face
moving left or right in relation to the camera. In this way, we can significantly
lower the searching time. Table 1 compares computational times depending on
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Table 1. Detection time with various sizes of the searching area applied. PA: Potential
Area, SA: Searching Area

Searching area Original 120% PA & 80% SA 120% PA & 90% SA
50∗50 985ms 433ms 376ms
80∗80 1303ms 553ms 462ms
160∗160 2997ms 739ms 507ms
400∗400 7814ms 1190ms 696ms

the size of the searching area. Algorithm 1 and 2 shows our overall face tracking
strategies.

Face Recognition: Face recognition is enabled by the Principal Component
Analysis (PCA) and adaptive learning algorithm for gradually improved perfor-
mance presented in [21]. To first obtain a standardized image of a person, the
image is rescaled to 320× 240 pixels and an ellipse shade is applied to eliminate
the hair. Ten images for each person are taken and an average image is calcu-
lated. By comparing the difference between a user and these average images it
is possible to determine if the person is in the database and if they are not in
the database, he or she can be added to it.

Fig. 4. The processed image and motion detection result

Motion Detection: Motion detection aims at face detection of moving ob-
jects/persons at a relatively low resolution. For example, if someone moves to-
ward Philos from a distance, the robot may not be able to obtain images that are
suitable for face detection. However, the motions can be detected and tracked.
In order to accomplish this, two consecutive frames of the image are compared
to calculate the differences between the two frames [22]. The images are first
converted into a gray scale to further reduce the processing time and THEN
compared for each pixel. If two pixels in two images show the same value, it is
marked as 0. If not, it is marked as 1. Then the center of the areas marked with
1’s is calculated. Fig. 4 shows this process.
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4 Conclusion

In this paper, we presented Philos, a social robot for personalized social inter-
action. Personalization is realized by predefined internal characteristics of the
robot and HRI based on external user inputs. Data collection and processing
is performed on board. Philos can provide users a low-cost platform for various
education and research applications with its estimated mass-production cost of
about $3,000. Building on the current prototype, we are developing the next
generation of Philos with improved hardware and user interface design. Further-
more, speech recognition is one of the important areas of exploration while it is
omitted in the current version of Philos.
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