Skip to main content

Particle Filter-Based Method for Prognostics with Application to Auxiliary Power Unit

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8481))

Abstract

Particle filter (PF)-based method has been widely used for machinery condition-based maintenance (CBM), in particular, for prognostics. It is employed to update the nonlinear prediction model for forecasting system states. In this work, we applied PF techniques to Auxiliary Power Unit (APU) prognostics for estimating remaining useful cycle to effectively perform APU health management. After introducing the PF-based prognostic method and algorithms, the paper presents the implementation for APU Starter prognostics along with the experimental results. The results demonstrated that the developed PF-based method is useful for estimating remaining useful cycle for a given failure of a component or a subsystem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jardine, A., Lin, D., Banjevic, D.: A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing 20, 1483–1510 (2006)

    Article  Google Scholar 

  2. Liu, J., Wang, J.W., Golnaraghi, F.: A multi-step predictor with a variable input pattern for system state forecasting. Mechanical Systems and Signal Processing 2315, 86–99 (2009)

    Google Scholar 

  3. Gupta, S., Ray, A.: Real-time fatigue life estimation in mechanical structures. Measurement Science and Technology 18, 1947–1957 (2007)

    Article  Google Scholar 

  4. Yagiz, S., Gokceoglu, C., Sezer, E., Iplikci, S.: Application of two non-linear prediction tools to the estimation of tunnel boring machine performance. Engineering Applications of Artificial Intelligence 22, 808–814 (2009)

    Article  Google Scholar 

  5. Groot, C.D., Wurtz, D.: Analysis of univariate time series with connectionist nets: a case study of two classical cases. Neurocomputing 3, 177–192 (1991)

    Article  Google Scholar 

  6. Tong, H., Lim, K.S.: Threshold autoregression, limited cycles and cyclical data. Journal of the Royal Statistical Society 42, 245–292 (1991)

    Google Scholar 

  7. Subba, R.T.: On the theory of bilinear time series models. Journal of the Royal Statistical Society 43, 244–255 (1981)

    MATH  Google Scholar 

  8. Friedman, J.H., Stuetzle, W.: Projection pursuit regression. Journal of the American Statistical Association 76, 817–823 (1981)

    Article  MathSciNet  Google Scholar 

  9. Friedman, J.H.: Multivariate adaptive regression splines. Annals of Statistics 19, 1–141 (1981)

    Google Scholar 

  10. Brillinger, D.R.: The identification of polynomial systems by means of higher order spectra. Journal of Sound and Vibration 12, 301–313 (1970)

    Article  MATH  Google Scholar 

  11. Atiya, A., El-Shoura, S., Shaheen, S., El-Sherif, M.: A comparison between neural-network forecasting techniques-case study: river flow forecasting. IEEE Transactions on Neural Networks 10, 402–409 (1999)

    Article  Google Scholar 

  12. Liang, Y., Liang, X.: Improving signal prediction performance of neural networks through multi-resolution learning approach. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 36, 341–352 (2006)

    Article  Google Scholar 

  13. Husmeier, D.: Neural networks for conditional probability estimation: forecasting beyond point prediction. Springer, London (1999)

    Book  Google Scholar 

  14. Korbicz, J.: Fault Diagnosis: Models, Artificial Intelligence, Applications. Springer, Berlin (2004)

    Book  Google Scholar 

  15. Wang, W., Vrbanek, J.: An evolving fuzzy predictor for industrial applications. IEEE Transactions on Fuzzy Systems 16, 1439–1449 (2008)

    Article  Google Scholar 

  16. Tse, P., Atherton, D.: Prediction of machine deterioration using vibration based fault trends and recurrent neural networks. Journal of Vibration and Acoustics 121, 355–362 (1999)

    Article  Google Scholar 

  17. Adams, D.E.: Nonlinear damage models for diagnosis and prognosis in structural dynamic systems. In: Proc. SPIE, vol. 4733, pp. 180–191 (2002)

    Google Scholar 

  18. Luo, J., et al.: An interacting multiple model approach to model-based prognostics. System Security and Assurance 1, 189–194 (2003)

    Google Scholar 

  19. Chelidze, D., Cusumano, J.P.: A dynamical systems approach to failure prognosis. Journal of Vibration and Acoustics 126, 2–8 (2004)

    Article  Google Scholar 

  20. Pecht, M., Jaai, R.: A prognostics and health management roadmap for information and electronics-rich systems. Microelectronics Reliability 50, 317–323 (2010)

    Article  Google Scholar 

  21. Saha, B., Goebel, K., Poll, S., Christophersen, J.: Prognostics methods for battery health monitoring using a Bayesian framework. IEEE Transactions on Instrumentation and Measurement 58, 291–296 (2009)

    Article  Google Scholar 

  22. Liu, J., Wang, W., Golnaraghi, F., Liu, K.: Wavelet spectrum analysis for bearing fault diagnostics. Measurement Science and Technology 19, 1–9 (2008)

    Google Scholar 

  23. Liu, J., Wang, W., Golnaraghi, F.: An extended wavelet spectrum for baring fault diagnostics. IEEE Transactions on Instrumentation and Measurement 57, 2801–2812 (2008)

    Article  Google Scholar 

  24. Liu, J., Wang, W., Ma, F., Yang, Y.B., Yang, C.: A Data-Model-Fusion Prognostic Framework for Dynamic System State Forecasting. Engineering Applications of Artificial Intelligence 25(4), 814–823 (2012)

    Article  Google Scholar 

  25. García, C.M., Chalmers, J., Yang, C.: Particle Filter Based Prognosis with application to Auxiliary Power Unit. In: The Proceedings of the Intelligent Monitoring, Control and Security of Critical Infrastructure Systems (September 2012)

    Google Scholar 

  26. Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 197–208 (2000)

    Google Scholar 

  27. Arulampalam, M., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. Trans. Sig. Proc. 50(2), 174–188 (2002), http://dx.doi.org/10.1109/78.978374

    Article  Google Scholar 

  28. Simon, D.: Optimal State Estimation: Kalman, and Nonlinear Approaches. Wiley Interscience (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Yang, C., Lou, Q., Liu, J., Yang, Y., Bai, Y. (2014). Particle Filter-Based Method for Prognostics with Application to Auxiliary Power Unit. In: Ali, M., Pan, JS., Chen, SM., Horng, MF. (eds) Modern Advances in Applied Intelligence. IEA/AIE 2014. Lecture Notes in Computer Science(), vol 8481. Springer, Cham. https://doi.org/10.1007/978-3-319-07455-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07455-9_21

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07454-2

  • Online ISBN: 978-3-319-07455-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics