Skip to main content

LiDAR Based Tree and Platform Localisation in Almond Orchards

  • Chapter

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 105))

Abstract

In this paper we present an approach to tree recognition and localisation in orchard environments for tree-crop applications. The method builds on the natural structure of the orchard by first segmenting the data into individual trees using a Hidden Semi-Markov Model. Second, a descriptor for representing the characteristics of the trees is introduced, allowing a Hidden Markov Model based matching method to associate new observations with an existing map of the orchard. The localisation method is evaluated on a dataset collected in an almond orchard, showing good performance and robustness both to segmentation errors and measurement noise.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergerman, M., van Henten, E., Billingsley, J., Reid, J., Mingcong, D.: IEEE Robotics and Automation Society Technical Committee on Agricultural Robotics and Automation. IEEE Robotics & Automation Magazine (2013)

    Google Scholar 

  2. Douillard, B., Underwood, J., Kuntz, N., Vlaskine, V., Quadros, A., Morton, P., Frenkel, A.: On the segmentation of 3D LIDAR point clouds. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2798–2805 (2011)

    Google Scholar 

  3. Nielsen, M., Slaughter, D.C., Gliever, C., Upadhyaya, S.: Orchard and tree mapping and description using stereo vision and lidar. In: SPC-03: IV International Workshop on Computer Image Analysis in Agriculture (2012)

    Google Scholar 

  4. Wellington, C., Campoy, J., Khot, L., Ehsani, R.: Orchard tree modeling for advanced sprayer control and automatic tree inventory. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) Workshop on Agricultural Robotics (2012)

    Google Scholar 

  5. Wei, J., Salyani, M.: Development of a laser scanner for measuring tree canopy characteristics Phase 2. Foliage density measurement. Transactions of the ASAE 48(4), 1595–1601 (2005)

    Article  Google Scholar 

  6. Rosell, P., Ramon, J., Sanz, R., Llorens, J., Arn, J., Ribes-Dasi, M., Masip, J., Camp, F., et al.: A tractor-mounted scanning LIDAR for the non-destructive measurement of vegetative volume and surface area of tree-row plantations: A comparison with conventional destructive measurements. Biosystems Engineering 102(2), 128–134 (2009)

    Article  Google Scholar 

  7. Johnson, A.E.: Spin-images: a representation for 3-D surface matching. PhD diss., Microsoft Research (1997)

    Google Scholar 

  8. Frome, A., Huber, D., Kolluri, R., Bülow, T., Malik, J.: Recognizing objects in range data using regional point descriptors. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3023, pp. 224–237. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Rusu, R.B., Blodow, N., Marton, Z.C., Beetz, M.: Aligning point cloud views using persistent feature histograms. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3384–3391 (2008)

    Google Scholar 

  10. Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Transactions on Graphics (TOG) 21(4), 807–832 (2002)

    Article  Google Scholar 

  11. Wohlkinger, W., Vincze, M.: Ensemble of shape functions for 3D object classification. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2987–2992 (2011)

    Google Scholar 

  12. Milford, M.: Visual route recognition with a handful of bits. In: Proceedings of Robotics Science and Systems Conference 2012, University of Sydney (2012)

    Google Scholar 

  13. Fox, D., Wolfram, B., Thrun, S.: Markov localization for mobile robots in dynamic environments. Journal of Artificial Intelligence Research 11, 391–427 (1999)

    MATH  Google Scholar 

  14. Rahman, S., Zelinsky, A.: Mobile Robot Navigation based on localisation using Hidden Markov Models. In: Australasian Conference on Robotics and Automation, ACRA (1999)

    Google Scholar 

  15. Yu, S.: Hidden semi-Markov models. Artificial Intelligence 174(2), 215–243 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jagbrant, G., Underwood, J.P., Nieto, J., Sukkarieh, S. (2015). LiDAR Based Tree and Platform Localisation in Almond Orchards. In: Mejias, L., Corke, P., Roberts, J. (eds) Field and Service Robotics. Springer Tracts in Advanced Robotics, vol 105. Springer, Cham. https://doi.org/10.1007/978-3-319-07488-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07488-7_32

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07487-0

  • Online ISBN: 978-3-319-07488-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics