Skip to main content

Orientation-Driven Ultrasound Compounding Using Uncertainty Information

  • Conference paper
Information Processing in Computer-Assisted Interventions (IPCAI 2014)

Abstract

Compounding 2D ultrasound sweeps into 3D volumes is, due to its cost- and time-efficiency, of great clinical significance in both diagnostic and interventional imaging. However, today’s algorithms restrict the sweeps to have homogeneous pressure and a linear trajectory, which limits their use in clinical applications such as breast or musculoskeletal ultrasound where artifacts occur due to soft and uneven surfaces. In this work, we present two techniques to resolve those restrictions by using an orientation-driven approach, first compensating for probe pressure changes and then resolving ambiguities in regions, where multiple ultrasound frames from different acoustic windows overlap. After clustering incoming frames by orientation, we determine the final voxel intensities based on per-pixel uncertainty information. Qualitative and quantitative evaluation of our methods shows that these techniques provide reconstructions of superior quality for ultrasound sweeps of inhomogeneous pressure and twisted trajectories. Furthermore, we propose optimizations in the implementation of these techniques towards real-time applications, interactively updating and refining the reconstructed volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Solberg, O.V., Lindseth, F., Torp, H., Blake, R.E., Hernes, T.A.N.: Freehand 3d ultrasound reconstruction algorithms - a review. Ultrasound in Medicine & Biology 33(7), 991–1009 (2007)

    Article  Google Scholar 

  2. Wein, W., Pache, F., Röper, B., Navab, N.: Backward-warping ultrasound reconstruction for improving diagnostic value and registration. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 750–757. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Rohling, R., Gee, A., Berman, L.: A comparison of freehand three-dimensional ultrasound reconstruction techniques. Medical Image Analysis 3(4), 339–359 (1999)

    Article  Google Scholar 

  4. Sanches, J.M., Marques, J.S.: A multiscale algorithm for three-dimensional free-hand ultrasound. Ultrasound in Medicine & Biology 28(8), 1029–1040 (2002)

    Article  Google Scholar 

  5. Klein, T., Hansson, M., Navab, N.: Modeling of multi-view 3d freehand radio frequency ultrasound. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 422–429. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Treece, G., Prager, R., Gee, A., Berman, L.: Correction of probe pressure artifacts in freehand 3d ultrasound. Medical Image Analysis 6(3), 199–214 (2002), Special Issue on Medical Image Computing and Computer-Assisted Intervention 2001

    Article  Google Scholar 

  7. Housden, R.J., Gee, A.H., Treece, G.M., Prager, R.W.: Sensorless reconstruction of unconstrained freehand 3d ultrasound data. Ultrasound in Medicine & Biology 33(3), 408–419 (2007)

    Article  Google Scholar 

  8. Karamalis, A., Wein, W., Klein, T., Navab, N.: Ultrasound confidence maps using random walks. Medical Image Analysis 16(6), 1101–1112 (2012)

    Article  Google Scholar 

  9. Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM National Conference, ACM 1968, pp. 517–524. ACM, New York (1968)

    Chapter  Google Scholar 

  10. Wein, W., Khamene, A.: Image-based method for in-vivo freehand ultrasound calibration. In: SPIE Medical Imaging 2008, San Diego (February 2008)

    Google Scholar 

  11. Comaniciu, D., Zhou, X.S., Krishnan, S.: Robust real-time myocardial border tracking for echocardiography: an information fusion approach. IEEE Transactions on Medical Imaging 23(7), 849–860 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Berge, C.S.z., Kapoor, A., Navab, N. (2014). Orientation-Driven Ultrasound Compounding Using Uncertainty Information. In: Stoyanov, D., Collins, D.L., Sakuma, I., Abolmaesumi, P., Jannin, P. (eds) Information Processing in Computer-Assisted Interventions. IPCAI 2014. Lecture Notes in Computer Science, vol 8498. Springer, Cham. https://doi.org/10.1007/978-3-319-07521-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07521-1_25

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07520-4

  • Online ISBN: 978-3-319-07521-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics