Skip to main content

Efficient Tissue Discrimination during Surgical Interventions Using Hyperspectral Imaging

  • Conference paper
Book cover Information Processing in Computer-Assisted Interventions (IPCAI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8498))

Abstract

A new hyperspectral imaging system has been designed for integration in the operating room to detect anatomical tissues hardly noticed by the surgeon’s naked eye. This LCTF-based spectral imaging system is operative over visible and near infrared range (400-1100 nm). After spectral calibration and spatial registration, the tricky process consists in reducing the huge amount of acquired data and removing redundancy without losing valuable information. Band transformation and selection methods are applied on both labeled and unlabeled tissues to extract relevant information to be displayed on surgeon’s RGB monitor. Visualization processing involving global and local contrast enhancement is then performed. To provide a reference for evaluation, surgeon’s perception of the scene is also simulated based on retina cell spectral responses. Experiments on pig ureter hyperspectral datasets reveal that band selection methods are the most effective on this type of intervention, providing sharp interpretation and accurate visualization of the biological tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nouri, D., Lucas, Y., Treuillet, S., Jolivot, R., Marzani, F.: Colour and multispectral imaging for wound healing evaluation in the context of a comparative preclinical study. In: Proc. SPIE, pp. 866910–866923 (2013)

    Google Scholar 

  2. Akbari, H., Halig, L.V., Schuster, D.M., Osunkoya, A., Master, V., Nieh, P.T., Chen, G.Z., Fei, B.: Hyperspectral imaging and quantitative analysis for prostate cancer detection. J. Biomed. Opt. 17, 76005–76010 (2012)

    Article  Google Scholar 

  3. Panasyuk, S.V., Yang, S., Faller, D.V., Ngo, D., Lew, R.A., Freeman, J.E., Rogers, A.E.: Medical hyperspectral imaging to facilitate residual tumor identification during surgery. Cancer Biol. Ther. 6, 439–446 (2007)

    Article  Google Scholar 

  4. Zuzak, K.J., Naik, S.C., Alexandrakis, G., Hawkins, D., Behbehani, K., Livingston, E.: Intraoperative bile duct visualization using near-infrared hyperspectral video imaging. Am. J. Surg. 195, 491–497 (2008)

    Article  Google Scholar 

  5. Jimenez-Rodriguez, L.O., Arzuaga-Cruz, E., Velez-Reyes, M.: Unsupervised Linear Feature-Extraction Methods and Their Effects in the Classification of High-Dimensional Data. IEEE Trans. Geosci. Remote Sens. 45, 469–483 (2007)

    Article  Google Scholar 

  6. Lucini, M.M., Frery, A.C.: Robust Principal Components for Hyperspectral Data Analysis. In: Kamel, M., Campilho, A. (eds.) ICIAR 2009. LNCS, vol. 5627, pp. 126–135. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Chiang, S.-S., Chang, C.-I., Ginsberg, I.W.: Unsupervised hyperspectral image analysis using independent component analysis. In: IGARSS, pp. 3136–3138. IEEE (2000)

    Google Scholar 

  8. Malpica, J.A., Rejas, J.G., Alonso, M.C.: A projection pursuit algorithm for anomaly detection in hyperspectral imagery. Pattern Recognit. 41, 3313–3327 (2008)

    Article  MATH  Google Scholar 

  9. Chen, Y., Crawford, M.M., Ghosh, J.: Applying nonlinear manifold learning to hyperspectral data for land cover classification. In: Proceedings of the IEEE International IGARSS, pp. 4311–4314 (2005)

    Google Scholar 

  10. Han, T.H.T., Goodenough, D.G.: Nonlinear feature extraction of hyperspectral data based on locally linear embedding (LLE). In: Proceedings of the IEEE IGARSS, pp. 1237–1240 (2005)

    Google Scholar 

  11. Luo, X., Jiang, M.-F.: A new dimensionality analysis algorithm for hyperspectral imagery. In: 2011 Int. Conf. Comput. Sci. Serv. Syst., pp. 1952–1956 (2011)

    Google Scholar 

  12. Burgers, K.: A Comparative Analysis of Dimension Reduction Algorithms on Hyperspectral Data (2009)

    Google Scholar 

  13. Bajcsy, P., Groves, P.: Methodology For Hyperspectral Band Selection. Photogramm. Eng. Remote Sens. J. 70, 793–802 (2004)

    Article  Google Scholar 

  14. Bajwa, S.G., Bajcsy, P., Groves, P., Tian, L.F.: Hyperspectral image data mining for band selection in agricultural applications. Trans. ASAE 47, 895–907 (2004)

    Article  Google Scholar 

  15. Beauchemin, M., Fung, K.B.: On statistical band selection for image visualization. Photogramm. Eng. Remote Sensing 67, 571–574 (2001)

    Google Scholar 

  16. Miao, X., Gong, P., Swope, S., Pu, R.L., Carruthers, R., Anderson, G.L.: Detection of yellow starthistle through band selection and feature extraction from hyperspectral imagery. Photogramm. Eng. Remote Sensing 73, 1005–1015 (2007)

    Google Scholar 

  17. Sarhrouni, E., Hammouch, A., Aboutajdine, D.: Dimensionality Reduction and Classification feature using Mutual Information applied to Hyperspectral Images: A Filter strategy based algorithm. Appl. Math. Sci. 6, 5085–5095 (2012)

    Google Scholar 

  18. Martinez-Uso, A., Pla, F., Sotoca, J.M., Garcia-Sevilla, P.: Clustering-Based Hyperspectral Band Selection Using Information Measures. IEEE Trans. Geosci. Remote Sens. 45, 4158–4171 (2007)

    Article  Google Scholar 

  19. Demir, B., Celebi, A., Erturk, S.: A Low-Complexity Approach for the Color Display of Hyperspectral Remote-Sensing Images Using One-Bit-Transform-Based Band Selection. IEEE Trans. Geosci. Remote Sensing 47, 97–105 (2009)

    Article  Google Scholar 

  20. Chang, C.I., Wang, S.: Constrained Band Selection for Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 44, 1575–1585 (2006)

    Article  Google Scholar 

  21. Kaewpijit, S., Moigne, J., Le, E.-G.T.: Automatic reduction of hyperspectral imagery using wavelet spectral analysis. IEEE Trans. Geosci. Remote Sens. 41, 863–871 (2003)

    Article  Google Scholar 

  22. Nouri, D., Lucas, Y., Treuillet, S.: Calibration and test of a hyperspectral imaging prototype for intra-operative surgical assistance. In: Proc. SPIE, pp. 86760P–86760P-9 (2013)

    Google Scholar 

  23. Klein, M.E., Aalderink, B.J., Padoan, R., de Bruin, G., Steemers, T.A.G.: Quantitative Hyperspectral Reflectance Imaging. Sensors 8, 5576–5618 (2008)

    Article  Google Scholar 

  24. Chavez, P.S., Berlin, G.L., Sower, L.B.: Statistical method for selecting Landsat MSS ratio. J. Appl. Photogr. Eng. 8, 23–30 (1982)

    Google Scholar 

  25. Qaid, A.M., Basavarajappa, H.: Application of optimum index factor technique to landsat-7 data for geological mapping of north east of Hajjah, Yemen. Am. J. Sci. Res. 3, 84–91 (2008)

    Google Scholar 

  26. Sheffield, C.: Selecting band combinations from multispectral data. Photogramm. Eng. Remote Sensing 51, 681–687 (1985)

    Google Scholar 

  27. Zuiderveld, K.: Contrast Limited Adaptive Histograph Equalization. In: Heckbert, P.S. (ed.) Graphics Gems IV, pp. 474–485. Academic Press Professional, Inc., San Diego (1994)

    Google Scholar 

  28. Le Moan, S., Mansouri, A., Hardeberg, J., Voisin, Y.: Visualization of spectral images: A comparative study. In: GCIS Proceeding, pp. 1–4. Gjovik, Norvège (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Nouri, D., Lucas, Y., Treuillet, S. (2014). Efficient Tissue Discrimination during Surgical Interventions Using Hyperspectral Imaging. In: Stoyanov, D., Collins, D.L., Sakuma, I., Abolmaesumi, P., Jannin, P. (eds) Information Processing in Computer-Assisted Interventions. IPCAI 2014. Lecture Notes in Computer Science, vol 8498. Springer, Cham. https://doi.org/10.1007/978-3-319-07521-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07521-1_28

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07520-4

  • Online ISBN: 978-3-319-07521-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics