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Abstract. For a wide range of applications, one of the key challenges is to  
identify an architecture that is suitable for machine learning techniques to ena-
ble important augmented cognition capabilities in the context of complex deci-
sion support systems. This overview paper presents an architecture framework. 
The elements of the architecture are described starting with data formatting, a 
machine learning algorithm taxonomy, components of courses of action,  
resource management, and finally the role of augmented cognition within the 
architecture. The paper includes one cyber security example where the architec-
ture framework is employed. The paper concludes with future work in the  
development of a recommender system.  
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1 Introduction 

Many applications of interest to both military and commercial uses rely on a vast 
amount of massive data at the input. The input data can be in the form of physical 
sensors, documents, email, video, images, etc. The users are then tasked to make deci-
sions in a timely manner. The field of augmented cognition facilitates reaching insight 
after a significant amount of processing is done in the front-end of the decision sup-
port system. As shown in Fig. 1, in this paper we are interested in the steps shown 
after any front-end processing. In a decision support system, these steps can be cha-
racterized as information manager, knowledge manager, and decision assistant. As we 
progress from the information manager to the decision assistant, the role of aug-
mented cognition becomes more critical. 

Often the user is either lacking enough data (sparse data) or overloaded with data. 
The decision support system objective is to drive, via a human-machine interaction, to 
the shortest decision time with the right amount of data volume. Thus, the goals of the 
decision support system can be characterized as: 
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block must address consequence estimation, also in the form of probabilistic meas-
ures, leading to action refinement. 

If the decision maker deems that not enough information is available to make a re-
liable and accurate decision, information requests are generated as inputs to a resource 
management stage. The resource management stage is also a complex operation re-
quiring machine learning support. Many military and nonmilitary scenarios involve a 
complex array of data, and a computer system is more apt to manage and task these 
providers of data in an efficient manner than the human. 

The output from resource management is the input to requesting more sensor data, 
source of information, and/or effects. The process then proceeds as previously de-
scribed. A decision support system is not static; additional information and processing 
are critically important to continue updating the information needed by the decision 
maker, hopefully leading to a reduction in information uncertainty and increasing the 
value of the recommended courses of action (decisions). [2] Ultimately, the objective 
is to achieve the goals shown in Fig. 1. 

Each functional block shown in Fig. 2 includes a modeling and simulation sub-
component. This subcomponent simply reinforces the need to generate data, algo-
rithms, courses of actions, or resource management via models and simulation when 
the real data are not available. For example, the decision support system can be used 
to model multiple sources of data, algorithms can be evaluated against these data, and 
courses of actions can also be modeled to better understand consequence estimation. 
Similarly, resource management can be exercised all in the form of modeled sensors, 
sources, or effects. 

2.1 The Role of Human-Machine Interface (HMI) in a Decision Support 
System  

The HMI function is a very important component of the architecture. It is the media 
by which the user interfaces with the decision support system. Recent advances in the 
HMI area are enabling significant improvements in the overall system. [3] Immersive 
analytics, including collaborations among analysts, are best enabled by advances in 
augmented cognition, cognitive modeling, and simulations. Several of these technolo-
gies are gaining rapid acceptance in many other applications (e.g., game industry).  

Each functional component shown in Fig. 2 depends on the HMI effectively inte-
racting across the overall system. It is very common for analysts to make the best 
decisions when they are presented with data after these have gone through critical 
stages of machine learning processing (e.g., composable analytics). The decision sup-
port system, at the HMI level, can then pose options for courses of action back to the 
analysts for them to consider. 

Fig. 4 depicts an analyst interacting with a broad range of inputs. The stage of 
composable analytics allows for rapid insertion of machine learning analytics meeting 
a predefined workflow. These analytics should be able to be changed on-demand and 
continue to update information to the analysts via both geospatial and graph views.  
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in Fig. 6 as the embedding & filtering function. This step, within a recommender sys-
tem, identifies a contextual subspace that allows for interest prediction. One machine 
learning analytics applicable for this step is random subspace projection. [5]  

The next stage is active learning. This step permits the analysts to interact with the 
system to separate the most relevant information. The value in performing this step is 
to reduce false positives and/or false negatives. The last steps in the processing flow 
shown in Fig. 6 are the visual-analytics interface and the reinforcement learning. 
These steps permit inputs from a group of analysts to refine the courses of action op-
tions (action refinement) as new experiences by the users change their relevance 
model shown in Fig. 2.  

 
 

 
 

Fig. 6. Candidate recommender system to facilitate timely courses of action 

The development of the recommender system shown in Fig. 6 is an area of future 
research applicable to a broad range of applications, including the cyber anomaly 
detection described in the previous section. Such an approach will incorporate mul-
tiple disciplines in data aggregation, machine learning techniques, augmented cogni-
tion models, and probabilistic estimates in reaching the shortest decision time within 
the courses of action function of a decision support system.  
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