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Abstract. The OpenAnswer system has the goal of exploiting teacher mediated 
peer-assessment for the evaluation of answers to open ended questions. The 
system models both the learning state of each student and their choices during 
peer-assessment. In OpenAnswer, each student is represented as a Bayesian 
network made of a triple of finite-domain variables: K for student’s Knowledge 
about a topic, J for the estimated ability to evaluate ("Judge") the answer of 
another peer, C for Correctness of the answer to a given question. The student's 
individual sub-networks are connected through further Bayesian variables 
which model each peer-assessment choice, depending on the type of peer-
assessment performed: (G for grading, B for choosing the best, W for choosing 
the worst). During an assessment session, each student grades a fixed number of 
peers’ answers. The final result for a given session is a full set of grades for all 
students’ answers, although the teacher had actually graded only a part of them. 
The student's assessments are instantiated in the network as evidence, together 
with the teacher's (perhaps partially complete) grades, so that OpenAnswer de-
duces the remaining grades. In the former OpenAnswer implementation, all va-
riables were represented through a probability distribution over three values 
(Good/Fair/Bad for K and J, correct/fair/wrong for C). We present experiments 
and simulations showing that, by increasing the domain granularity for all va-
riables from 3 to 6 values (A to F), the information obtained from the Bayesian 
network achieves higher reliability. 
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1 Introduction 

The assessment of the actual knowledge achieved by learners is one of the hardest 
problems to address in education. In face-to-face oral examinations as well as in arti-
culated written essays, the pedagogical experience as well as the deep knowledge of 
the learning domain can guide the teacher. Among the other possible forms of as-
sessment, experts rank quite high the analysis of answers to appropriately open-ended 
questions. This holds in both classroom and e-learning settings, but may become a 
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very demanding activity. Peer-assessment, especially if reliably mediated by the 
teacher’s activity, may partially relieve her from the task. Moreover, it can provide 
rich information about the meta-cognitive ability of students to correctly evaluate 
their peers. Such ability can be deemed as important as the individual knowledge of 
the topic, so that related evaluation is a precious gain. 

A pedagogically effective personalization of learning processes requires a reliable 
assessment of the learner's state of knowledge [1-5]. This is also a critical factor in 
systems providing social-collaborative e-learning [6-13]. 

Many researches (see for example [14]) identify the evaluation of answers to open-
ended questions among the most powerful assessment tools. Closed answer tests 
(quizzes), either single (yes, no) or multiple-choice, require no further elaboration 
from students to explicitly demonstrate their knowledge and beliefs. As a conse-
quence, they may also allow success by just choosing random answers. On the other 
hand, they are a very convenient tool to be frequently used, since they allow fully 
automatic grading. On the contrary, open-ended questions require open answers, i.e. 
true short essays in the form of free text produced by the student. They are more diffi-
cult to tackle for students, since they require the ability and knowledge to concisely 
show their proficiency with respect to a topic. Moreover, they are demanding for the 
teacher too, whose evaluation is required since they are formulated in free natural 
language. In our work, we are tackling the problem of semi-automatic grading of open 
answers by exploiting peer-assessment in a social collaborative e-learning setting. The 
overall process is mediated by the teacher. After the peer-assessment phase, she pro-
vides grades for a starting subset of answers, which are used by the system to deduce 
the final full set of grades through the peer-provided assessments. On their hand, stu-
dents can assess their peers' answers by using the method selected by the teacher 
among the available ones, which are: grading each answer, choosing the best answer 
or choosing the worst one (or both best and worst). The system maintains a model of 
students achievements: in particular we define the student model as an evaluation of 
the learner's state of knowledge (K) and of the learner’s ability to judge answers given 
by peers (J). For each question, we consider the correctness (C) of the learner’s an-
swer, and a variable for each peer assessment (e.g., a G variable if the assessment 
strategy for students is Grade, or else B and/or W variables for best and worst peer 
assessment methods); the teacher keeps grading students’ answers until a termination 
condition flags that the remaining grades can be automatically computed from the 
current collected knowledge. In [15] we first introduced a simple Bayesian-network-
based model to implement our assessment pattern. The model was further refined in 
[16] and [17]. Each students is represented by a Bayesian sub-network with K, C and 
J variables, and the individual students' networks are connected through the variables 
modeling peer-assessment. During a session, each student assesses a number of (e.g., 
three) answers from peers, according to the method selected by the teacher for the 
session. The values assumed by variables C and, e.g., G in the case of grading as-
sessment method, are asserted as evidence and propagated in the whole network. Each 
student’s model is updated accordingly. The aim is to finally produce reliable auto-
mated grading for those answers that were not directly graded by the teacher.  

The present implementation of the OpenAnswer web-based system allows to deliv-
er open ended questions, collect open-answers, collect peer (self-)assessments,  
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maintain the student model representing the achieved proficiency and the ability to 
(self) assess, and support the teacher's analysis and grading of the answers. The first 
help to the teacher comes as the suggestion of the next answer to assess; the selection 
is done according to a pre-selected strategy that either has the goal to retrieve the 
maximum information possible, by choosing the answer which is the most ambiguous 
(max_entropy strategy), or by choosing the currently most probably wrong answer 
(max_wrong strategy) or by just choosing a random one (random strategy). Finally, 
OpenAnswer can suggest to stop the correction because the information collected is 
sufficient. In all cases, the teacher is free to bypass these suggestions and correct a 
different answer or continue to grade. 

In this paper we compare the results of experiments presented in [16] and [17], 
with the results obtained through a finer granularity of the Bayesian variables, moving 
from 3 discrete values to 6. These results show that a more discriminating set of val-
ues improves evidence propagation within the Bayesian network and increases the 
reliability of final results. 

2 Related Work  

Several methodologies have been proposed for the automatic analysis of open an-
swers, stemming from different yet related disciplines such as data mining, natural 
language processing, concept mapping and semantic web techniques. We report here 
some relevant examples. 

In the context of marketing, techniques for data mining and natural language 
processing aim at extracting customer opinions and synthesizing products reputation 
[18,19]. In [20] concept mapping is used with the same goal, by defining and applying 
"coding schemes", which allow to analyze and classify answers. The mentioned ap-
proaches can be also applied in educational contexts [21]. 

In [22] a (semi-)automatic assessment of open-answers is proposed, relying on on-
tologies and semantic web technologies. The ontology is used to formally define the 
knowledge domain to which the questions are related, and also aspects of the overall 
educational process. The ontological labels to be assigned to the answers are in the 
form of "Semantic annotations". After the answers have been labeled, they can be 
analyzed, by evaluating the similarity of their ontological labels against the ones  
assigned to the question. The mechanism of grade assignment is just based on the 
computed ontological correspondences. Teacher plays a crucial role especially at the 
beginning of the process, i.e. in the definition of course ontology and questions'  
semantic annotations, while such role is much less significant later. 

In [23] open answers help determining the implicit conceptions of the students, and 
to treat the wrong ones that may hinder the cognitive process. The algebra defined in 
[24] allows practical manipulation of formulae through the proposed symbolic com-
putation system. This system is effective when applied to answers on algebraic ex-
pressions, yet without added natural language, which would be often beneficial. 

A detailed study of peer assessment in a prototype educational application is in 
[25]. Finally, in our previous work [26, 27], we showed an approach to the grading of 
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open answers, based on Constraint Logic Programming (CLP) and peer assessment. 
Students were defined through the same triple of finite-domain variables, with 3-
valued domains. The modelization of both the student and of the peer-assessment was 
made by posting appropriate constraints. This approach has been temporarily set aside 
due to its high computational complexity, translating in huge processing times. 

3 The OpenAnswer System 

OpenAnswer is a module integrated in a preexisting PHP-based Leaning Management 
System (named sLMS). A teacher in OpenAnswer can: 

a) define a questionnaire;  
b) define a questionnaire session;  
c) open/close the “answer time” for a session;  
d) open/close the “peer-assessment time” for a session;  
e) examine results from peer-evaluation of a session, and assess and grade (some 

of) the given answers;  
f) publish the final session grading.  
 
In a) the teacher specifies some questionnaire options: 1) number of questions, 2) 

number of answers to be peer-assessed by each peer, 3) number of components in 
each group of students (10-25), 4) probability for a student to assess her/his own an-
swer: 100% (always), 0% (never), 33% or 66%; 5) possible answer anonymity. In b) 
the teacher defines a session, by specifying the questionnaire to be used and the com-
position of the groups of students. In c) the questionnaire is submitted to the students, 
and the answers are collected. After the answer period has expired the peer-
assessment can start (d). In e) the teacher starts the analysis of a session. It is possible 
to compare different correction strategies by creating clones of the same session. 
Thus, two specific services are provided: 1) to “clone” a session that has been already 
peer-evaluated, and 2) to select the strategy used by the system to suggest the “best 
next answer to grade” during the grading phase for the current session (see below). 
Each manual assessment by the teacher propagates evidence in the Bayesian network.  
Appropriate ground truth for the simulation experiments presented in this paper can 
be provided by the “manual” strategy, which requires the teacher to assess all an-
swers. Otherwise, the next answer suggested for grading is the one allowing fastest 
convergence towards a reliable automatic grading of the ungraded answers, according 
to the termination criterion. After such point we can accept the automatic grades ob-
tained so far. 

In the former implementation of OpenAnswer the student model (SM) included the 
above mentioned finite-domain variables ranging over a very limited set of values. 
For variables K and J the possible values were Good/Fair/Bad. For C and, say, G for 
peer assessment, the values were correct/fair/wrong. We present here the results of the 
comparison between this configuration of variable domains, and a finer-grained one 
with all variables ranging from A to F (6 values each). For each configured session, 
grading of answers starts using the present values in the SMs; values evolve, accord-
ing to the propagation stemming from the teacher's progressive grading. After a  
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session grading has been completed, the new values in the student SMs are stored in 
temporary variables. They are not immediately substituted for the old ones, to allow 
having clones of a same session to be graded by different strategies yet starting from 
the same initial configuration. When the teacher activates the updating process the 
new K and J values are stored permanently. 

4 The Bayesian Model 

In a former implementation of OpenAnswer a Yap Prolog [28] module handled the 
management of the Bayesian network. The present system has been rewritten in Py-
thon, by using the open-source C++ libDAI library [29]. It supports the implementa-
tion of belief-propagation algorithms on Factor Graphs. These are a graph-based  
formalism which is well suited to represent networks of variables connected through 
probabilistic constraints [30]. The new implementation is at least an order of magni-
tude faster than the former one, with better memory usage. 

The Bayesian network modeling peer-assessment is made of 4 finite-domain va-
riables: K and J that make up the overall SM of each student, C which represents the 
current correctness of each answer, and a fourth variable depending on the kind of 
peer assessment defined for the session, e.g.. G for grade, with a behavior similar to 
C. In the 3-value implementation, we had: 

• K: Knowledge (good, fair, bad) 
• J: Judgment (good, fair, bad) 
• C (G): Correctness (Grade) (right, fair, wrong) 

We report now the value distributions with 3 and 6 variables. 
The Knowledge variable is independent and based on the following default proba-

bility distribution over 3 (Table 1) or 6 values (Table 2): 

Table 1. Probability distrib. of K over 3 
values 

K good fair bad 

P(K) 0.2 0.3 0.5 
 

Table 2. Probability distrib. of K over 6 
values 

K A B C D E F 

P(K) 0.1 0.2 0.3 0.2 0.1 0.1 

 
Notice that all considered probability distributions are “synthetic”, i.e., they have 

not been (yet) learned from actual experimental data. We think this is acceptable for 
now, since our present aim is still to test if the methodology is sufficiently reliable for 
semi-automatic grading. As a matter of fact, as Bayesian networks allow learning 
such probability distributions from experimental data, we will derive these distribu-
tions from the student's interaction with the system. 

The remaining variables of our model are related through two Conditional Proba-
bility Tables (CPTs) (the same considerations hold for the values). 

We model the Judgment variable as probabilistically dependent on Knowledge. We 
can assume that judging the answers of peers is a higher (meta-)cognitive activity 
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with respect to both knowing and using ones’ knowledge. This is supported by the 
Bloom's taxonomy of cognitive abilities [31]. A further conditional probability distri-
bution relates the correctness of her/his answer to her/his knowledge about the ques-
tionnaire topic. We assume that since the answer is open, the student could not guess 
it. Without loss of generality, we assume the same starting CPT for J, C and G.  

Table 3 reports the distribution over 3 values, whereas Table 4 is for 6 values. 
Three selection strategies may suggest the next answer to be corrected: 

• max_entropy: choose the answer with maximum entropy of the correctness prob-
ability distribution (i.e. the answer's correctness is the most ambiguous one);  

• max_wrong: choose the answer with the highest probability to be a wrong answer 
(students would not deem acceptable to fail “just because the Bayesian model said 
so”, without the teacher actually checking their answer, thus it's better to start with 
the wrong ones); 

• random: choose an answer at random. 

Table 3. Conditional Probability Table  
of P(C|K) (and of P(J|K)) over 3 values 

 K 

P(C|K) good fair bad 

good 50% 20% 1% 

fair 40% 50% 30%

bad 10% 30% 69%
 

Table 4. Conditional Probability Table  
of P(C|K) (and of P(J|K)) over 6 values  

 
As an example of the need for using more domain values, we focus on the J do-

main. With three values, the peer-assessment variables modeled three types of judges: 
a “perfect” judge (which distinguishes among any pair of different correctness levels), 
a “barely sufficient” judge (which can just distinguish among wrong and not wrong), 
and a “bad” judge (which is unable to choose). There is a wide gap between the per-
fect judge ability and the ability of the “barely sufficient” judge, with plenty of inter-
mediate levels of judging ability. In our new implementation we model with levels A 
to F the decreasing ability to distinguish among two correctness levels. If C1 and C2 
are the correctness values of two answers and DeltaC=|C1–C2| then a judge is able to 
distinguish C1 and C2 if DeltaC is less than or equal to her J ability (with A=0, B=1, 
..., F=5). 

5 Simulating the Correction 

To test the OpenAnswer model we have run simulated corrections on 3 data-sets. 
The available parameters for a simulation are: 

• dataset: the file containing the peer-assessment data together with the teacher's 
corrections (3 datasets are available) 

P(C|K)
K

A B C D E F

C

A 20% 9% 1% 1% 4% 1%
B 40% 20% 9% 7% 6% 1%
C 20% 40% 20% 12% 10% 1%
D 12% 20% 40% 20% 15% 7%
E 7% 9% 20% 40% 25% 40%
F 1% 2% 10% 20% 40% 50%
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• question: id of the question to be extracted from the dataset (24 are available) 
• domainsize: size of the variables' domains (3 or 6), 
• min: minimum grade required to participate to the simulation (default 0/10), 
• method: peer-assessment method used by the students: 

 best: choose the best answer, 
 worst: choose the worst answer, 
 best-worst: choose both best and worst, 
 grade: grade each single answer 

• stats: synthetic P(K) vs. Experimental P(K): 

 true: the P(K) distribution is taken from the teacher's grades in the dataset 
 false: use the above mentioned default hard-coded distribution 

• strategy: the strategy used to select the next question to grade: 

 max_entropy: the answer with max entropy of its P(C) (i.e. the “most ambi-
guous” answer) is selected; 

 max_wrong: the answer with maximum probability P(C=Fail) is selected (no 
student would accept a “deduced Fail” grade, therefore all Fail grades should 
be manually graded, so it's reasonable to select first all max_wrong answers); 

 random: a random answer is selected. 
Moreover, in a simulation several termination criteria are handled: 
 no_flip(N): deduced grades are stable in the last N steps (with N=1,2,3)  
 no_wrong: no remaining answer has deduced grade Fail 
 no_wrong2: no remaining answer has P(C=Fail) > 50% 

 
An OpenAnswer simulation is made of a number of phases. First, one chooses the 

dataset to load. It is then possible to filter grades below a minimum threshold (as a 
matter of fact, we observed that a high percentage of weak students can degrade the 
quality of propagated evidence). Afterward, the network of students is instantiated. 

Depending on the peer-assessment method, from one to three Bayesian variables 
(connecting the student's J and her peers' C1, C2, C3) are added as Factors to the 
graph for each peer-assessment choice (e.g. if method=grade a “GradeX” variable for 
each assessed peer X is required, while if method=best a single “Best” variable is 
sufficient). For each student the peer-assessment variable's values are set to her spe-
cific peer-assessment choices and an initial belief propagation is performed through 
the Junction Tree belief propagation algorithm. The actual simulation loop starts from 
this point. The chosen selection strategy is used to find the (yet ungraded) student to 
be corrected next, and the teacher's correction of this student's answer (from the data-
set) is asserted as evidence of her C variable. As a consequence, the junction tree is 
updated to get the new probabilities for all the network's variables. After each teach-
er’s correction, a test for termination is performed: if some of the provided termina-
tion criteria is satisfied current probabilities and grades are printed, otherwise if some 
termination criteria remains not true a new simulation step is run, else the simulation 
is complete. 
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The simulation report contains both the Judgment probabilities for each student 
and the confusion matrix with deduced grades vs. the actual teacher's grades. The 
confusion matrix is used by the system to compute the following information: L: 
length of the correction (number of teacher’s grades); OK: exact grades deduced; 
DP1: grades deduced one mark better than the teacher's; DN1: grades deduced one 
mark worse than the teacher's; DP2: two marks better than the teacher's; DN2: two 
marks worse than the teacher's. For six-valued variables, we also have DP: more than 
two marks better; DN: more than two marks worse. Once the simulations are done it's 
easy to collect from the generated log files the results for further analysis. 

6 Experiments 

Available data-sets come from different assessments:  

• M: 1 question (on web-based languages), 12 students, each one assessing 3 peers 
• I: 2 questions (high-school level Physics problem, given to two classes), 12 and 14 

students, each one assessing 3 peers 
• G: 3 exams (university-level Physics) with 6 questions each (4 mandatory, 2 op-

tional), with 48, 29 and 21 students, each one assessing from 1 to 3 peers. 

The grades' distribution over the union of the datasets is: A=5%, B=5%, C=8%, 
D=7%, E=11%, F=65%. The trend towards low values is mainly due to G dataset, 
where students often partially completed their assignments or chose to answer only to 
specific questions. The questions exhibit the grade distributions in Figure 1. Notice 
that the G dataset has almost 70% Fail grades while I and M show less than 20% of 
Fail grades. 

 
Fig. 1. Grade distribution over the single questions 

In order to compare the use of 3 vs. 6 different values for Bayesian variables, we 
compute two relevant quantities: OK/ASSESS, which accounts for the ratio of correct 
grades derived by the system with respect to all the derived ones; L/TOTAL, which 
account for the ratio of manually graded answers with respect to the overall set. 
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Table 5 summarizes the results obtained using 3-valued variables with Grade stu-
dent assessment method and max_entropy selection strategy, while termination crite-
ria ranges over no_flip<N> with N=1,2,3. We performed tests with both a default 
distribution for K values, and with a more realistic one computed from the complete 
set of teachers’ grades (STAT=YES/NO). Moreover, to show that the system works 
better with a better class (i.e. with better P(K)), we have run additional simulations by 
cutting off the lowest graded answers (MIN=0.4). 

Table 5 and 6 (below) report the corresponding values for 3 and 6-valued variables. 

Table 5. Results with 3-valued variables (greener=better, redder=worse) 

 

Table 6. Results with 6-valued variables (greener=better, redder=worse) 

 
 
A first observation resulting from the comparison of the two tables is that the lack 

of a reliable model of the class and the usage of all answers has a greater negative 
effect in the case of 6 values. This is expected, since we have a finer distinction 
among different levels of correctness, so that the former Good and Fair answers are 
now finely segmented in 5 groups, and thus it's more difficult to derive exactly the 
same grade as the teacher (corresponding to an OK outcome). Therefore we can as-
sume this is not a bad result, but only one corresponding to a more accurate grading. 
Given this, we can easily justify why the influence of a correct starting model of the 
class is much more evident for the finer-grained range of values (OK/ASSESSED 
passes from about 67% to about 69% with 3 values, from about 24% to about 67% 
with 6 values). Again, the apparent slightly worse absolute result stems from the more 
accurate grading. As a matter of fact, the evidence propagation in the corresponding 
network is more sensible to a correct starting setting (STAT=YES). We notice that in 
both cases the use of a reliable knowledge distribution is more relevant than discard-
ing the less accurate questions (i.e. to simulate a better class), and also than consider-
ing both factors. This can be explained with the consideration that eliminating wrong 
answers limits evidence propagation in the net, because it has the further effect of 
hiding the possible ability of peers of correctly evaluating even those answers. It is 
also interesting to notice the often longer manual correction required by the six-
valued setting. However, the difference is not dramatic, except for the base case 
(STATS=NO, MIN=NO), where again it is the higher accuracy which requires a 
longer preparation of the system (the convergence towards a stable set of values is 
slower if the set of such values is larger). 

DOMAIN=3
STATS=NO MIN=NO STATS=YES MIN=NO STATS=NO MIN=0.4 STATS=YES MIN=0.4

no_flip1 no_flip2 no_flip3 no_flip1 no_flip2 no_flip3 no_flip1 no_flip2 no_flip3 no_flip1 no_flip2 no_flip3

67.05% 66.67% 67.23% 69.73% 68.83% 69.16% 33.47% 32.13% 33.67% 43.27% 41.01% 42.33%

4.40% 8.79% 13.37% 4.40% 9.52% 14.47% 8.92% 17.84% 27.14% 8.92% 19.33% 29.74%

OK
-----------------
ASSESSED

L
---------
TOTAL

DOMAIN=6
STATS=NO MIN=NO STATS=YES MIN=NO STATS=NO MIN=0.4 STATS=YES MIN=0.4

no_flip1 no_flip2 no_flip3 no_flip1 no_flip2 no_flip3 no_flip1 no_flip2 no_flip3 no_flip1 no_flip2 no_flip3

23.95% 23.74% 24.77% 67.24% 67.27% 67.30% 47.35% 46.45% 40.70% 40.41% 37.50% 39.25%

4.40% 23.63% 40.11% 4.40% 8.79% 13.74% 8.92% 21.56% 36.06% 8.92% 19.70% 30.86%

OK
-----------------
ASSESSED

L
---------
TOTAL
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In figures 2 and 3, below, we show the percentage (respect to the total number of 
answers) of discrepancy between deduced grades and teacher's grades, together with 
the correction length (L). Notice that, to be able to compare the case with 3-valued 
domain with the case of the 6-valued one, we have aggregated the 6-valued correct-
ness classes in the 3 groups {A, B, C}, {D, E}, {F}, mimicking the 3-valued domain 
results and then computed the difference of grades (DG). 

 

 

Fig. 2. Correction length and Grade distance - 3-valued domains 

 

Fig. 3. Correction length and grade difference - 6-valued domain (aggregated) 

As we can see from the graphs, with 6-valued domain as expected the length is 
slightly larger and the number of perfect deductions is slightly lower; the percentage 
of grades too far from the correct one (DG=±2) is slightly lower, which is an im-
provement. In practice we get similar performances with higher grade precision. 

7 Conclusions 

We have shown the new version of OpenAnswer, with an experimental comparison 
respect to the earlier version using 3-valued domains. The new version gives very 
good results, deducing correctly up to 60% of the grades by just correcting 10-15% of 
the answers. The performance of the 6-valued domain version are comparable to the 
3-valued one, but we gain a lot more in precision, allowing us to obtain fine-grained 
assessment of the student's answers. 
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