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Abstract. In this paper we study a generalization of the classical feasibility problem in
integer linear programming, where an ILP needs to have a prescribed number of solutions
to be considered solved.
We first provide a generalization of the famous Doignon-Bell-Scarf theorem: Given an integer
k, we prove that there exists a constant c(k, n), depending only on the dimension n and k,
such that if a polyhedron {x : Ax ≤ b} contains exactly k integer solutions, then there exists
a subset of the rows of cardinality no more than c(k, n), defining a polyhedron that contains
exactly the same k integer solutions.
The second contribution of the article presents a structure theory that characterizes precisely
the set Sg≥k(A) of all vectors b such that the problem Ax = b, x ≥ 0, x ∈ Zn, has at least
k-solutions. We demonstrate that this set is finitely generated, a union of translated copies of
a semigroup which can be computed explicitly via Hilbert bases computation. Similar results
can be derived for those right-hand-side vectors that have exactly k solutions or fewer than
k solutions.
Finally we show that, when n, k are fixed natural numbers, one can compute in polynomial
time an encoding of Sg≥k(A) as a generating function, using a short sum of rational functions.
As a consequence, one can identify all right-hand-side vectors that have exactly k solutions
(similarly for at least k or less than k solutions). Under the same assumptions we prove that
the k-Frobenius number can be computed in polynomial time.

1 Introduction

Given a matrix A ∈ Zd×n and a vector b ∈ Zd, the classical integer linear feasibility problem asks
whether the system IPA(=, b)

Ax = b, x ≥ 0, x ∈ Zn , (1)

has a solution or not. There is of course a slightly more general form IPA(≤, b) of the problem
above

Ax ≤ b, x ∈ Zn . (2)

We refer to these two problems as IPA(b), unless specifying which of (1) or (2) is necessary.
For a given integer k there are three natural variations of the feasibility problem that in some

intuitive sense measure the strength of IPA(b) “being feasible”:

– Are there at least k distinct solutions for IPA(b)? If yes, we say that the problem is ≥ k-feasible.
– Are there exactly k distinct solutions for IPA(b)? If yes, we say that the problem is = k-feasible.
– Are there less than k distinct solutions for IPA(b)? If yes, we say that the problem is < k-

feasible.
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We call these three problems, the fundamental problems of k-feasibility in integer linear pro-
grams. In this paper we investigate the question of, given a matrix A, determining for which right-
hand-side vectors b are the problems IPA(b) = k-feasible, ≥ k-feasible, or < k-feasible. In what
follows we say that b is = k-feasible (respectively, ≥ k-feasible, < k-feasible) if the corresponding
integer program is.

Clearly the classical feasibility problem is just the problem of deciding whether IPA(b) is
≥ 1-feasible. This indicates directly that all these problems are NP-hard in complexity. Recently
Eisenbrand and Hänhle [18] showed that the related problem of finding the right-hand-side vector
b that maximizes the number of lattice points solutions, when b is restricted to take values in a
polyhedron, is NP-hard. The theory of k-feasibility is actually quite useful in applications where
for some reason a given number of solutions k needs to be achieved to consider the problem solved
or situations where one cannot allow too many solutions. Naturally this “weighted version” of the
k-feasibility problem has some interesting applications in combinatorics, statistics, and number
theory: Consider first the widely popular recreational puzzle sudoku, each instance can be thought
of as an integer linear program where the hints provided in some of the entries are the given right-
hand-sides of the problem. Of course in that case newspapers wish to give readers a puzzle where
the solution is unique (k = 1). It is not difficult to see that this is a special case of a 3-dimensional
transportation problem that is, the question to decide whether the set of integer feasible solutions
of the r × s× t-transportation problemx ∈ Zrst :

r∑
i=1

xijk = ujk,

s∑
j=1

xijk = vik,

t∑
k=1

xijk = wij , xijk ≥ 0


has a unique solution given right-hand sides u, v, w. Another application of k-feasibility appears in
statistics, concretely in application in the data security problem of multi-way contingency tables,
because when the number of solutions is small, e.g. unique, the margins of the statistical table
may disclose personal information which is illegal [16]. Consider next the k-Frobenius problem.
Let a be a positive integral n-dimensional primitive vector, i.e., a = (a1, . . . , an)T ∈ Zn>0 with
gcd(a1, . . . , an) = 1. For a positive integer k the k-Frobenius number Fk(a) is the largest number
which cannot be represented in at least k different ways as a non-negative integral combination of
the ai’s. Thus, putting A = aT ,

Fk(a) = max{b ∈ Z : IPA(b) is < k feasible}.

When k = 1 this has been studied by a large number of authors and both the structure
and algorithmic properties are well-understood. Computing F1(a) when n is not fixed is an NP-
hard problem (Ramirez Alfonsin [26]). On the other hand, for any fixed n the classical Frobenius
number can be found in polynomial time by sophisticated deep algorithms due to Kannan [22] and
Barvinok and Woods [6]. The general problem of finding F1(a) has been traditionally referred to
as the Frobenius problem. There is a rich literature on the various aspects of this question. For
a comprehensive and extensive survey we refer the reader to the book of Ramirez Alfonsin [27].
More recently a k-feasibility generalization of the Frobenius number was introduced and studied
by Beck and Robins [8]. They give formulas for n = 2 of the k-Frobenius number, but for general
n and k only bounds on the k-Frobenius number Fk(a) are available (see [3],[4] and [19]).

Finally, other areas in which polyhedra with fixed number of (interior) lattice points play a role
are algebraic and discrete geometry. Indeed, there has been a lot of work, going back to classical
results of Minkowski and van der Corput, to show that the volume of a lattice polytope P with
k = card(Zn ∩ intP ) ≥ 1 is bounded above by a constant that only depends in n and k (see e.g.,
[23, 24]). Similarly, the supremum of the possible number of points of Zn in a lattice polytope in Rn
containing precisely n points of Zd in its interior, can be bounded by a constant that only depends
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in n and k. Such results play an important role in the theory of toric varieties and the structure
of lattice polyhedra (see e.g., [20] and the references therein).

Our Results

This paper has three main contributions to the study of k-feasibility:

1. One of the most famous results in the theory of integer programming is the theorem of Doignon
[17] (later reproved by Bell and Scarf [7, 29]). This theorem has played an interesting role in
many papers, including Clarkson’s probabilistic algorithm for integer linear programming [11]:
Theorem [Doignon 1973 ] Let A be a d × n matrix and b a vector of Rd. If the problem
IPA(≤, b) is infeasible, then there is a subset S of the rows of A of cardinality no more than
2n, with the property that the smaller integer program IPS(≤, b) is also infeasible.
Our first contribution is to prove a = k-feasibility version of Doignon’s theorem:

Theorem 1. Given n, k two non-negative integers there exists a universal constant c(k, n)
depending only on k and n such that for any d×n integral matrix A, and d-vector b if IPA(≤, b)
has exactly k integral solutions, then there is a subset S of the rows of A of cardinality no more
than c(k, n), with the property that the smaller integer program IPS(≤, b) has exactly the same
k solutions as IPA(≤, b).

We will use this theorem later on in some applications. Our technique to prove this theorem is
quite close to the proof of Doignon in [28] with some twists. In addition our initial estimation
of the constant c(k, n) appears to be loose, thus in the extended journal version of this paper
we will include better estimations in low dimension. It should be remarked that the ≥ k version
of the problem is not interesting.

2. Second, we prove a structural result that implies that the set of b’s that provide a ≥ k-feasible
IPA(b) is finitely generated.
Let Sg≥k(A) (respectively Sg=k(A) and Sg<k(A)) be the set of right-hand side vectors b ∈
cone(A) ∩ Zd, where cone(A) is the cone generated by the columns of A, that make IPA(b)
≥ k-feasible (respectively = k-feasible, < k-feasible). Note that Sg(A) := Sg≥1(A) is the
semigroup generated by the column vectors of the matrix A.
The first structural result of this paper gives an algebraic description of the sets Sg≥k(A)
and Sg<k(A). Let e1, . . . , en be the standard basis vectors in Zn≥0. We define the coordinate
subspace of Zn≥0 of dimension r ≥ 1 determined by ei1 , . . . , eir with i1 < · · · < ir as the set
{ei1z1 + · · · + eirzr : zj ∈ Z≥0 for 1 ≤ j ≤ r}. By the 0-dimensional coordinate subspace of
Zn≥0 we understand the origin 0 ∈ Zn≥0.

Theorem 2. (i) There exists a monomial ideal I(A) ⊂ Q[x1, . . . , xn] such that

Sg≥k(A) = {Aλ : λ ∈ E(A)} , (3)

where E(A) is the set of exponents of monomials of I(A).
(ii) The set Sg<k(A) can be written as a finite union of translates of the sets {Aλ : λ ∈ S},

where S is a coordinate subspace of Zn≥0.

By the Gordan-Dickson lemma, the ideal I(A) is finitely generated, so that Sg≥k(A) is a finite
union of translated copies of a semigroup. The proof of Theorem 2 relies on some basic facts
on lattice points when we think of them as generators of monomial ideals. The basic tool is a
characterization of the complement of a monomial ideal (see [12]). Some of the arguments are
of interest for the study of affine semigroups and toric varieties [9, 31].
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Our results extend the decomposition theorem of Hemmecke, Takemura and Yoshida [21] for
k = 1. They investigated the semigroup Sg(A) and the vectors that are not in the semigroup
but still lie within cone(A). Note even when there exists a real nonnegative solution for Ax = b,
there may not exist an integral nonnegative solution. Those authors studied Qsat = cone(A)∩
lattice(A), where lattice(A) is the lattice generated by the columns of A. They called H =
Qsat \Sg(A) the set of holes of Sg(A) (in the context of numeric semigroups and the Frobenius
number, holes have also been called gaps, see [25]) The set of holes H may be finite or infinite,
but their main result is to give a finite description of the holes as a finitely-generated set. Our
Theorem 2 was inspired by theirs. For us the holes of [21] are just a special case for k = 1.
We can generalize this notion to consider k-holes, namely those right hand-sides b for which
Ax = b has less than k non-negative integer solutions.
In the last part of the article we show how to make “effective” the decomposition theorem
above via Hilbert bases computations.

3. Third, for n and k fixed integer numbers, our first algorithmic result establishes a way to
compute all the ≥ k-feasible vectors b’s, not explicitly one by one, but rather the ≥ k-feasible
b’s are encoded as a generating function,

∑
≥k−feasible t

b.

Theorem 3. Let A ∈ Zd×n. Assuming that n and k are fixed, there is a polynomial time algo-
rithm to compute a short sum of rational function G(t) which efficiently represents the formal
sum

∑
≥k−feasible t

b. Moreover, from the algebraic formula, one can perform the following tasks
in polynomial time:

(a) Count the number of ≥ k-feasible vectors (if finite).
(b) Extract the lexicographic-smallest b, ≥ k-feasible vector.
(c) Find the ≥ k-feasible vector b that maximizes the dot product cT b.
(d) Similar generating function descriptions, with same computational properties, hold for the

sets of b which are = k-feasible or < k-feasible.
(e) Identical results hold for problems in the inequality form IPA(≤, b).

Let us explain a bit the philosophy of such theorem for those not familiar with this point
of view: In 1993 A. Barvinok [5] gave an algorithm for counting the lattice points inside a
polyhedron P in polynomial time when the dimension of P is a constant. The input of the
algorithm is the inequality description of P , the output is a polynomial-size formula for the
multivariate generating function of all lattice points in P , namely f(P ) =

∑
a∈P∩Zn xa where

xa is an abbreviation of xa11 x
a2
2 . . . xann . Hence, a long polynomial with exponentially many

monomials is encoded as a much shorter sum of rational functions of the form

f(P ) =
∑
i∈I
± xui

(1− xc1,i)(1− xc2,i) . . . (1− xcn−d,i)
. (4)

Later on Barvinok and Woods [6] developed a set of powerful manipulation rules for using these
short rational functions in Boolean constructions on various sets of lattice points, as well as a
way to recover the lattice points inside the linear projection of a convex polytope. It is very
interesting that to prove the last item of the theorem we will use Theorem 1. In this paper we
apply Barvinok’s theory to prove Theorem 3. From the results of Barvinok [5] for fixed n, but
not necessarily fixed k, one can decide whether a particular b is k-feasible in polynomial time,
but more strongly, as a corollary of Theorem 3, one can find more for knapsack problems.

Corollary 1. Consider the knapsack problem aTx = b associated with a = (a1, . . . , an)T ∈ Zn>0

with gcd(a1, . . . , an) = 1. For a fixed positive integer k and fixed n the k-Frobenius number can
be computed in polynomial time.
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The paper is organized as follows. The first three sections propose proofs for the three main
theorems, namely Section 2 gives a proof of Theorem 1, Section 3 gives a proof of Theorem 2, and
Section 4 gives a proof of Theorem 3 (which in particular uses our version of Doignon-Bell-Scarf).
In Section 5, we propose a more practical way to compute k-holes than what follows from Theorem
3, but without the computational complexity guarantees of Theorem 3.

2 A Generalization of Doignon-Bell-Scarf’s theorem

In this section we will prove Theorem 1. The constant c(n, k) we provide is 2k2n, but we will
present improvements of this constant in the journal version of this paper.
[Proof of Theorem 1] The proof proceeds by contradiction. Consider a system of m linear inequal-
ities,

a1x ≤ β1, . . . , amx ≤ βm, x ∈ Rn . (5)

Suppose (5) has exactly k integral solutions and m ≥ 2k2n + 1. Suppose this system is a
counterexample to Theorem 1 with c(k, n) = 2k2n + 1. That is, if we delete any of the constraints
in (5), the remaining system has at least k + 1 integral solutions.

Thus there exist integral vectors x1, . . . , xm such that xj violates ajx ≤ βj but satisfies all
other inequalities in (5). Consider the set of lattice points

H = conv{x1, . . . , xm} ∩ Zn . (6)

Consider the set Γ ⊂ Rm of the vectors (γ1, . . . , γm) such that

γj ≥ min{ajz|z ∈ H, ajz > βj} (7)

and
the system a1x < γ1, . . . , amx < γm has exactly k integral solutions in H. (8)

The set Γ is nonempty as we can take the equality in (7). Next, Condition (8), together with
the lower bounds on the γi, implies that any integral solution of the system (5) remains feasible
for the system a1x < γ1, . . . , amx < γm for γ ∈ Γ . Thus, for all γ ∈ Γ , a1x < γ1, . . . , amx < γm
share exactly the same k integral solutions as (5).

Observe also that the set Γ is bounded, because if not γj for some j grows arbitrarily large,
but then there exist z in H that satisfies a1z < γ1, . . . , amz < γm which would be an additional
integral feasible point and contradict Condition (8).

Claim 1. There is a point (ν1, . . . , νm) ∈ Γ such that

for each j = 1, . . . ,m there exists yj ∈ H so that ajyj = νj and aiyj < νi (i 6= j) . (9)

Proof of Claim: To see this, take any point (ν1, . . . , νm) ∈ Γ and suppose that for some j this
property does not hold. Consider

ν′j = sup{ν : (ν1, . . . , νj−1, ν, νj+1, . . . , νm) ∈ Γ} . (10)

The supremum in (10) is finite as the set Γ is bounded. Observe that there should exist yj ∈ H with
ajyj = ν′j and aiyj < νi(i 6= j). Otherwise (ν1, . . . , νj−1, ν

′
j + ε, νj+1, . . . , νm) ∈ Γ for sufficiently

small ε > 0 as H is a finite set. Next, if (ν1, . . . , νj−1, ν
′
j , νj+1, . . . , νm) /∈ Γ then, by (8) and (10),

for any δ > 0 there should exist a point z ∈ H such that ν′j − δ ≤ ajz < ν′j = ajyj . This is
impossible as H is finite. Consequently, (ν1, . . . , νj−1, ν

′
j , νj+1, . . . , νm) ∈ Γ and we can replace νj

by ν′j . After at most m such replacements we will construct a point satisfying (9).
The property of the set {y1, . . . , ym} expressed by (9) is very important and as we will use it

several times later, we formally name it.
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Definition 1. Let X be a finite subset of Zn. We say that X satisfies the support hyperplane
property if for every y ∈ X, there exists a hyperplane fTx ≤ g such that fT y = g and fT z < g for
every z ∈ X, z 6= y. Furthermore, we say that the inequality fTx ≤ g fulfills the support hyperplane
property for y.

Observe that the support hyperplane property is equivalent to saying that all members of X are
vertices of conv(X). We will need the following two intermediate results.

Claim 2. Consider a set X ⊆ Zn with |X| ≥ 2n + 1 that satisfies the support hyperplane property,
i.e. such that for every member yi ∈ X, there exists a hyperplane fTi x ≤ gi such that fTi yi = gi
and fTi yj < gi for j 6= i. Then there exists an integral point z ∈ Zn that satisfies fTi z < gi for all
i = 1, . . . , |X|.
Proof of Claim: Since |X| ≥ 2n+1, by the pigeonhole principle there exist yi1 , yi2 ∈ X with yi1 6= yi2
and yi1 ≡ yi2( mod 2) (that is all entries of yi1 − yi2 are even). Therefore z = 1

2 (yi1 + yi2) ∈ Zn.
Obviously fTi z < gi for all i = 1, . . . , |X|.
Claim 3. Consider a finite set X ⊆ Zn that satisfies the support hyperplane property. Consider

z ∈ conv(X) ∩ Zn. There exists a subset X̄ ⊆ X with |X̄| ≥ d |X|2 e such that X̄ ∪ {z} satisfies the
support hyperplane property.

Proof of Claim: There exists a hyperplane f̄Tx = ḡ such that f̄T z = ḡ and the equality
does not hold for any other member of X. We can split the other members of X into two sets
X< = X ∩ {x ∈ Rn | f̄Tx < ḡ} and X> = X ∩ {x ∈ Rn | f̄Tx > ḡ}. Since the two sets are disjoint,

one of them has cardinality at least d |X|2 e. The result follows since for every x ∈ X that lies in X<

(resp. X>), the inequality fulfilling the support hyperplane property still fulfills the hyperplane
property in X< (resp. X>). The inequality f̄Tx ≤ ḡ (resp. f̄Tx ≥ ḡ) fulfills the support hyperplane
property for z.

We will now construct k + 1 sets Si, i = 0, . . . , k by induction. Throughout, the sets that are
constructed have the following property.
Inductive Property Si has 2k−i2n + 1 integral points and satisfies the support hyperplane
property.

We start with S0 = {y1, . . . , ym}. Observe that the inductive property is true for S0. If the
property is true for i − 1, and i ≤ k, then the assumptions of the second claim are satisfied, and
there exists an integral point zi−1 from which we can apply the third claim and obtain a subset
S̄i−1 ⊆ Si−1 such that Si = S̄i−1 ∪ {zi−1} satisfies the support hyperplane property which implies
that the inductive property is satisfied.

Following the construction, zi satisfies aTj zj < νj for all j as it is obtained as a convex combina-
tion of points y1, . . . , ym with at least two points having a positive multiplier in the combination.
Furthermore, we must have zi 6= zj for i < j. Indeed, if zi ∈ Sj , by construction there exists a
hyperplane that separates them and they are clearly different if zi 6∈ Sj .

This is now a contradiction since we have constructed k + 1 different integral points z0, . . . , zk
satisfying (8).

3 Proof of Theorem 2

For f ∈ cone(A) ∩ Zd define

LkA,f = {λ ∈ Zn≥0 : IPA(f +Aλ) is ≥ k feasible} ,

so that Sg≥k(A) = {Aλ : λ ∈ Lk
A,0}. Consider the monomial ideal

I(A) = 〈xλ : λ ∈ LkA,0〉 .
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To see that (3) is satisfied it is enough to check that for any λ0 ∈ LkA,0 the inclusion λ0+Zn≥0 ⊂ LkA,0
holds. We will prove the following more general statement. For any f ∈ cone(A)∩Zd and λ0 ∈ LkA,f
we have the inclusion

λ0 + Zn≥0 ⊂ LkA,f . (11)

Let λ0 ∈ LkA,f , so that there exist k distinct vectors λ1, . . . , λk ∈ Zn≥0 with

f +Aλ0 = Aλ1 = · · · = Aλk .

Take any vector µ ∈ Zn≥0 and set ν = λ0 + µ. Then, clearly, we have

f +Aν = A(λ1 + µ) = · · · = A(λk−1 + µ) ,

where all vectors λ1 + µ, . . . , λk + µ ∈ Zn≥0 are distinct. Consequently, IPA(f +Aν) is ≥ k feasible

and, thus, ν ∈ LkA,f . Hence (11) holds and we have proved the first claim of Theorem 2.
Let us now prove the second claim. Recall that the elements of the set Sg<k(A) are also

called k-holes. A k-hole f is called fundamental if there is no other k-hole h ∈ Sg<k(A) such that
f − h ∈ Sg≥1(A).

Lemma 1. The set of fundamental k-holes is a subset of the zonotope

P = {Aλ : λ ∈ [0, 1)n} .

Proof Let f ∈ Sg<k(A) be a fundamental hole. We can write

f = Aλ , λ ∈ Qn≥0 .

Suppose f /∈ P . Then for some j we must have λj ≥ 1. Thus, denoting by Aj the jth column
vector of A, the element f ′ = f − Aj is a k-hole as any k distinct solutions for IPA(f ′) would
correspond to k distinct solutions for IPA(f). Thus we get a contradiction with our choice of f as
a fundamental k-hole. This implies λj < 1 for all j and, consequently, f ∈ P . The lemma is proved.

Lemma 1 shows, in particular, that the number of fundamental k-holes is finite. Furthermore,
any k-hole can be represented as f + Aλ for some fundamental hole f and λ ∈ Zn≥0. Let us fix a

fundamental k-hole f and consider the monomial ideal IkA,f ⊂ Q[x1, . . . , xn] defined as

IkA,f = 〈xλ : λ ∈ LkA,f 〉 .

Then, in view of (11), f +Aλ is not a k-hole if and only if xλ ∈ IkA,f .

Thus we need to write down the set C(IkA,f ) of exponents of standard monomials for the ideal

IkA,f . Any such exponent λ ∈ C(IkA,f ) corresponds to the k-hole f +Aλ.

By Theorem 3 in Chapter 9 of [12], the set C(IkA,f ) can be written as a finite union of translates
of coordinate subspaces of Zn≥0. Since the number of fundamental k-holes is finite, the second claim
of Theorem 2 is proved.

4 Proof of Theorem 3

We use the technics of rational generating functions developed by Barvinok and Woods in [5, 6].
We wish to prove a representation theorem of a set of lattice points as a sum

∑
≥k−feasible t

b. Recall
that A is an integral d× n matrix and k is a constant. For a subset of indices I ⊂ {1, 2, . . . , n} we
can define the polyhedron (note Xi denotes an n-dimensional vector):
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QI(A, k) =
{

(X1, X2, . . . , Xk) : AX1 = AX2 = · · · = AXk, Xi = Xj for i, j ∈ I and Xi ≥ 0
}
.

Clearly if I = ∅, then

Q∅(A, k) =
{

(X1, X2, . . . , Xk) : AX1 = AX2 = AX3 = · · · = AXk and Xi ≥ 0
}
.

In other words Q∅(A, k) contains precisely k-tuples of n-vectors (possibly repeated) that give
the same right-hand-side vector. More generally QI(A, k) contains as lattice points the vectors b
such that b = AXj for Xj j = 1 . . . k integer non-negative vectors, but with exactly |I| of the
vectors Xj being identical.

Using Barvinok’s algorithm in [5], we can compute in polynomial time the generating function
of the lattice points in the polyhedron QI(A, k) which lives in fixed dimension kn. The resulting
expression is the sum over all lattice points in a rational polytope QI(A, k).

f(QI(A, k)) =
∑{

za11 za22 . . . zakk : (a1, a2, . . . , ak) ∈ QI(A, k) ∩ Znk
}

Next we will apply Boolean operations on generating functions f(QI(A, k)) in such a way that
we are only left with the k-tuples of distinct non-negative vectors which satisfy Aai = b. We can
do this by the following result:

Lemma 2 ( Corollary 3.7 in [6]). Let us fix l (the number of sets Si ⊂ Zd) and r (the number
of binomials in each fraction of the generating function f(Si)). Then there exists an s = s(l, r) and
a polynomial time algorithm, which, for any l (finite) sets of lattice points S1, . . . , Sl ⊂ Zd given by
their generating functions f(Si) and a set S ⊂ Zn defined as a Boolean combination of S1, . . . , Sm,
computes f(S) in the form

f(S) =
∑
i∈I

γi
xui

(1− xvi1) · · · (1− xvis)
,

where γi ∈ Q, ui, vij ∈ Zn and vij 6= 0 for all i, j.

Now we can compute in polynomial time (because k is fixed) the following Boolean expression
with 2k summands

D(A, k) = Q∅(A, k)− ∪|I|=2QI(A, k) + ∪|I|=3QI(A, k)− · · · − (−1)k ∪|I|=k QI(A, k).

Note that this is essentially the inclusion-exclusion principle applied to sets of lattice points,
where each set is represented by a generating function (in rational function form). The new gen-
erating function f(D(A, k)) when expanded into monomials za11 za22 . . . zakk has only those where
ai 6= aj . Namely, this is precisely the set of all k-tuples of distinct vectors in Zn≥0 that give the
same value Aa1 = Aa2 = . . . Aak.

Finally another key subroutine introduced by Barvinok and Woods is the following Projection
Theorem. In both Lemmas 2 and 3, the dimension n is assumed to be fixed.

Lemma 3 (Theorem 1.7 in [6]). Assume the dimension n is a fixed constant. Consider a ratio-
nal polytope P ⊂ Rn and a linear map T : Zn → Zk. There is a polynomial time algorithm which
computes a short representation of the generating function f

(
T (P ∩ Zn), x

)
.
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In this case we apply a very simple linear map (X1, X2, . . . , Xk) → AX1, by multiplication
with A. This yields of course for each k-tuple (which has Xi 6= Xj) the corresponding right-hand
side vector b = AX1 that has at least k-distinct solutions. The final expression will look like
f =

∑
b∈Q:with at least k-representations t

b. Which is the desired short rational function which

efficiently represents the sum
∑
≥k−feasible t

b. This proves the main result in the body of the pa-
per for ≥ k-feasible. Because if one knows a description for Sg≥k(A) and Sg≥k+1(A) one knows
Sg=k(A) = Sg≥k(A)\Sg≥k+1(A) and Sg<k(A) = Sg(A)\Sg≥k(A), the Boolean properties of gener-
ating functions in Lemma 2 give the theorem in all three cases.

Now we move to prove Parts (a) to (d) of the theorem.

Part (a) If we have a generating function representation of∑
≥k−feasible

tb,

it has the form

f(t) =
∑
i∈I

αi
tpi

(1− tai1) · · · (1− taik)
.

Note that by specializing at t = (1, . . . , 1), we can count how many b’s are ≥ k-feasible (when
finite). Remark the substitution is not immediate since t = (1, . . . , 1) is a pole of each fraction
in the representation of f . This problem is solvable because it has been shown by Barvinok
and Woods that this computation can be handled efficiently (see Theorem 2.6 in [6] for details)
and will prove Part (a).

Part (b) This item is a direct corollary of the following extraction lemma.

Lemma 4 (Lemma 8 in [14] or Theorem 7.5.2 in [15]). Assume the dimension n is fixed.
Let S ⊂ Zn+ be nonempty and finite set of lattice points. Suppose the polynomial f(S; z) =∑
β∈S z

β is represented as a short rational function and let c be a cost vector. We can extract
the (unique) lexicographic largest leading monomial from the set {xα : α ·c = M, α ∈ S}, where
M := max{α · c : α ∈ S}, in polynomial time.

Part (c) Barvinok and Woods developed a way to do monomial substitutions (not just ti = 1 as we
used in Part (a)), where the variable ti in the current series, is replaced by a new monomial
za11 za22 · · · zarr . Note that the rational generating function f =

∑
b∈Q∩Zd bb can give the evalua-

tions of the b’s for a given objective function c ∈ Zd. If we make the substitution ti = zci , the
above equation yields a univariate rational function in z:

f(z) =
∑
i∈I

Ei
zc·ui∏d

j=1(1− zc·vij )
. (12)

Moreover f(z) =
∑
b∈Q∩Zd zc·b. Thus we just need to find the (lexicographically) largest mono-

mial in the sum in polynomial time. But this follows from Part (b).
Part (d) The reason the same generating function descriptions exist also for the sets those b which

are = k-feasible, ≥ k-feasible, or < k-feasible is because the sets can be obtained from the
set we computed above as Boolean operations (intersection, unions, complements). Indeed
using Barvinok Woods theory about such Boolean expressions, and the fact that Sg≥k+1(A) \
Sg≥k(A) = Sg=k(A) and that Sg<k(A) = Sg≥k(A) \ Sg=k(A) the results follow.

Part (e) To prove this result we will use our generalization of Doignon-Bell-Scarf’s theorem. Any prob-
lem of the form Ax ≤ b can be transferred to a problem of the form Ax+Is = b by adding slack
variables s. Then such a system is in the shape of the main part of Theorem 3 except we need
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a fixed number of rows. To see this is possible, by Theorem 1, if Ax ≤ b has k-solutions then,
the same solutions appear in a subsystem ASx ≤ b with no more than a constant c(n, k) rows.
Thus when we add slacks we will only add a constant number of slacks, only n+ c(k, n) many
of them. Of course we do not know which rows form the system but there are only

(
d

c(k,n)

)
possibilities for subsystems ASx + Is = b (each subsystem has a fixed number of columns
now, thus it can be solved in polynomial time). Therefore, we can also decide for which b’s
the polyhedron has k points Ax ≤ b in polynomial time (again encoded in a rational function
format).

To conclude we see how to compute the k-Frobenius number efficiently. We may see now that
Corollary 1 follows directly from what we achieved in Theorem 3 and the Boolean operation Lemma
of Barvinok and Woods. Indeed, from Theorem 3 we have a rational function representation of
the k-feasible b for the Knapsack problem f(t) =

∑
i∈I Ei

tc·ui∏d
j=1(1−t

c·vij )
=
∑
b∈Q∩Zd, k−feasible t

c·b.

Clearly the k-Frobenius number is simply the largest (lexicographic) b, such that tb is not in f(t),
it is in its complement. Then, for the complement S = Z+ \S, we compute the generating function
f(S;x) = (1−t)−1−f(t) and then we compute the largest such tb in the complement using Lemma
4.

5 Computing k-holes via Hilbert bases

In contrast to the implicit representation via rational generating functions that we saw in Section
4, we now present an algorithm to compute an explicit representation of Sg≥k(A), even for an
infinite case. Such an explicit representation need not be of polynomial size in the input size of A,
but will allow us to present some concrete computations and results for Knapsack problems in the
extended version of this paper.

In this section we combine the results of Hemmecke et al. [21] with our techniques to com-
puting the elements of Sg<k(A). In view of the proof of Theorem 2 (ii), it is enough to compute
all fundamental k-holes and then for each fundamental k-hole f compute the standard mono-
mials of the ideal IkA,f . In view of Lemma 1, all fundamental k-holes are located in a zonotope
P = {Aλ : λ ∈ [0, 1)n}. Thus, with a straightforward generalization of the approach proposed in
Hemmecke et al. [21], the fundamental k-holes the can be computed by using a Hilbert basis of
the cone cone(A). In the special case k = 1 Hemmecke et al. [21] obtained the following result.

Theorem 4. There exists an algorithm that computes for an integral matrix A a finite explicit
representation for the set H of holes of the semigroup Q generated by the columns of A. The
algorithm computes (finitely many) vectors hi ∈ Zd and monoids Mi, each given by a finite set of
generators in Zd, i ∈ I, such that

H =
⋃
i∈I

({hi}+Mi) .

Here Mi could be trivial, that is, Mi = {0}.
Let f be a fundamental k-hole. Recall that the monomial ideal IkA,f ⊂ Q[x1, . . . , xn] is defined

as

IkA,f = 〈xλ : λ ∈ LkA,f 〉

and f +Aλ is not a k-hole if and only if xλ ∈ IkA,f .

Thus we need to compute the exponents of standard monomials for the ideal IkA,f . Any such
exponent λ ∈ Zn≥0 corresponds to the k-hole f +Aλ.
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The exponents of standard monomials can be computed explicitly from a set of generators of
the ideal. Hence, it is enough to find the generators of IkA,f . Let us fix an ordering ≺ in Zn≥0. The

minimal generators for the ideal IkA,f correspond to the ≺-minimal elements of the set

LkA,f = {λ ∈ Zn≥0 : ∃ distinct µ1, . . . , µk ∈ Zn≥0 such that

f +Aλ = Aµ1 = · · · = Aµk} .

For computational purposes it is enough to compute a set of vectors of LkA,f that contains all
the ≺-minimal elements. We will proceed as follows. Let K be a complete graph with the vertex
set V = {1, 2, . . . , k}. By a weighted orientation H of K we will understand a weighted directed
graph H = (V,E) such that any two vertices of H are connected by a directed edge e ∈ E with a
weight w(e) ∈ {1, . . . , n}. Let S be set of all weighted orientations of K.

For each H ∈ S we construct the following two auxiliary sets: the set

LH = {λ ∈ Zn≥0 : ∃µ1, . . . , µk ∈ Zn≥0 such that f +Aλ = Aµ1 = · · · = Aµk

and (µi)w(e) ≤ (µj)w(e) − 1 for each e = (i, j) ∈ E }

and the set

MH = {(λ, µ1, . . . , µk) ∈ Z(k+1)n
≥0 : f +Aλ = Aµ1 = · · · = Aµk

and (µi)w(e) ≤ (µj)w(e) − 1 for each e = (i, j) ∈ E} .

Then, in particular, LkA,f =
⋃
H∈S LH , where the union is taken over all orientations in H ∈ S.

We will need the following result.

Lemma 5. Let λ0 be a ≺-minimal element of LH . Then there exists a ≺-minimal element of MH

of the form (λ0, µ̂1, . . . , µ̂k) .

Let λ0 be a ≺-minimal element of LH . Suppose on contrary, for every (µ1, . . . , µk) ∈ Zkn≥0 the
vector (λ0, µ1, . . . , µk) is not a ≺-minimal element of MH . Let (µ̂1, . . . , µ̂k) be a ≺-minimal element
of the set

MH |λ=λ0
= {(µ1, . . . , µk) ∈ Zkn≥0 : f +Aλ0 = Aµ1 = · · · = Aµk

and (µi)w(e) ≤ (µj)w(e) − 1 for each e = (i, j) ∈ E} .

By the assumption, there exists a vector (λ′, µ′1, . . . , µ
′
k) ∈ MH such that (λ′, µ′1, . . . , µ

′
k) ≺

(λ0, µ̂1, . . . , µ̂k) and (λ′, µ′1, . . . , µ
′
k) 6= (λ0, µ̂1, . . . , µ̂k). If λ′ 6= λ0 we get a contradiction to the

≺-minimality of λ0 in LH . On the other hand, if λ′ = λ0 we get a contradiction to the ≺-minimality
of (µ̂1, . . . , µ̂k) in MH |λ=λ0

.
In view of Lemma 5, to compute a generating set for LkA,f it is now enough to compute the set

of all minimal elements for MH , H ∈ S and remove the last kn components from each of them.
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31. B. Sturmfels Gröbner Bases and Convex Polytopes, University Lecture Series, vol. 8, AMS, Providence

RI, 1995.
32. A. Takemura and R. Yoshida. A generalization of the integer linear infeasibility problem. Discrete

Optimization. 5 (2008), 36–52.


