
ar
X

iv
:1

40
3.

10
65

v2
 [

cs
.D

S]
 5

 J
un

 2
01

4

Compressed Subsequence Matching and Packed Tree Coloring

Philip Bille∗ Patrick Hagge Cording

{phbi,phaco,inge}@dtu.dk

Inge Li Gørtz∗

August 30, 2018

Abstract

We present a new algorithm for subsequence matching in grammar compressed strings. Given
a grammar of size n compressing a string of size N and a pattern string of size m over an
alphabet of size σ, our algorithm uses O(n + nσ

w
) space and O(n + nσ

w
+ m logN logw · occ)

or O(n + nσ

w
logw + m logN · occ) time. Here w is the word size and occ is the number of

occurrences of the pattern. Our algorithm uses less space than previous algorithms and is also
faster for occ = o(n

logN
) occurrences. The algorithm uses a new data structure that allows us to

efficiently find the next occurrence of a given character after a given position in a compressed
string. This data structure in turn is based on a new data structure for the tree color problem,
where the node colors are packed in bit strings.

1 Introduction

In the compressed subsequence matching problem we are given a grammar S of size n compressing a
string S of size N and a pattern string P of size m over an alphabet of size σ, and the goal is to find
and report the index of all minimal substrings of S that contain P as a subsequence. A substring
is said to be minimal if shortening it implies that P is no longer a subsequence of that substring.
In this paper we present a new algorithm for compressed subsequence matching which is space
efficient and is faster than the previously fastest algorithm for a bounded number of occurrences.
Our algorithm relies on a method that is different from the ones used by previous algorithms.

Subsequence matching is useful when searching sequential log data for a sequence of events that
may be separated by other events. Say for instance that we are running a webserver and we want
to know how often a visitor has found her way to subpage C through page A and then B. We
then set P = ABC and apply a subsequence matching algorithm to the contents of the log file.
Many applications will automatically compress log data to save space, and so the bottleneck of
the procedure becomes decompression of the data. In this case, processing the data without fully
decompressing it, is crucial. Subsequence matching was also considered in relation to knowledge
discovery and data mining [20].

Several algorithms have been presented for uncompressed strings [6, 10, 12, 14, 15, 20, 27]. The
fastest of these is due to Das et al. [15]. Since it is an online algorithm we may apply it to the
compressed version without having to store the entire decompressed string, and we get an algorithm
with running time O(Nm

logm
) that uses O(n + m) space. The first algorithm with time complexity

∗Supported in part by the The Danish Council for Independent Research | Natural Sciences grant DFF 1323–00178.

1

http://arxiv.org/abs/1403.1065v2

independent of the size of the string was presented by Cegielski et al. [11] in 2006. Its runnning time
is O(nm2 logm+ occ) time and it uses O(nm2) space. Using a different approach, Tiskin improved
the running time to O(nm1.5+occ) [25] and later even further to O(nm logm+occ) [26]. The space
usage of his algorithms is O(nm). The most recent improvement is due to Yamamoto et al. [28]
who present an algorithm based on the ideas of Cegielski et al. that runs in O(nm+ occ) time and
O(nm) space. All results are summarized in Table 1.

Time complexity Space complexity Author(s)

O(Nm
logm

) O(n+m) Das et al. [15]

O(nm2 logm+ occ) O(nm2) Cegielski et al. [11]
O(nm1.5 + occ) O(nm) Tiskin [25]
O(nm logm+ occ) O(nm) Tiskin [26]
O(nm+ occ) O(nm) Yamamoto et al. [28]

O(n+ nσ
w

+m logN logw · occ)
O(n+ nσ

w
) This paper

O(n+ nσ
w

logw +m logN · occ)

Table 1: Time and space complexities of algorithms for compressed subsequence matching.

Assume without loss of generality that the compressed string is given as a Straight Line Program
(SLP). An SLP is an acyclic grammar in Chomsky normal form, i.e., a grammar where each
nonterminal production rule expands to two other rules and generates one string only. SLPs are
widely studied because they model many well-known compression schemes, such as LZ77 [29],
LZ78 [30], and Re-Pair [19] with little overhead [13, 22]. The following theorem is the main result
of this work.

Theorem 1 Given an SLP S of size n compressing a string S of size N and a pattern P of size
m over an alphabet of size σ, compressed subsequence matching can be solved in O(n+ nσ

w
) words

of space and time

(i) O(n+ nσ
w

+m logN logw · occ), or

(ii) O(n+ nσ
w

logw +m logN · occ)

in the word RAM model with word size w ≥ logN , and where occ is the number of minimal
occurrences of P in S.

Our new algorithm uses less space (linear in n if σ ≤ w) and is also faster than the previously
fastest algorithm for o(n

logN
) occurrences when σ ≤ m. Note that we can guarantee that the latter

requirement always holds by bounding σ = O(m) using hashing in return for using O(m) additional
extra space.

The algorithm is based on the idea of a simple algorithm for subsequence matching in uncom-
pressed strings which basically scans the string for occurrences of the pattern. We speed up the
scanning on compressed strings by introducing the first data structure for SLPs that supports la-
belled successor queries. The answer to a labelled succesor query ls(i, c) on a string is the index of
the first character c occurring after position i in the string. An essential part of this data structure
is a new data structure for the tree color problem. This problem is to preprocess a tree where each
node is colored by zero or more colors, such that given a node v and a color c, we may efficiently

2

answer a first colored ancestor query, i.e., compute the lowest ancestor of v with color c. Addition-
ally, this data structure also supports a new type of query we call the last colored ancestor. Here
the query is two nodes u and v and a color c, and the answer is the highest node on the path from
u to v with color c. These results may be of independent interest.

This paper is organized such that we start by describing our new result for the tree color problem
(after a section of preliminaries), then move on to the labelled successor data structure, and finally
describe the algorithm for subsequence matching.

2 Preliminaries

Bit Strings. We will use bit strings to represent sets. In a bit string B = b1b2 . . . bu representing
a set B of elements from a universe of size u, bi = 1 iff element i is in B. B = [0]u denotes the empty
set. The operators ∧, ∨, and ⊕ denote the bitwise AND, OR, and exclusive OR (XOR) of two bit
strings. The negation of a bit string B is B. A summary Bs of k bit strings B1, B2, . . . , Bk of equal
length is Bs = B1 ∨ B2 ∨ . . . ∨ Bk. For a bit string of length w we assume that the mask of any
constant can be computed in O(1) time. Given a bit string B = b1b2 . . . bw, b1 is the most significant
bit. The index of the least significant set bit can be found in O(1) time from log2((B − 1)⊕B∧B).
Finding the most significant set bit is more elaborate, but can also be done O(1) time [18]. An
n×m bit matrix may be transposed in O(w logw) time if n ≤ w and m ≤ w [24].

Trees. In this paper all trees are rooted, ordered, and have labels on the nodes. The number of
nodes in a tree T is t. We denote by T (v) the subtree rooted in v containing all descendants of
v. The size |T (v)| is the number of nodes in the subtree T (v) including v. If u is a node in the
subtree T (v) we write u ∈ T (v). If T is a binary tree we denote the left and right child of a node
v by left(v) and right(v).

A heavy path decomposition [23] decomposes T into disjoint paths. Nodes are classified as either
heavy or light and the decomposition is defined as follows. The root is light. For each internal node
v, its heavy child w is the node for which T (w) is of maximum size among the subtrees rooted in
children of v. The other children of v are light. Edges are also classified as heavy and light. An
edge going into a heavy node is heavy and likewise for light nodes. The heavy path decomposition
ensures the property that 1

2
|T (v)| > |T (u)| for any light child u of v. This means that there are

O(log t) light edges on any path from the root to a leaf. The heavy path decomposition can be
computed in O(t) time and space.

Given a binary tree T rooted in a node r, t > 1, and a parameter 1 ≤ x ≤ t, we may partition T
into at most t/x clusters such that for a fixed constant c, the size of any cluster is at most cx [3,5]
(see also [1] for a full proof). Two clusters overlap in at most one node, and a node is called a
boundary node if it is part of more than one cluster. Any cluster has at most two boundary nodes,
and a boundary node is either a leaf or the root in the subtree that is the cluster. The tree obtained
by repeatedly contracting edges between two nodes if one of them is not a boundary node is called
the macro tree. In other words, the macro tree is the tree consisting only of boundary nodes. A
cluster partition can be found in O(t) time.

The answer to a level ancestor query la(v, d) on T is the ancestor of v with depth d. A linear
space data structure that answers an la query in O(1) time can be computed for T in O(t) time [16]
(see also [2, 7, 8]).

3

Straight Line Programs. A Straight Line Program S is a context-free grammar in Chomsky
normal form with n production rules that unambigously derives a string S of lengthN . We represent
the SLP as a rooted, ordered, and node-labelled directed acyclic graph (DAG) with outdegree 2 and
we will refer to production rules as nodes in the DAG. A depth-first left-to-right traversal starting
from a node v in the DAG produces the string S(v) of length |S(v)|. The tree that emerges from
the traversal we call the derivation tree. We denote the left and right children of v for left(v) and
right(v), respectively. Furthermore, the height of the SLP is the length of the longest path going
from the root to a terminal node and is denoted by h.

We may access a character S[i] in O(h) time by storing |S(v)| for each node v in the SLP, and
simulate a top-down search of the derivation tree. Doing so yields a unique path from the root
of S to the terminal node labelled S[i]. There is also a linear space data structure that supports
random access in SLPs in O(logN) time [9]. A key technique used in this data structure is the
extension of the heavy path decomposition of trees to SLPs which we will also use in our data
structure. For each node v ∈ S, we select the child of v that derives the longest string to be a
heavy node. The other child is light. Heavy and light edges are defined as in the decomposition
of trees. Whereas applying this technique to a tree results in a decomposition into disjoint paths,
it will result in a decomposition into disjoint trees when applied to an SLP. We denote this set of
trees by the heavy forest H of the SLP. This decomposition ensures that the number of light edges
on any path from the root to a terminal node is O(logN). Hence, on any path from the root of the
SLP to a terminal node, we visit at most logN trees from H. When accessing a character using
the data structure of [9] we may also report the entry and exit nodes for each tree visited on the
unique root-to-terminal path that emerges from the query.

3 Packed Tree Color Problems

In a colored tree, each node is colored by zero or more colors from the set {1, . . . , σ}. A packed
colored tree is a colored tree where the colors of each node v is given as a bit string C(v) where
C(v)[c] = 1 iff v is colored c. In this section we consider the packed tree color problem which is to
preprocess a packed colored tree T to support first and last colored ancestor queries. The answer
to a first colored ancestor query firstcolor(v, c) is the lowest ancestor of v with color c, and the
answer to a last colored ancestor query lastcolor(u, v, c) is the highest node with color c on the
path from u to v, where we always assume that u is an ancestor of v. Throughout this section we
will use the following notation to distinguish results. If a data structure requires p(t) time to build,
uses s(t) space, and supports firstcolor and lastcolor queries in q(t) time, then the the triple
〈p(t), s(t), q(t)〉 refers to the solution.

Solutions to the tree color problem for trees that are not packed may be applied to packed
trees. All known solutions focus entirely on supporting firstcolor queries [4,16,17,21]. A simple
solution that supports firstcolor queries in O(1) time is to store the answer for every color in
every node. This yields a 〈O(tσ), O(tσ), O(1)〉 solution. The currently best known trade-off for
the tree color problem is 〈O(t+D), O(t+D), O(logw)〉 [21], where D =

∑
v∈T

∑σ
i=1 C(v)[i] is the

accumulated number of colors used.
Our motivation for revisiting this problem is twofold. First we have that D = O(tσ) in our

application and we are striving for a space bound that is in o(tσ). Second we want to support
lastcolor queries.

In this section we present three solutions to the packed tree coloring problem and combine them

4

to a data structure with a new and desireable time-space trade-off.

3.1 A 〈O(tσ), O(tσ), O(1)〉 Solution

We store the result of a firstcolor(v, c) query for every node and color. For each color, let the
induced c-colored subtree be the tree obtained by deleting all nodes that are not colored by color
c except the root. Build a levelled ancestor data structure for each induced colored subtree.

The result of a firstcolor query is precomputed. A lastcolor(u, v, c) query is answered
as follows. If firstcolor(v, c) = firstcolor(u, c) then there is not a node with color c on
the path from u to v. If firstcolor(v, c) 6= firstcolor(u, c) then let v′ and u′ be the nodes
corresponding to firstcolor(v, c) and firstcolor(u, c) in the induced c-colored subtree. The
answer to lastcolor(u, v, c) is then the answer to la(v′, depth(u′) − 1) in the induced c-colored
subtree.

The results of firstcolor queries can be found and stored using O(tσ) time and space. The in-
duced colored subtrees can be computed in O(tσ) time and useO(D) = O(tσ) space. A firstcolor

query clearly takes O(1) time. For a lastcolor query, we perform two firstcolor queries and
one la query, each of which takes constant time.

Lemma 1 The packed tree color problem can be solved using O(tσ) preprocessing time and space,
and O(1) query time.

3.2 A 〈O(t+ tσ
w
), O(t+ tσ

w
), O(log t)〉 Solution

We fix a heavy path decomposition of T . For each path p in the heavy path decomposition of T we
build a balanced binary tree Tp having the nodes of p as leaves. For each node v in Tp we store a
summary B(v) of the colors of its children. For each heavy path p = v1, v2, . . . , vk, where v1 is the
highest node on the path, we store a summary P (vi) of colors on the path prefix v1 . . . vi for every
vi on p.

For answering a firstcolor(v, c) query, let p = v1, v2, . . . , vk be the heavy path containing v
and let vi = v for some 1 ≤ i ≤ k. If P (vi)[c] = 1 we find the lowest ancestor va of vi in Tp for
which B(left(va))[c] = 1 and vi /∈ Tp(left(va)). The answer to the query is then the rightmost leaf
in Tp(left(va)) with color c. If P (vi)[c] = 0 we repeat the procedure with vi = parent(v1), i.e., we
jump to the previous heavy path, until we find the first colored ancestor or we reach the root of T .

A lastcolor(u, v, c) query is handled in a similar way. We first find the highest light node
w on the path from u to v for which P (parent(w))[c] = 1. Let p be the heavy path containing
parent(w). Now there are three cases. If u is not on p, the answer to the query is the leftmost leaf
in Tp that has color c. If p contains u, the answer is the leftmost leaf with color c to the right of u
in Tp, if such a node exists. If it does not exist, we repeat the first step for the second highest light
node w′ between u and v for which P (parent(w′))[c] = 1.

The heavy path decomposition of T can be found and stored in O(t) time and space. Since
the paths of the heavy path decomposition are disjoint, the total number of leaves in the binary
summary trees is t, so the total number of nodes in the trees is O(t). We store O(t) summary bit
vectors of size O(σ

w
) using a total of O(tσ

w
) space. We use O(tσ

w
) bitwise OR operations to create

the summaries in a bottom up fashion. In total, preprocessing time and space usage is O(t+ tσ
w
).

For both queries we visit at most log t heavy paths. When the path with the answer has been
found we walk up the binary tree and then down again. Since the tree is balanced and has at most

5

t leaves, this takes O(log t) time. For lastcolor queries we do this at most twice. The query time
for firstcolor and lastcolor queries is therefore O(log t) time.

Lemma 2 The packed tree color problem can be solved using O(t + tσ
w
) preprocessing time and

space, and O(log t) query time.

3.3 A 〈O(t+ tσ logw

w
), O(t+ tσ

w
), O(t

w
)〉 Solution

Let v1, . . . , vt be the nodes of T in pre-order. We will represent T as a σ × t bit matrix M . Let c
be a color from the set of colors {1, . . . , σ}. In row c of M we store a bit string where bit i is 1 iff
vi has color c. For each node vi we also store a bit string A(i) where bit j is 1 iff vj is an ancestor
of vi.

We construct this data structure from a packed colored tree as follows. Assume that the bit
strings representing the node colorings form a t× σ matrix where row i is the colorings of node vi.
We transpose this matrix to get M . To do this we partition the matrix into a t

w
× σ

w
matrix (assume

w.l.o.g. that w divides t and σ), transpose each w×w submatrix as described in [24], and transpose
the t

w
× σ

w
matrix to get M . To compute the ancestor bit strings first set A(root(T)) = [0]t. For

all other nodes vi, where vj is the parent of vi, set A(vi) = A(vj) ∨ 2j .
We answer a firstcolor(v, c) as follows. Let R = M [c] ∧ A(v). Now R is a bit string

representing the set of ancestors of v with color c. Since the nodes have pre-order indices, the
answer to the query is vi, where i is the index of the least significant set bit in R.

To answer a lastcolor(v, u, c) query we start by computing R the same way as above. We
then set the first i − 1 bits of R to 0, where i is the index of u. The answer to the query is the
most significant set bit of R.

The σ × t bit matrix M can be packed in words and therefore uses O(tσ
w
) space. The same is

evident for the ancestor bit strings. Transposing a w × w matrix takes O(w logw) time, and since
there are tσ

w2 submatrices of this size in the color bit matrix, the total time spent for all submatrices

is O(tσ logw
w

). Transposing the t
w
× σ

w
matrix takes O(tσ

w
) time. Computing the ancestor bit strings

clearly takes O(tσ
w
) time.

The size of R is O(t
w
), so finding the first non-zero word takes O(t

w
) time. Determining the

least or most significant set bit of a word is done in O(1) time. Thus, the query time for both a
firstcolor and a lastcolor query is O(t

w
).

Lemma 3 The packed tree color problem can be solved using O(t + tσ logw
w

) preprocessing time,
O(t+ tσ

w
) space, and O(t

w
) query time.

3.4 Combining the Solutions

We now show how to combine the previously described solutions to get 〈O(t+nσ
w
), O(t+nσ

w
), O(logw)〉

and 〈O(t + tσ logw
w

), O(t + tσ
w
), O(1)〉 trade-offs. This is achieved by doing a cluster partioning of

the tree.
First we convert T to a binary tree T ′. Then we partition T ′ into O(t

w
) clusters, i.e., each

cluster has size O(w). For each cluster C, where one boundary node is a leaf in the cluster and the
other is the root of the cluster, we make a summary of the colors of the nodes on the path from
the root to the leaf. The summary is stored in the macro tree node that corresponds to the leaf
boundary node of C. Apply the 〈O(tσ), O(tσ), O(1)〉 solution to the macro tree, and apply either

6

the 〈O(tσ
w
), O(tσ

w
), O(log t)〉 solution or the 〈O(tσ logw

w
), O(tσ

w
), O(t

w
)〉 solution to each cluster using

the original colors.
Here is how we answer a firstcolor(v, c) query. Let Cv be the cluster containing v. First we

ask for firstcolor(v, c) in Cv. If the answer is a node in Cv, we are done. If it is undefined, we
find the node r in the macro tree corresponding to the root of Cv. We check if r has color c in the
macro tree and otherwise ask for w = firstcolor(r, c) in the macro tree. In the cluster Cw having
w as a leaf boundary node we then check if w has color c and otherwise ask for firstcolor(w, c)
in Cw.

We answer a lastcolor(u, v, c) query as follows. Assume that u 6= v and let Cu and Cv be
the clusters containing u and v. If Cu = Cv then the answer is lastcolor(u, v, c) in the cluster
containing u and v. If Cu 6= Cv, let w be the leaf boundary node of Cu where v ∈ T (w). We now
proceed in three steps. First, we ask for lastcolor(u,w, c) in Cu. If the query returns a node,
this is also the answer to the lastcolor(u, v, c) query. If the answer in the first step is undefined
we ask for z = lastcolor(w, root(Cv), c) in the macro tree to locate the highest cluster with a
node with color c between u and v. The answer to the query is then lastcolor(root(Cz), z, c) on
Cz. If the first two steps fail, the answer to a query is lastcolor(root(Cv), v, c).

The cluster partition can be computed in linear time, and the cluster path summaries are
computed in O(tσ

w
) time. Since the macro tree has O(t

w
) nodes the preprocessing time and space to

apply the 〈O(tσ), O(tσ), O(1)〉 solution becomes O(tσ
w
). To answer a query we perform a constant

number of firstcolor and lastcolor queries on the macro tree and clusters. Therefore the
total time to perform queries on the macro tree is O(1) time. To get (i) we apply the 〈O(t +
tσ
w
), O(t+ tσ

w
), O(log t)〉 solution to clusters. Since a cluster has size O(w) we use a total of O(logw)

time performing queries on clusters. To get (ii) we apply the 〈O(tσ logw
w

), O(tσ
w
), O(t

w
)〉 solution to

clusters. Again, since clusters have size O(w) we use a total of O(1) time performing queries on
clusters. Preprocessing time and space for the cluster data structures follow because

∑
C∈CS |C| =

O(t).

Theorem 2 The packed tree color problem can be solved using O(t+ tσ
w
) space,

(i) O(t+ tσ
w
) preprocessing time, and O(logw) query time, or

(ii) O(t+ tσ
w
logw) preprocessing time, and O(1) query time.

4 Labelled Successor Data Structure for SLPs

The answer to a labelled successor ls(i, c) query on a string S is the index of the first occurrence of
the character c after position i in S. More formally, the answer to ls(i, c) is an index j such that
S[j] = c, j > i, and S[k] 6= c for k = i+ 1, . . . , j − 1.

In this section we present a data structure that supports ls(i, c) queries on an SLP. This is the
first data structure dedicated to solving this problem on SLPs. Alternatively, we may build the
random access data structure of [9] and then answer an ls(i, c) query by doing a random access
query for position i followed by a linear scan to find the first occurrence of c. This yields a query
time of O(logN + j − i) while using O(n) space for the data structure.

Our data structure combines the random access data structure of [9] with a new way of navi-
gating the SLP based on the characters of substrings. For the latter we will utilize our result for
the packed tree color problem described in the previous section.

7

The basic idea is to store a bit string for each node v ∈ S that summarizes which characters
that are generated by S(v). We first seach for position i in S and let p be the unique path in S
defining S[i]. We then walk up p until reaching a node u where right(u) generates a string that
contains c and right(u) is not on p. Then we walk down from right(u) using the summaries to
locate the leftmost terminal descending from right(u) that generates c. This algorithm requires
O(n+ nσ

w
) space and O(h) time to find ls(i, c).

To speed things up we fix a heavy path decomposition of the SLP to get a heavy forest and
build the random access data structure of [9]. Now p is a sequence of entry and exit points in the
trees of the heavy forest. When we walk up p we enter a tree in an exit node and have to walk
away from the root to the first node whose right child generates a string that contains c before
reaching the entry node. This is equivalent to a lastcolor query. When we walk down to find
ls(i, c) we enter a tree and have to walk towards the root to find either the first ancestor whose
left child generates a string that contains c or the highest ancestor whose right child generates c.
This is equivalent to a firstcolor and a lastcolor query, respectively.

In the remainder of this section we give the details of the data structure.

Theorem 3 There is a data structure supporting labelled successor (and predecessor) queries on a
string of size N over an alphabet of size σ compressed by an SLP of size n in the word RAM model
with word size w ≥ logN using O(n+ nσ

w
) space and

(i) O(n+ nσ
w
) preprocessing time, and O(logN logw) query time, or

(ii) O(n+ nσ
w

logw) preprocessing time, and O(logN) query time.

Proof. We first apply the construction of [9], and let H be the heavy forest obtained from the
heavy path decomposition of S. For each node v in S with children left(v) and right(v) we store
two bit strings L(v) and R(v) summarizing the characters in S(left(v)) and S(right(v)). If v and
left(v) are in the same tree in H then L(v) = [0]σ and similarly for right(v) and R(v). For each
tree in H we build two data structures for the packed tree color problem. One where the L bit
strings serve as colors and one where the R bit strings serve as colors.

We answer an ls(i, c) query as follows. First we access the character S[i] using the random
access data structure. We now have the entry and exit points of the heavy trees in H on the unique
path p describing S[i]. Let T1, . . . , Tk ∈ H be a sequence of trees on p in the order they are visited
when starting from the root and ending in the terminal generating S[i], and let (v1, u1), . . . , (vk, uk)
be the entry and exit nodes for each tree in the sequence. Using the packed tree color data structure
for the R colors, we repeat lastcolor(ui, vi, c) for i = k down to some j until lastcolor(uj , vj , c)
is not undefined. Let w = right(lastcolor(uj, vj , c)). We now search for the first occurrence of c
in S(w). Let Ti be the tree in H that contains the node w, then the search proceeds in three steps.
First, we ask for v = firstcolor(w, c) in Ti in the data structure for L colors and restart the
search from left(v). If the query firstcolor(w, c) is undefined we continue to the next step. In the
second step we check if root(Ti) generates c. If it does, we now have a unique set of entry and exit
nodes in the trees of H that constitutes a path to a terminal that generates the first c after position
i. The answer to the ls(i, c) query is the index of this c which we retrieve using the random access
data structure. Finally, if root(Ti) does not generate c we ask for v = lastcolor(w, root(Ti), c)
in Ti in the data structure for R colors, and restart the search from right(v).

The data structure uses O(n+ nσ
w
) space because the random access data structure uses linear

space and the bit strings L and R use O(nσ
w
) space. The random access data structure, including

8

the heavy path decomposition, takes O(n) time to compute and the L and R values are computed
using O(nσ

w
) OR operations in a bottom up fashion. Therefore, this part of the data structure is

computed in O(n+ nσ
w
) time.

To get Theorem 3 (i) we use the packed tree color data structure of Theorem 2 (i) for the trees
in H and likewise for (ii). Since the trees are disjoint, the preprocessing time and space becomes
as in the Theorem 3.

For the query, we first do one random access query that takes O(logN) time, then we per-
form at most logN lastcolor queries walking up the SLP and at most 2 logN firstcolor and
lastcolor queries locating the labelled successor. Finally, retrieving the index also takes O(logN)
time using the random access data structure. �

5 Subsequence Matching

We will now use the labelled successor data structure to obtain a subsequence matching algorithm
for SLPs. Our algorithm is based on the folklore algorithm for subsequence matching which works as
follows (see also [15,20]). First we find the minimal prefix S[1..j] that contains P as a subsequence.
This is done by reading S left to right while searching for the characters of P one at a time. We
then find the minimal suffix S[i..j] of the prefix S[1..j] that contains P . Similarly, this is done by
scanning the prefix right to left. Now S[i..j] is the first minimal occurrence of P . To find the next
minimal occurrence we repeat this process for the suffix S[i + 1..N]. It can be shown that this
algorithm finds all minimal occurrences of P in O(Nm) time.

By using our labelled successor data structure described in the previous section we speed up
the procedure of finding some specific character of P . Assume we have matched P [1..k] to S[1..j]
such that P [k] = S[j]. Instead of doing a linear scan of S[j + 1..N] to find P [k + 1] we ask for the
next occurrence of P [k + 1] using ls(j, P [k + 1]).

For each occurrence of P we perform O(m) labelled successor (and labelled predecessor) queries,
and we also have to construct the data structures to support these. By applying the results of
Theorem 3 we get Theorem 1.

References

[1] S. Abiteboul, S. Alstrup, H. Kaplan, T. Milo, and T. Rauhe. Compact labeling scheme for
ancestor queries. SIAM J. Comput, 35(6):1295–1309, 2006.

[2] S. Alstrup and J. Holm. Improved algorithms for finding level ancestors in dynamic trees. In
Proc. 27th ICALP, pages 73–84, 2000.

[3] S. Alstrup, J. Holm, K. de Lichtenberg, and M. Thorup. Minimizing diameters of dynamic
trees. In Proc. 24th ICALP, pages 270–280, 1997.

[4] S. Alstrup, T. Husfeldt, and T. Rauhe. Marked ancestor problems. In Proc. 39th FOCS, pages
534–543, 1998.

[5] S. Alstrup, J. P. Secher, and M. Spork. Optimal on-line decremental connectivity in trees.
Inform. Process. Lett., 64(4):161–164, 1997.

9

[6] R. A. Baeza-Yates. Searching subsequences. Theoret. Comput. Sci., 78(2):363–376, 1991.

[7] M. A. Bender and M. Farach-Colton. The level ancestor problem simplified. Theoret. Comput.
Sci., 321(1):5–12, 2004.

[8] O. Berkman and U. Vishkin. Finding level-ancestors in trees. J. Comput. System Sci.,
48(2):214–230, 1994.

[9] P. Bille, G. M. Landau, R. Raman, K. Sadakane, S. R. Satti, and O. Weimann. Random access
to grammar-compressed strings. In Proc. 22nd SODA, pages 373–389, 2011.

[10] L. Boasson, P. Cegielski, I. Guessarian, and Y. Matiyasevich. Window-accumulated subse-
quence matching problem is linear. In Proc. 18th PODS, pages 327–336, 1999.

[11] P. Cégielski, I. Guessarian, Y. Lifshits, and Y. Matiyasevich. Window subsequence problems
for compressed texts. In Proc. 1st CSR, pages 127–136, 2006.

[12] P. Cégielski, I. Guessarian, and Y. Matiyasevich. Multiple serial episodes matching. Inform.
Process. Lett., 98(6):211–218, 2006.

[13] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and A. Shelat.
The smallest grammar problem. IEEE Trans. Inf. Theory, 51(7):2554–2576, 2005.

[14] M. Crochemore, B. Melichar, and Z. Trońıček. Directed acyclic subsequence graph-overview.
J. Discrete Algorithms, 1(3):255–280, 2003.

[15] G. Das, R. Fleischer, L. Gasieniec, D. Gunopulos, and J. Kärkkäinen. Episode matching. In
Proc. 8th CPM, pages 12–27, 1997.

[16] P. F. Dietz. Finding level-ancestors in dynamic trees. In Proc. 2nd WADS, pages 32–40, 1991.

[17] P. Ferragina and S. Muthukrishnan. Efficient dynamic method-lookup for object oriented
languages. In Proc. 4th ESA, pages 107–120, 1996.

[18] M. L. Fredman and D. E. Willard. Surpassing the information theoretic bound with fusion
trees. J. Comput. System Sci., 47(3):424–436, 1993.

[19] N. J. Larsson and A. Moffat. Off-line dictionary-based compression. Proc. IEEE, 88(11):1722–
1732, 2000.

[20] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of frequent episodes in event sequences.
Data Min. Knowl. Discov., 1(3):259–289, 1997.

[21] S. Muthukrishnan and M. Müller. Time and space efficient method-lookup for object-oriented
programs. In Proc. 7th SODA, pages 42–51, 1996.

[22] W. Rytter. Application of Lempel–Ziv factorization to the approximation of grammar-based
compression. Theoret. Comput. Sci., 302(1):211–222, 2003.

[23] D. D. Sleator and R. Endre Tarjan. A data structure for dynamic trees. J. Comput. System
Sci., 26(3):362–391, 1983.

10

[24] M. Thorup. Randomized sorting in O(n log log n) time and linear space using addition, shift,
and bit-wise boolean operations. J. Algorithms, 42(2):205–230, 2002.

[25] A. Tiskin. Faster subsequence recognition in compressed strings. J. Math. Sci., 158(5):759–769,
2009.

[26] A. Tiskin. Towards approximate matching in compressed strings: Local subsequence recogni-
tion. In Proc. 6th CSR, pages 401–414, 2011.

[27] Z. Trońıček. Episode matching. In Proc. 12th CPM, pages 143–146, 2001.

[28] T. Yamamoto, H. Bannai, S. Inenaga, and M. Takeda. Faster subsequence and dont-care
pattern matching on compressed texts. In Proc. 22nd CPM, pages 309–322, 2011.

[29] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Trans.
Inf. Theory, 23(3):337–343, 1977.

[30] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding. IEEE
Trans. Inf. Theory, 24(5):530–536, 1978.

11

	1 Introduction
	2 Preliminaries
	3 Packed Tree Color Problems
	3.1 A "426830A O(t), O(t), O(1) "526930B Solution
	3.2 A "426830A O(t+tw),O(t+tw),O(logt) "526930B Solution
	3.3 A "426830A O(t+tlogww),O(t+tw),O(tw) "526930B Solution
	3.4 Combining the Solutions

	4 Labelled Successor Data Structure for SLPs
	5 Subsequence Matching

